
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800



Chapter 11

An Update on Reproduction in Ghost Shrimps

(Decapoda: Axiidea) and Mud Lobsters (Decapoda:

Gebiidea)

Patricio Hernáez

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.75067

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited. 

Patricio Hernáez

Additional information is available at the end of the chapter

Abstract

In this report, I review the taxonomic history, body adaptations, ecology, and reproduc-
tion of the infraorders Axiidea (ghost shrimps) and Gebiidea (mud lobsters). Known until 
recently as the “Thalassinidea,” modern classification divided Axiidea into six families 
and Gebiidea into five. Ghost shrimps are characterized by having the first and second 
pereiopod chelate and a soft and delicate body, whereas mud lobsters possess the first 
pereiopod chelate or subchelate and second pereiopod subchelate or simple with a hard 
and heavily calcified body. Among the main body adaptations of these organisms are 
distinguished: (i) carapace laterally compressed, (ii) pleon longer than the cephalotho-
rax in ghost shrimps but usually shorter in mud lobsters, and (iii) anterior feet thrown 
directly forward. Current accounting of axiideans and gebiideans reaches around 781 
and 240 extant species, respectively, with major number of species in Callianassidae 
and Upogebiidae within of each clade. Male reproductive system involves paired testes 
linked to the vas deferens that open in gonopores on the ventral coxal segment of the fifth 
pereiopod. In females, the reproductive system is composed of paired and colored ova-
ries, one ovary shorter than another, and a pair of short and translucent oviducts linking 
each ovary to the gonopore, this latter located on the ventral coxal of the third pereiopod. 
When present in males, the first pleopod is sexually dimorphic. Most ghost shrimps show 
distinct sexual dimorphism in body size and the major cheliped which become them 
in a promising group for growth studies. Hypertrophied chelipeds in males are often 
used to defend galleries against invasion from other shrimps from the same or oppo-
site sex or during the intense male-to-male competition for sexual partners. Knowledge 
about sexual systems of these species remains limited; however, available information 
suggests that hermaphroditism might be commonly present in axiideans and gebiide-
ans. Regarding mating systems, all species of ghost shrimp and mud lobster with soli-
tary habits and remarkable sexual dimorphism in the major cheliped are expected to 
be polygamous. Finally, considerable variability among Axiidea and Gebiidea species in 
fecundity and egg size may indicate important differences in the reproductive strategy 
and may also reflect a latitudinal trend as observed in other decapods.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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1. Taxonomic origin of Thalassinidea

The term “Thalassinoides” is introduced for the first time into subsection Macrura (rep-

tant) by the zoologist Latreille [1], including in it the genera Gebia Leach, 1816; Thalassina 
Latreille, 1806; Callianassa Leach, 1814; and Axius Leach, 1815. Next, this term is Latinized 
as Thalassinidea Latreille, 1831, incorporating it to the suborder Pleocyemata Burkenroad, 
1963. Dana [2] divided Thalassinidea into Eubranchiata (species with thoracic branchiae) 

and Anomobranchiata (species with abdominal branchial appendages), classifying the taxa 

Gebidae; Callianassidae Dana, 1852; and Thalassinidea Latreille, 1831, into Eubranchiata and 
Callianidea H. Milne Edwards, 1837, and Isaea H. Milne Edwards, 1830, into Anomobranchiata. 
The famous zoologist de Saint Laurent [3] elevated the genus Upogebia Leach, 1814 
(e.g., Callianassidae) to family rank, and she reorganized the families Callianassidae; 
Callianideidae Kossmann, 1880; and Axiidae Huxley, 1879, into superfamily Axioidea [4]. In 

another work published in the same year, she divided Reptantia into 10 groups that in her 

opinion were caused by the process called “radiation Triassique” [5]. In her work, she stated 

that infraorder Thalassinidea was the only group of Reptantia impossible to define precisely 
and so introduced the term (French) “Thalassinacea.” De Saint Laurent [5] argued that in 

“Thalassinacea,” relationship between the epistome and the carapace varied notably from 

one family to another, also the number of chelate pereopods (sometimes one and sometimes 

two); an appendix interna was not always present. From these observations, she proposed the 

separation of “Thalassinacea” into infraorders Axiidea and Gebiidea, thus transferring the 

families Axiidae and Callianassidae for the former infraorder and Laomediidae; Upogebiidae 
Borradaile, 1903; and Thalassinidea for the latter infraorder [5].

