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Abstract

Drug resistance developed in human pathogenic bacteria is emerging and has become 
a global problem. Methicillin-resistant Staphylococcus aureus (MRSA) spreading in both 
hospital and community areas has posed a great impact to global public health. Current 
antibiotics used against these resistant strains are no longer efficacious and the search 
for new alternative is in urgent need. In the past decades, natural products have dem-
onstrated multiple biological activities in biomedical areas including their antibacterial 
actions against various drug-resistant bacteria. More promisingly, some natural prod-
ucts could reverse the resistance of bacteria to the antibiotics, making the target bacteria 
susceptible to these drugs again. Numerous natural products have also exhibited potent 
synergism against the drug-resistant bacteria when used in combination with various 
types of antibiotics. Recently, several antibacterials derived from microbes have been 
developed and approved by Food and Drug Administration (FDA) for clinical use. In this 
chapter, we discuss the potential use of non-microbial natural products in controlling 
Staphylococcus aureus (S. aureus)‘s growth, and the underlying challenges in developing 
the natural products into clinical applications.

Keywords: natural products, Staphylococcus aureus, methicillin-resistant, antibacterial, 
MRSA

1. Introduction

Staphylococcus aureus (S. aureus) is a coagulase-positive Gram-positive cocci bacterium, com-

monly found on human skin and mucous membranes. Up to 30% of the world population 

is colonised by this bacterium [1]. Despite being part of the human normal microbiota, it is 

known to be a pathogen causing various levels of diseases ranging from mild skin infections 
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such as boils and rashes, to life-threatening diseases such as persistent bacteraemia, sepsis, 

and pneumonia [2]. The pathogenicity of this bacterium is attributed to its vast arrays of 
virulence factors such as adhesins, production of enzymes and toxins, biofilm formation, and 
evasion of immunity strategies [3–5]. Apart from the known virulence factors, this oppor-

tunistic pathogen is best known for its formidable reputation due to its antibiotic-resistant 

phenotype. Methicillin-resistant S. aureus (MRSA) and vancomycin-resistant S. aureus (VRSA) 

are among the two recognised health threats to the humans. As of now, MRSA is listed as a 

‘serious threat’ by Centres for Disease Control and Prevent (CDC) and ‘priority pathogen’ by 

the World Health Organisation (WHO), while VRSA is listed as ‘concerning threat’ by CDC.

Despite the rapid advancement of modern medicine, S. aureus infections remain highly preva-

lent in the human populations as transmission of these pathogens can occur through direct 

contact [6, 7]. Drug-resistant S. aureus particularly MRSA can be defined either as health-

care- or community- associated, based on the ‘48-hour rule’. In the former, MRSA infections 

develop after 48 hours from hospital admission while the later develops within 48 hours of 

admission. In this classification system, there are three categories of MRSA infections, namely 
(i) healthcare-associated, hospital-onset, (ii) healthcare-associated, community onset and (iii) 

community-associated MRSA infections. Essentially, healthcare-acquired MRSA infections 

(HA-SA or HA-MRSA) lead to bacteraemia, infective endocarditis, and prosthetic-associated 

infections while community-acquired MRSA infections (CA-MRSA) often lead to skin and soft 

tissues infection as well as community-acquired pneumonia in healthy individuals [2, 8, 9]. 

Compounding to the situation, MRSA has been reported to infect livestock including pigs, 

poultry, and cattle. Livestock-associated MRSA (LA-MRSA) can be transmitted to individuals 
handling these infected livestock [10]. In the early days, S. aureus has already been recognised 

as the main culprit causing hospital-acquired infections (HAIs) such as surgical site infections, 

bloodstream infections, and pneumonia [11]. The epidemiology of S. aureus shifted in the 2000s 

with the observation of MRSA infections dominating HAIs. In fact, MRSA strains account for 

up to 75% of all S. aureus infections in different part of the world [12–17]. In the US, for instance, 

MRSA causes approximately 11,000 deaths annually [18].

Antibiotic-resistant S. aureus is known to be associated with higher morbidity and mortality 

rates as compared to antibiotic-susceptible strains [19–21]. In the last decade, studies show 

that MRSA alone causes more death in the US hospitals than of HIV/AIDS, viral hepatitis, 

and tuberculosis in combination [22, 23]. In addition to health burden, these antibiotic-resis-

tant S. aureus also imposes economic burden in order to eliminate the associated infections 

[24, 25]. The bacterium develops resistance to nearly all antibiotics introduced to treat infec-

tions caused by the bacterium. In 2011, the Expert Panel of the Infectious Diseases Society of 

America (IDSA) presented an evidence-based guideline for the management of antibiotic-

resistant S. aureus infections, including antibiotic choices in both adult and paediatric patients 

[26]. The key antibiotic choices are described below.