The first cladistic analysis of Thalassinidea was conducted by Poore [6]. He found the 

group to be monophyletic and divided into three superfamilies (Callianassoidea, Axioidea, 

Thalassinidea). A subsequent phylogenetic study using molecular data divided Thalassinidea 

into two major clades [7]. The first clade composed of the families Strahlaxiidae Poore, 1994, 
and Callianassidae and the second clade of Laomediidae Borradaile, 1903, Upogebiidae, and 
Thalassinidea (see also [8] sperm data; [9] molecular data). Sakai [10] compared the gastric 

mill in species of the Thalassinidea and found the group “diphyletic.” From his informa-

tion, he proposed the division of Thalassinidea into superorder Callianassoidea composed 

of five families (Axiidae; Callianassidae; Callianideidae; Ctenochelidae Manning and Felder, 
1991; Gourretiidae Sakai, 1999) and Thalassinidea composed of three families (Laomediidae, 
Upogebiidae, Thalassinidea). In the former group, all species are characterized by the pres-

ence of a propyloric ossicle simple, whereas in the latter group by having a propyloric ossi-
cle triangularly protruded downward [6]. Lastly, Robles et al. [11] undertook a molecular 

phylogeny of the thalassinideans and discovered the same two groups proposed by de Saint 
Laurent [4, 5] and other researchers [12–14].
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Taxon

Class Malacostraca

Subclass Phyllocarida

Subclass Hoplocarida

Subclass Eumalacostraca

Superorder Syncarida Packard, 1885

Superorder Peracarida Calman, 1904

Superorder Eucarida Calman, 1904

Order Euphausiacea Dana, 1852

Order Decapoda Latreille, 1802

Suborder Dendrobranchiata Spence Bate, 1888

Suborder Pleocyemata Burkenroad, 1963

Infraorder Achelata Scholtz and Richter, 1995

Infraorder Anomura MacLeay, 1838

Infraorder Astacidea Latreille, 1802

Infraorder Axiidea de Saint Laurent, 1979

Family Axiidae Huxley, 1879

Family Callianassidae Dana, 1852

Family Callianideidae Kossmann, 1880

Family Gourretiidae Sakai, 1999

Family Micheleidae Sakai, 1992

Family Strahlaxiidae Poore, 1994

Infraorder Brachyura Latreille, 1802

Infraorder Caridea Dana, 1852

Infraorder Gebiidea de Saint Laurent, 1979

Family Axianassidae Schmitt, 1924

Family Kuwaitupogebiidae Sakai, Türkay and Al Aidaroos, 2015

Family Laomediidae Borradaile, 1903

Family Thalassinidea Latreille, 1831

Family Upogebiidae Borradaile, 1903

Infraorder Glypheidea Van Straelen, 1925

Infraorder Polychelida Scholtz and Richter, 1995

Infraorder Procarididea Felgenhauer and Abele, 1983

Infraorder Stenopodidea Spence Bate, 1888

Table 1. Families of Axiidea and Gebiidea within the classification of the arthropod superclass Multicrustacea based on 
Dworschak et al. [15], updated by worms [22].

An Update on Reproduction in Ghost Shrimps (Decapoda: Axiidea) and Mud Lobsters…
http://dx.doi.org/10.5772/intechopen.75067

233



Currently, it is reasonably assumed by researchers that Axiidea and Gebiidea represent two dis-

tinctly separate infraorders of decapods whose main evolutionary characteristic is the fossorial 

lifestyle [15]. Members of Axiidea (casually known as ghost shrimps) are characterized by hav-

ing the first and second pereiopod chelate and a soft and delicate body, whereas all Gebiidea 
(casually known as mud lobsters) possess the first pereiopod chelate or subchelate and second 
pereiopod subchelate or simple with a hard and heavily calcified body [15, 16]. Recent discov-

ery of new species has added a series of new families within Axiidea and Gebiidea [17, 18]. 