1.1. Vancomycin

Vancomycin, a glycopeptide, was first introduced in the 1960s and has been the most reli-
able therapeutic agent for MRSA infections, including bacteraemia and endocarditis [27]. 

This broad spectrum antibiotic is a cell wall synthesis inhibitor. It binds to the c-terminal 
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of D-Ala-D-Ala residues of the peptides of the N-acetyl-glucosamine (NAG) and N-acetyl-

muramic acid (NAM) murein subunits, preventing transpeptidases from forming the pep-

tide bridge between peptidoglycan chain, leading to bacterial cell death. However, there is 

also a group of S. aureus resistant to vancomycin known as VRSA.

1.2. Daptomycin

This antibiotic is a promising alternative to vancomycin for infections caused by MRSA. This 

cyclic lipopeptide was approved for clinical use in the U.S in 2003 and Europe in 2006. 

Daptomycin targets only Gram-positive bacteria and is commonly used for complicated skin 

and skin-structure infections, bacteraemia, and right-sided endocarditis [27]. This antibiotic, 

however, is not recommended for the pneumonia caused by MRSA. Some studies indicated 

that daptomycin interacts with pulmonary surfactants present in the lung tissues, leading to 

the inhibition of daptomycin antibacterial activity [2, 28]. Daptomycin works by targeting 

the cytoplasmic membrane of bacteria in a calcium ion-dependent manner. In the presence 

of calcium ions, daptomycin aggregates and forms micellar structures. Daptomycin is then 

inserted into the membrane and binds strongly to phosphatidylglycerol headgroups lead-

ing to depolarisation and permeabilisation of the membrane. This then leads to cytoplasmic 

content leakage and cell death [29, 30]. The emergence of daptomycin-resistant S. aureus is 

relatively uncommon. However, increasing records of daptomycin-resistant S. aureus have 

been reported [31–33].

1.3. Linezolid

Linezolid, an oxazolidinone, was first approved by the FDA in 2000 for skin bacteraemia 
and pneumonia-origin S. aureus infections [1]. Linezolid is considered as a standard broad-
spectrum intravenous therapies directed towards vancomycin- and teicoplanin-resistant 

Gram-positive pathogens, including MRSA. Linezolid inhibits protein synthesis by binding 
to the 23S subunit of the 50S ribosome. Linezolid-resistant S. aureus is relatively uncommon. 

Resistant strains have been previously reported in staphylococci involving mutations in the 

23S rRNA and rRNA methyltransferase. These mutations prevent the binding of linezolid to 

the ribosome for interfering protein synthesis [34].

1.4. Ceftaroline

Ceftaroline is a fifth generation cephalosporin with a broad-spectrum bactericidal activity 
against both Gram-positive bacteria including MRSA and some Gram-negative bacteria. This 

antibiotic is used primarily for the treatment of acute bacterial skin and skin structure infec-

tions, and community-acquired bacterial pneumonia caused by S. aureus [35]. Ceftaroline 

has an enhanced affinity for penicillin binding protein 2a (PBP2a), thus is an ideal antibiotic 
choice for MRSA infections. This antibiotic is relatively new, and was approved for use in 

2010 in the U.S, 2012 in Europe, and 2013 in Australia [36]. However, the emergence of ceftaro-

line resistance in different parts of the world with a demonstrated decrease of PBP2a binding 
affinity and heteroresistance, has been documented [37–39]. The associated mechanisms of 

resistance involve glutamic acid-to-lysine substitutions in the non-penicillin binding domain 

and the transpeptidase domain of the PBP2a [39, 40].
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There is increasing evidence demonstrating that S. aureus is becoming resistant against all 

possible antibiotic choices used to treat the infections in the past. Hence, the search for and 

development of new antibacterials against drug-resistant S. aureus is of pivotal importance. 