Considering this information, modern classification of both groups divided Axiidea into six 
families and Gebiidea into five (Table 1). Nevertheless, taxonomy of old name Thalassinidea 
follows being very controversial among carcinologists from the “American school” and opin-

ions of Sakai, particularly in what concerns to the correct use of the names Axiidea and Gebiidea 
versus Callianassidea and Thalassinidea [19, 20].

2. A body adapted for a fossorial lifestyle

In order to understand and define what is meant by ghost shrimp and mud lobster, the gen-

eral morphological components of the infraorders Axiidea and Gebiidea need to be examined. 

Figure 1. Main morphological adaptations in Axiidea and Gebiidea. (A) Carapace of Neocallichirus grandimana (left 

panel) and Axianassa linda (right panel), dorsal view; (B) male specimen of Callichirus seilacheri (top panel) and Naushonia 

macginitiei (Glassel, 1938) (down panel), lateral view; (C) male specimen of Lepidophthalmus siriboia (left panel) and 

Upogebia omissa (right panel), dorsal view. (a,B) left and right panel, scale bar = 1 cm, 0.5 cm, respectively; (B) top and 
down panels, scale bar = 1 cm, 0.5 cm, respectively.
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The carapace in most of these species (except in laomediids of the genus Naushonia) is lat-

erally compressed and can be strongly ornamented (Figure 1A, left and right panel), with 

spines and tubercles as in Thalassinidea and Upogebiidae (Gebiidea) or unornamented as 

in Callianassidae and Callianideidae (Axiidea) [15, 16]. The pleon is longer than the cepha-

lothorax in most ghost shrimps (Figure 1B, top panel) but usually shorter in mud lobsters  

(Figure 1B, down panel), and anterior feet are thrown directly forward in all members of these 

clades [15, 16] (Figure 1C, left and right panel).

3. Diversity and ecological importance

Inhabiting most oceans and seas of the world, ghost shrimps (Axiidea) and mud lobsters 

(Gebiidea) exhibit a greatest diversity with about 423 and 192 extant species, respectively [21]. 

According to information available in database World Register Marine Species, for Axiidea 
and Gebiidea, those values have increased in about 85% and 25%, respectively, during the last 
decade [22]. In terms of extant species, family Callianassidae exhibits the greatest diversity 

within infraorder Axiidea whereas Upogebiidae within Gebiidea (Table 2).

Both axiideans and gebiideans are known for constructing burrows of different shapes and 
depths [23–27] (Figure 2A) and for playing an important role in shaping the community structure 

in intertidal and shallow water of marine habitats [28–31]. Bioperturbation produced by these 
organisms, i.e., the activity of water and sediment expulsion from the galleries, contributes to the 

suspension of organic matter, nitrogen fixation, and the increases of food availability among the 
trophic levels [32–34] (Figure 2B). Members of Axiidea and Gebiidea can be found inhabiting as 

sponge symbionts, living between coarse coral rubble or even associated to hydrocarbon seeps 

Taxon Number of genera Extant species

Infraorder Axiidea

Family Axiidae 63 205

Family Callianassidae 67 495

Family Callianideidae 6 18

Family Gourretiidae 9 20

Family Micheleidae 4 33

Family Strahlaxiidae 3 10

Infraorder Gebiidea

Family Axianassidae 2 15

Family Kuwaitupogebiidae 1 1

Family Laomediidae 4 21

Family Thalassinidea 1 11

Family Upogebiidae 13 192

Table 2. Number of genera and species for each family of Axiidea and Gebiidea based on database of worms [22].
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and hydrothermal vents in deep water [35–38]. Some species of ghost shrimps are considered 
ecosystem engineers because of their capacity to modify, maintain, and/or create habitats for 

other marine invertebrates [39–40]. Also, several ghost shrimps and mud lobsters are used as a 

bait for recreational fishing and human consumption [41–45] (Figure 2C).

Dworschak et al. [15] stated that most ghost shrimps and mud lobster species are character-

ized by solitary habits; however, such assumption lacks empirical support from the available 
literature. With the exception of larval period [46–49], axiideans and gebiideans spend their 

lifetime within of gallery [15], which makes it difficult to capture and study them. As a result, 
the knowledge about population dynamics and reproduction of these species is restricted to 

about 6.00% of already described species, being most of these studies realized in species of the 
families Callianassidae and Upogebiidae [40, 50–56].

4. Reproductive biology

4.1. Gonopores and primary sexual characters

The location of the male and female sexual openings in Axiidea and Gebiidea is similar to 

described universally for the reptant decapods [57]. Males possess prominent gonopores on 

Figure 2. (A) Burrow morphology and copulatory behaviour in Callichirus seilacheri (Callianassidae), scale bar = 20 
cm; (B) model of bioperturbation activity in Axianassa linda (Axianassidae); (C) fishermen harvesting Callichirus major 
(Callianassidae) at São Paulo State, Brazil.
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the ventral coxal segment of the fifth pereiopod, whereas females have oval gonopores on the 
ventral coxal segment of the third pereiopod [40, 58, 59] (Figure 3A).

Information about internal anatomy of the reproductive system is virtually nonexistent in 

most species of ghost shrimps and mud lobsters. Scarce information published point out that 
male reproductive system involves paired testes dorsally to the hepatopancreas and the intes-

tine and is located between first and second abdominal somites, whose connection with geni-
tal openings (gonopores) is produced through a pair of translucent or whitish vas deferens 

[60] (Figure 3B). Secreting epithelium of the vas deferens is responsible for forming the gelati-
nous spermatophoric mass [61], as observed in other decapods [62]. Female sexual system 

is composed of paired orange or dark red ovaries (depending upon developmental stage), 

one ovary shorter than another, both visible through pleonal region and a pair of short and 

translucent oviducts linking the ovary to gonopore [59, 60] (Figure 3C). Seminal receptacle or 
spermathecae have not been described for any Axiidea and Gebiidea, despite attempts to find 
them [63]. Laboratory observations show that females of callianassid shrimps are not able to 
store sperm [64], as reported in most brachyuran crabs [65].

4.2. Secondary sexual characters

Males of most ghost shrimps and mud lobsters can be identified by the absence/presence and 
morphology of the first pleopod. The first pleopod is absent in most males of Axianassidae, 
Laomediidae, Strahlaxiidae, and Upogebiidae and in numerous Callianassidae [15, 16, 66, 67]. 

When present, the male first pleopod is uniramous and can be unsegmented as in Thalassina 

[68], bisegmented as in Callichirus [58], or composed of four articles as in Ctenocheles [69]. 

Male first pleopod in some species as Callianidea mariamartae Hernáez and Vargas, 2013, and 
Marcusiaxius lemoscastroi Rodrigues and de Carvalho, 1972, is morphologically similar to 

gonopods of Brachyura [70, 71], showing a tiny size and function totally unknown [15]. 

First pleopod plays an important role during the mating behavior of caridean shrimps [72] 

and brachyuran crabs [65]; however, their function is not clearly defined in Axiidea and 
Gebiidea.

Female first pleopod is present in all females of Axiidea and Gebiidea [15]. It is uniramous 

and consists of one article in Axianassidae, two articles in most families, or three articles in 

Callianassidae, with the distal part sometimes appearing as a shovel (Callianassidae) or fla-

gellum (Laomediidae, Callianideidae) [58, 59, 66, 73]. Depending upon species, sometimes the 
first two pairs or all female pleopods are used for carrying the eggs during the incubation of 
embryos [55, 74–76]. Females use pleopods 3–5 to generate strong water currents during the 
spawning and so help the larvae release from the burrow [76].

Ghost shrimps constitute a promising group for growth studies because many of them show 

marked differences between relative growth of chelipeds of males and females during post-
puberty phase. In Callianideidae and Callianassidae, for instance, males show a positive 

allometric growth of the major cheliped in relation to body size, whereas this morphometric 
relationship is isometric in females of both families [40, 77]. According to Rodrigues and Höld 

[78], hypertrophied chelipeds in males of ghost shrimps are often used to defend galleries 

against invasion from other shrimps from the same or opposite sex. Also, Felder and Lovett 
[51] suggest that antagonistic interactions among males of callianassid shrimps might cause 
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Figure 3. Schematic representation of the external genitalia and reproductive system in males (A, left panel, B) and 
females (A, right panel, C) of ghost shrimps and mud lobster. A–C scale bar = 5 mm.
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a high mortality of adult males, thus creating a bias toward females in these populations. 