Natural products represent an enormous reservoir of compounds that are diverse in struc-

tures and chemical properties. These compounds have been used as antibiotics, such as peni-

cillin and streptomycin. The discovery and use of natural products as antibiotics led to the 

Golden Age of antibiotics in the 1950s to 1960s. In the past decades, many pharmaceutical 

companies moved away from natural products programmes partly due to a shift to both high-

throughput screening and combinatorial synthesis that focus on small synthetic molecules [41, 

42]. However, these approaches are proven to have limited successes [43]. In 2015, the Nobel 

Prize in Physiology or Medicine was awarded to William C. Campbell and Satoshi Omura, 

and Youyou Tu for their discovery of new anti-parasitic drugs of natural sources, Avermectin 

and Artemisinin, respectively. This marks the new milestone and brings optimism for natu-

ral product drug discovery. Antimicrobial properties of countless natural products have been 

tested on S. aureus and an earlier review summarises these research findings collected between 
1995 and 2003 [44]. The purpose of this review is to provide an update on natural products that 

have been shown to demonstrate promising bactericidal effects against drug-resistant S. aureus, 

published in journal between 2014 and 2017. The resistance mechanisms of drug-resistant S. 

aureus will be discussed, followed by new anti- S. aureus agents collected from non-microbial 

natural products, their potential synergism with antibiotics, the molecular targets and mecha-

nisms of these agents, and potential challenges in developing them into clinical trials.

2. Mechanism of S. aureus antimicrobial resistance

Generally, bacteria acquire resistance against antibiotics via different molecular mechanisms, 
including enzymatic inactivation of antibiotics, alteration of antibiotics target(s) leading to 

decreased affinity for the antibiotics, removing antibiotics via efflux pumps and changing mem-

brane permeability [45, 46]. S. aureus is known to resist all the clinically approved antibiotics 

using various resistance mechanisms mentioned above. The detailed resistance mechanisms for 

important antibiotics, including penicillin, methicillin, and vancomycin are discussed below.

2.1. Penicillin resistance

Penicillin was first isolated from a soil fungus, Penicillium in the 1940s. This antibiotic was 

once thought to be a miracle drug as it could cure previously fatal infections. However, few 

years after its introduction, penicillin resistance including penicillin-resistant S. aureus was 

isolated from hospitals. Penicillin resistance of S. aureus is highly prevalent with up to 86% of 

clinical S. aureus isolates being resistant to the antibiotic in the US [47]. Meantime, far way in 

Australia, a similar observation was made as 80% of S. aureus isolates were resistant to penicil-

lin [48]. Penicillin resistance in staphylococci is mediated by the production of enzyme peni-

cillinase or beta-lactamase encoded by the blaZ gene. This enzyme inactivates the antibiotic by 

hydrolysis of the beta-lactam ring of the antibiotic [49]. Studies show that penicillinase genes 

can be present on either plasmid of the chromosome of S. aureus [50].
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2.2. Methicillin resistance

Methicillin is a penicillinase-resistant beta-lactam. It was first introduced in 1950s and pre-

scribed for S. aureus infection. The first MRSA was documented in 1961 in the UK while the 
first MRSA in the US was first reported in 1968. Since then, many MRSA clones spread to every 
corner of the globe. Methicillin resistance is usually encoded by mecA gene that is located in a 

mobile genetic element of S. aureus, known as the Staphylococcal Chromosomal Cassette mec 

(SCCmec). mecA is responsible for the synthesis of low-affinity PBP2a which leads to decreased 
methicillin binding. Methicillin resistance confers broad spectrum of activity generally to the 

entire beta-lactam class of antibiotics including penicillins and cephalosporins [51]. The origin 

of SCCmec is thought to be originated from coagulase-negative staphylococcal species as there 

is no homologues of mecA present in methicillin-susceptible staphylococci. In recent years, a 

novel mecA homologue, mecC has been identified in both livestock and human in European 
countries. Similar to mecA, mecC codes for PBP2a with reduced affinity for methicillin and 
oxacillin, making them MRSA [52, 53].

2.3. Vancomycin resistance

As mentioned earlier, vancomycin is a gold standard antibiotic choice for MRSA infections. 

However, the emergence of vancomycin-intermediate S. aureus (VISA) (with a MIC value in 

the range of 3–8 μg/mL) and VRSA (with a MIC value ≥16 μg/mL) result in the failure of van-

comycin treatment for MRSA infection. This antibiotic was first released in 1958. However, 
reduced vancomycin susceptibility in S. aureus was reported in 1997 in Japan [54]. VISA is 

also spreading to different parts of the world [38]. By comparison, the burden of VISA is 
relatively higher than VRSA, as the former is commonly associated with persistent infection, 

treatment failure and poor clinical outcomes. The molecular resistance of VISA is less-defined 
as compared to VRSA. Typically, VISA features increased cell wall thickness, reduced cross-

linking rate, an increase of free D-alanyl-D-alanine residues in the peptidoglycan layers which 

provides more vancomycin binding, leading to an increased consumption of vancomycin 

while VISA remains unharmed [27, 55–57]. It is suggested that VISA involves accumulation 

of mutations, or rather, adaptation mechanisms in coping with the challenge of vancomycin. 