Consequently, development of extremely larger chelipeds in callianassid species not only 

includes morphometric changes during sexual maturity but also can provide some advan-

tages to males, a competition for sexual partners, as were widely documented in several spe-

cies of Caridea Dana, 1852 [72].

4.3. Sexual systems

Sexual system varies considerably in Decapoda. Most caridean shrimps and brachyuran crabs 
are gonochoric, that is, all individuals in the population exhibit separate sexes throughout 

their lifetime [65, 72]. Other species are sequential hermaphrodites in which the individual 

changes sex at some point in the life history [79–84]. If the initial sex is male, the condition is 

known as protandry; the converse situation is protogyny [85]. Finally, several species have 

been reported as simultaneous hermaphrodites sensu Ghiselin [86], that is, an organism has 

both male and female sexual organs at the same time [72, 87, 88].

While the sexual system of most groups of Decapoda is well known such as Caridea [72], 

Astacidea [89], Anomura [90], and Brachyura [65] for most axiideans and gebiideans, the dis-

tribution of the sexes among individuals is not clear. This is because many researchers have 

omitted to report explicitly the sexual system of their focus species, wrongly accepting that 
most ghost shrimps and mud lobsters are gonochoric. Secondly, because in ghost shrimp and 
mud lobster studies, the sex ratio as a function of size is rarely reported, which is crucial to 
determine any sex changing through the ontogeny of one species [91].

Several studies conducted in Axiidea and Gebiidea species have reported morphological 
evidences that aim for a sexual system more complex than simply the existence of separate 

sexes during the lifetime of these species. For instance, in the intertidal mud lobster Upogebia 

major (De Haan, 1841) (Upogebiidae) and in the ghost shrimp Callichirus major (Say, 1818) 
(Callianassidae), male has the gonad divided in a posterior ovarian section and an ante-

rior testicular section [92, 61] (Table 3). In both species, ovarian section produces functional 

oocytes. In other species of ghost shrimps and mud lobsters have been reported specimens 

with male and female gonopores which have been classified as intersexed (Table 3). To sum-

marize, for 21 species of Axiidea and 12 of Gebiidea, explicit information—or strong indirect 
evidence—on their sexual system was available. Of these, 26 species are gonochoristic (i.e., 
all individuals in the population exhibit separate sexes throughout their lifetime); 2 males 

are hermaphrodites, and 10 species present intersexed specimens (Table 3). Considering this 

information and given that reproductive biology has been studied in only a small proportion 

of the 781 ghost shrimps and 240 mud lobsters, it can be concluded that hermaphroditism 

might not be unusual in these organisms.

4.4. Mating systems

Overall, monogamous decapods usually live in heterosexual pairs as a form to ensure the mating 

and optimize the survival [93]. In most monogamous species, disproportionate sexual dimorphism 
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Taxon Sexual 

system

Intersex Reference

Axiidea

Callianassidae

Biffarius filholi (A. Milne-Edwards, 1878) Gc [54]

Callianassa aqabaensis Dworschak, 2003 I (M,F) [116]

Callianassa subterranea (Montagu, 1808) Gc [117]

Callichirus garthi (Retamal, 1975) Gc I (F) [40]

Callichirus islagrande (Schmitt, 1935) Gc [63]

Callichirus major (Say, 1818) H (M) I (F) [100]

Callichirus seilacheri (Bott, 1955) Gc I (F) P. Hernáez unpublished data

Lepidophthalmus bocourti (A. Milne-Edwards, 1870) Gc P. Hernáez unpublished data

Lepidophthalmus louisianensis (Schmitt, 1935) Gc [51]

Lepidophthalmus sinuensis Lemaitre and Rodrigues, 1991 Gc [118]

Lepidophthalmus siriboia Felder and Rodrigues, 1993 Gc [56]

Neocallichirus maryae Karasawa, 2004 Gc P. Hernáez unpublished data

Neocallichirus nickellae Manning, 1993 Gc P. Hernáez unpublished data

Neotrypaea californiensis (Dana, 1854) Gc [119]

Neotrypaea tabogensis (Sakai, 2005) Gc P. Hernáez unpublished data

Nihonotrypaea harmandi (Bouvier, 1901) Gc [120]

Nihonotrypaea japonica (Ortmann, 1891) Gc [53]

Nihonotrypaea petalura (Stimpson, 1860) Gc [120]

Sergio mirim (Rodrigues, 1966) Gc [121]

Sergio trilobata (Biffar, 1970) Gc [122]

Callianideidae

Callianidea mariamartae Hernáez and Vargas, 2013 Gc [70]

Gebiidea

Axianassidae

Axianassa australis Rodrigues and Shimizu, 1992 Gc P. Hernáez unpublished data

Upogebiidae

Austinogebia edulis (Ngoc-Ho & Chan, 1992) I (M) [123]

Austinogebia spinifrons (Haswell, 1882) I (F) [124]

Paragebicula edentata (Lin, Ngoc-Ho & Chan, 2001) I (M) [125]

Upogebia dawsoni Williams, 1986 Gc [126]

Upogebia deltaura (Leach, 1816) I (M) [50]
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of chelipeds is not observed because sexual selection is weak given that monogamy evolved from 

fidelity between heterosexual pairs [94]. On the contrary, in polygamous species there is no fidel-
ity among individuals of the opposite sex, wherefore agonistic encounters are common between 

adult males during the search for receptive females [72, 95]. In these species, males invest heavily 

in structures, such as chelipeds, that are used as armament against other potential competitors 

[96, 97]. Considering this information, all species of ghost shrimp and mud lobster with solitary 

habits and remarkable sexual dimorphism in the major cheliped are expected to be polygamous.

In the intertidal ghost shrimp Callichirus seilacheri (Bott, 1955), the burrow is individually 
inhabited by one male or a female (Figure 2A), and adult male develops hypertrophied che-

lipeds which is a potential evidence of intense male-to-male competition for sexual partners 

and therefore an indirect evidence of polygamy [98]. In a study conducted in Callichirus isla-

grande (Schmitt, 1935), an intertidal species in that males possess highly developed chelipeds 
[59], the egg mass of females is fertilized by multiple males which denotes polyandry [63]. 

In both species, the authors assume that mating occurs when the male digs a straight and 

almost horizontal connection from its gallery to other nearby galleries in search of a recep-

tive female (Figure 2A), such as one that is observed in Upogebia noronhensis Fausto-Filho, 

1969 [98]. Unfortunately, information about mating system in Axiidea and Gebiidea is virtu-

ally nonexistent. Further studies including behavioral experiments between male and female 

specimens should be carried out to investigate a possible mating system in these species.

4.5. Sexual dimorphism in body size

In general, females of ghost shrimps attain, in average, a larger body size than males such as 
Biffarius filholi (A. Milne-Edwards, 1878) [99], C. major [100], and Lepidophthalmus siriboia Felder 

and Rodrigues, 1993 [56]. Females usually invest more energy into somatic growth than males 

when their reproductive success depends on reaching a larger body size [101]. In decapods, 

such evolutionary trend is explained by the fact that fecundity in females increases with body 

size [74, 102–105]. Supporting this assumption, fecundity in species of callianassids increase 
with the female size, resulting in greater production of eggs in larger females [54, 74, 75].

Taxon Sexual 

system

Intersex Reference

Upogebia major (De Haan, 1841) H (M) [92]

Upogebia omissa Gomes Corrêa, 1968 Gc P. Hernáez unpublished data

Upogebia pusilla (Petagna, 1792) Gc [127]

Upogebia stellata (Montagu, 1808) Gc I () [128]

Upogebia thistlei Williams, 1986 Gc I (M) [129]

Upogebia vasquezi Ngoc-Ho, 1989 Gc [130]

Table 3. Probable sexual system and the presence of specimens intersexed in 21 ghost shrimps and 12 mud lobsters.
Empty spaces are left where no information is available; (Gc) = gonochoristic, (H) = hermaphroditic, (I) = intersex, (M) = 
male, and (F) = female.
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4.6. Egg number and egg size