VRSA acquires complete resistance to vancomycin by obtaining plasmid(s) from vancomycin-

resistant Enterococcus spp. that harbours vanA operon encoded on transposon Tn1546. VRSA 

maintains the resistance by retaining the original plasmid or by integrating Tn1546 from the 

enterococcal plasmid into staphylococcal resident plasmid. The vanA operon facilitates the 

synthesis of D-Ala-D-lactate instead of D-Ala-D-Ala peptidoglycan precursors. In doing so, 

vancomycin fails to bind hence leading to resistance observed in VRSA [57].

3. Bactericidal properties of natural products against drug-resistant 

S. aureus

Standard antibiotics treatment against drug-resistant S. aureus has failed in the clinical setting 
due to several causes as abovementioned. Interestingly, these resistant clinical isolates can be 
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killed by various naturally derived compounds and more promisingly, the antibiotic resis-

tance exhibited by the bacteria can be reversed, and making them susceptible to the antibiotics 

again. In this section, we discuss the non-microbial natural products that showed bactericidal 

action against drug-resistant S. aureus and their potential to be used in combination with cur-

rent antibiotics for its synergistic effects.

3.1. Potent natural products against drug-resistant S. aureus

Numerous natural products have shown potent antibacterial effects against S. aureus. 

Interestingly, these antibacterial actions are not limited to drug-sensitive wild-type S. aureus, 

but also extended to antibiotic-resistant S. aureus, including MRSA [58, 59], VISA [60], and 

VRSA [61]. Some of these natural compounds that showed promising bactericidal effects 
against drug-resistant S. aureus are summarised in Table 1. Due to the extensive repertoire 

of natural compounds against drug-resistant S. aureus, Table 1 shows only those that are 

extracted from Pub-Med indexed publications, from year 2014 to 2017. These research articles 

reported the minimal inhibitory concentration (MIC) of the natural products against the drug-

resistant S. aureus mainly MRSA using Clinical & Laboratory Standards Institute (CLSI) stan-

dard broth microdilution assay. As shown in Table 1, the MICs mostly range from micro to 

milligramme per millilitre. The bactericidal non-microbial natural products are derived from 

various sources including, plants, insects, animals, and fungi. These natural compounds have 

been reported to target and act on multiple bacterial targets such as cell wall [62, 63], pyruvate 

kinase [64], cell division [65], DNA topoisomerase [66], and efflux pump [67, 68]. These phar-

macological targets are further discussed in Section 4.

3.2. Synergism of natural products and antibiotics

While serving as potent antibacterial agents alone, several studies have been carried out to 

investigate the potential of natural products to be used in combination with current anti-

biotics. This is particularly important against drug-resistant S. aureus which have shown 

resistance against several antibiotics. Natural compounds have been shown to reverse the 

antibiotic resistance. For instances, Akilandeswari and coworkers demonstrated that apigenin 

(AP) reversed the bacterial resistance of MRSA when used in combination with ampicillin and 

ceftriaxone [123]. The resulting MIC for ampicillin was shifted from 800 to 107 μg/mL, and 
the MIC for ceftriaxone was shifted from 58 to 2.6 μg/mL. Similarly, Mun and colleagues also 
showed that a plant-derived flavonol, morin reversed the oxacillin- and ampicillin-treated 
MRSA [124]. Essential oils derived from Pituranthos chloranthus, Teucrium ramosissimum and 

Pistacia lentiscus also reduced the resistance of MRSA to various antibiotics in Penicillins’ 

group such as amoxicillin, piperacillin, and oxacillin [125].

Cumulative studies highlight the role of natural compounds in decreasing the reliance on 

antibiotics in bacterial treatment particularly in MRSA’s management, hence preventing the 

emergence of antibiotic resistance. In addition, production of antibacterial agents from natu-

ral products might be more cost-effective than antibiotics production. With advent of modern 
biotechnology, mass production of these antibacterial products is feasible. More importantly, 

the manufacturing process allows genetic modifications (e.g. to improve biological activity, 
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Extract/ compound Test strain MIC References

Curcumin MRSA 217 μg/mL [69]

Quinolone alkaloids MRSA 8–128 μg/mL [70]

Bee venom MRSA 0.085–0.11 μg/mL [71]

Magnolol and honokiol MDR MRSA, 

MRSA

8–16 ppm [72]

Quercus infectoria gall extracts MRCoNS, MRSA 80–630 μg/mL [73]

Kaempferia pandurata rhizome extracts MRCoNS, MRSA 4–16 ppm [74]

Mulinum spinosum extracts MRSA 500–1000 μg/mL [75]

Isothiocyanates from cruciferous plants MRSA 2.9–110 μg/mL [76]

Lichen MRSA 3.9–500 μg/mL [77]

Marinopyrrole A MRSA 0.19–0.78 μM [78]

6,6′-dihydroxythiobinupharidine MRSA 1–4 μg/mL [66]

Mature carpels of Manglietiastrum sinicum MRSA 0.016–0.14 μM [79]

Pentacyclic triterpenoids MRSA 2–512 μg/mL [80]

Psoralea corylifolia fruit constituents MRSA 8–32 μg/mL [81]

Thai longan honey MRSA 12.5% (v/v) [82]

Rubiaceae, Fabaceae, and Poaceae leaves extract MRSA 5.5–388.4 μg/mL [83]

Cinnamomum extracts MRSA 19.5 μg/mL [84]

Garcinia mangostana pericarp extracts MRSA 17–20 μg/mL [85]

MFM 501 MRSA 15.6–31.3 μg/mL [86]

3′-demethoxy-6-O-demethylisoguaiacin MRSA 12.5 μg/mL [87]

Essential oils from Schinus areira leaves and fruits MRSA 6–30 μg/mL [88]

Spiromastixones A-O MRSA 0.125–8 μg/mL [89]

Hypericum riparium leaves extract MRSA 6.54–18.5 μM [90]

Demethyltexasin MDR MRSA, 

MRSA

16–128 μg/mL [91]

Oleoresin MRSA 18.2–30 μg/mL [92]

Thymoquinone MRSA 8–16 μg/mL [93]

Phenanthrene fraction MRSA 8–64 μg/mL [94]

Rhamnus californica and Umbellularia californica extracts MRSA 3.3–6 mg/mL [95]

Juncus and Luzula species MRSA 9.75–156 μg/mL [96]

E23 marine compound MRSA 0.5–2 μg/mL [97]

Piper betle extracts MRSA 78–625 μg/mL [98]

Letharia vulpine extracts MRSA 31.25 μg/mL [65]

Verrucosispora MS100047 MRSA 3.125–12.5 μg/mL [99]

Micromonohalimanes B MRSA 40 μg/mL [100]

Pterospartum tridentatum extracts MRSA 78.1 μg/mL [101]
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Extract/ compound Test strain MIC References

N-3 substituted thiazolidine-2,4-dione derivatives MRSA 6.25–12.5 μg/mL [102]

Sapotaceae extracts MRSA 45–97 μg/mL [103]

Thymus daenensis MRSA 25 mg/mL [104]

Compositae extracts MRSA 31.25 μg/mL [105]

Roemerine MRSA 32–64 μg/mL [106]

Couroupita guianensis extracts MRSA 62.5–156 μg/mL [107]

Cotinus coggygria leaf extracts MRSA 0.313–0.625 mg/mL [108]

Eremophila alternifolia extracts MRSA 10–20 μM [109]

Baicuru MRSA 39 μg/mL [110]

Thymus bovei essential oil MRSA 0.5 mg/mL [111]

Formicamycins MRSA 0.625–80 μM [112]

Rumex aquaticus extracts MRSA 192.3–463 μM [113]

Endophenzine G MRSA 2–128 μg/mL [114]

Greek oregano isolates MRSA 160–640 μg/mL [115]

Macrocyclic bis(bibenzyl)s MRSA 0.5–16 μg/mL [116]

Acylquinic acids MRSA 0.63–1.25 mg/mL [117]

Houttuynia cordata poultice extracts MRSA 0.11–1.76 mg/mL [118]

Dandelion root extracts MRSA 62.5–500 μg/mL [119]

Solanioic acid MRSA 1 μg/mL [120]

Emodin MRSA 32–64 μg/mL [62]

Rhizoma coptidis MRSA 1.2–2.84 mg/mL [121]

Macrocyclic bis(bibenzyl)s MRSA 0.5–32 μg/mL [122]

MIC—minimal inhibitory concentration; MDR—multidrug-resistant; MRCoNS—methicillin-resistant coagulase negative  

Staphylococcus aureus; MRSA—methicillin-resistant Staphylococcus aureus.