The considerable variability among Axiidea and Gebiidea species in view of fecundity and egg 

size (Table 4) may indicate important differences in the reproductive strategy and may also reflect 
a latitudinal trend, as was observed in other decapods [106–110]. In C. seilacheri, for instance, 

females produce the highest number of eggs compared to those axiideans and gebiideans where 

data are available. However, this ghost shrimp and mud lobsters are the largest species among 

those listed in Table 4, and it is assumed that the area available for egg attachment increases with 
female size [102, 111]. When compared to a similar-sized species Upogebia deltaura (Leach, 1816) 
(18.9 mm CL, 5304 eggs) [50], fecundity in C. seilacheri is still substantially higher (18.6 mm CL, 
9612 eggs). Moreover, this species produces considerably larger eggs (0.884 mm) than U. deltaura 

(0.558 mm). It is speculated that these differences in egg numbers in similar-sized species are 
related to the elasticity of the abdomen, which provides more space for egg attachment.

Egg size is one of the most variable parameters in decapods and offers valuable information 
on a species’ reproductive strategy. It is a useful indicator of the duration of embryogenesis 

and larval size at hatching [112]. Moreover, several studies on ghost shrimps and mud lob-

sters showed a clear relation between egg size and type of larval development [113–115]. Such 
information, however, is restricted to just a few species of both clades.

Taxon Carapace length 

(mm)

Number of 

eggs

Egg length 

(mm)

Reference

Infraorder Axiidea

Family Callianassidae

Biffarius filholi 5.5–14.9 1985 0.68 [54]

Callichirus garthi 18.6–23.2 17,450 0.88 [40]

Callichirus kraussi (Stebbing, 1900) n.a. 122 1.52 [113]

Callichirus major (Brazil) 10.3–15.0 4564 0.79a [75]

Callichirus seilacheri 12.2–17.2 2387 0.71 P. Hernáez unpublished 
data

Lepidophthalmus louisianensis n.a. 598 n.a. [47]

Lepidophthalmus sinuensis 7.0–16.8 251 1.22 [118]

Pestarella tyrrhena (Petagna, 1792) 5.2–10.4b 270 1.18 [131]

Infraorder Gebiidea

Family Upogebiidae

Upogebia affinis (Say, 1818) n.a. 10,000 n.a. [132]

Upogebia deltaura 16.6–18.9 4757 0.56 [50]

Upogebia pusilla 14.7–16.6 n.a. n.a. [127]

n.a., information not available. Letter in superscript indicates information obtained from further estimation

Table 4. Carapace length of ovigerous females and number and length of eggs in some ghost shrimp and mud lobster 

species.
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5. Conclusion

An updated classification of the infraorders Axiidea (ghost shrimps) and Gebiidea (mud lob-

sters) divide each of these clades into six families and five families, respectively. However, 
controversial taxonomic history of these infraorders is far from over due to recent discovery 

of new taxa. Diagnostic features of these organisms mainly include (i) carapace laterally com-

pressed, (ii) pleon longer than the cephalothorax in Axiidea but usually shorter in Gebiidea, 

and (iii) anterior feet thrown directly forward. A recent count estimates the diversity of Axiidea 

and Gebiidea in about 781 and 240 extant species, respectively. In general, information about 

reproduction of these organisms is virtually nonexistent. Scarce reports about external and 
internal genital apparatus show that male possesses gonopores on the ventral coxal segment 

of the fifth pereiopod whereas females on the ventral coxal segment of the third pereiopod. 
Males of most ghost shrimps and mud lobsters can be identified by the absence/presence and 
morphology of the first pleopod and sexual dimorphism in the major cheliped during post-
puberty phase. According to available information, gonochorism is the sexual system most 

common within Axiidea and Gebiidea. However, two cases of hermaphroditism and several 

cases of intersexuality have been also reported in ghost shrimps and mud lobsters that would 

be indicating the need of further studies about this topic in these organisms. Regarding mat-

ing system, all species of ghost shrimp and mud lobster with solitary habits and remarkable 

sexual dimorphism in the major cheliped are expected to be polygamous. Lastly, considerable 
variability among Axiidea and Gebiidea species in fecundity and egg size seems to indicate 
important differences in the reproductive strategy of these decapods.
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