Table 1. Antibacterial natural products against drug-resistant Staphylococcus aureus: An update from publication year 

2014 to 2017.

Compound Combination drug Test strain References

Curcumin Oxacillin, ampicillin, ciprofloxacin, norfloxacin MRSA [127]

Curcumin Gentamicin, amikacin, ciprofloxacin MRSA [128]

Lippia origanoides extracts Neomycin, amikacin MRSA [129]

Grape pornace extracts Oxacillin, ampicillin, nalidixic acid, ciprofloxacin, 
norfloxacin, levofloxacin, tetracycline, 
chloramphenicol

MRSA [130]

Artocarpin Ampicillin, norfloxacin, tetracycline MRSA [131]

Apigenin Ampicillin, ceftriaxone MRSA [123]

Morin Oxacillin MRSA [124]
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Compound Combination drug Test strain References

Bioactive fraction from 
Duabanga grandiflora

Ampicillin MRSA [132]

Bee venom Ampicillin, penicillin, gentamicin, vancomycin MRSA [71]

Diosmetin Erythromycin MRSA [64]

Brazilin Amikacin, etimicin, gentamicin, streptomycin MRSA [133]

Sophora moorcroftiana genistein Norfloxacin MRSA [134]

Sophora moorcroftiana diosmetin Norfloxacin, streptomycin, ciprofloxacin MRSA [134]

Medihoney Rifampicin MRSA [135]

Magnolol and Honokiol Oxacillin MRSA [63]

9EA-FC-B Ampicillin MRSA [136]

Oxyresveratrol Ciprofloxacin, gentamicin MRSA [137]

Zanthoxylum capense 

constituents

Ciprofloxacin MRSA [138]

Poncirus trifoliate extract Oxacillin MRSA [139]

Juglans regia Oxacillin MRSA [140]

Glabridin Norfloxacin, oxacillin, vancomycin MDR 

MRSA

[141]

Coumarins Chloramphenicol, gentamicin, fosfomycin, 

levofloxacin, minocycline, piperacillin/ tazobactam, 
teicoplanin, vancomycin

MRSA [142]

Polycarpol Oxacillin, amoxicillin, vancomycin MRSA, 

VISA

[143]

Linoleic and oleic acids Erythromycin MRSA [144]

Salvianolate Fosfomycin, erythromycin, piperacillin-tazobactam, 

clindamycin

MRSA [145]

Phellinus baumii extracts Oxacillin, cefazolin, cefepime, penicillin MRSA [146]

Epigallocatechin gallate Oxacillin, tetracycline, ciprofloxacin MRSA [147]

Clerodane diterpene Norfloxacin MRSA [67]

Carnosic acid Gentamicin MRSA [148]

Ursolic acid Ampicillin, tetracycline MRSA [149]

Anadenanthera colubrine extracts Neomycin, amikacin MRSA [150]

Herbal extracts Oxacillin, gentamicin MRSA [151]

Essential oils Amoxicillin, tetracycline, piperacillin, ofloxacin, 
oxacillin

MRSA [125]

Coumarin derivatives Tetracycline, norfloxacin MRSA [68]

MDR—multidrug-resistant; MRSA—methicillin-resistant Staphylococcus aureus; VISA—vancomycin-intermediate 

Staphylococcus aureus; VRSA—vancomycin-resistant Staphylococcus aureus.

Table 2. Synergistic anti-Staphylococcus aureus effects of natural products and drugs.
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solubility, stability, toxicity, production method, production cost and time, etc.) [41, 126]. 

Some of the challenges and limitation of using natural products as therapeutic modalities are 

discussed in Section 5.

4. Bacterial targets of S. aureus by natural products

In previous section, we discussed the anti-staphylococcal activities by various natural prod-

ucts alone and in combination with multiple types of antibiotics. As some of the mechanisms 

of antibiotic resistance have already been studied and reported, such as enzymes inactiva-

tion, antibiotics trapping, and efflux pumps, this information enables the anti-staphylococcal 
molecular targets of the natural products to be elucidated. These particular section summaries 

the molecular targets of natural products against drug resistant S. aureus such as bacterial cell 

wall and membrane, cell division protein FtsZ, pyruvate kinase, DNA topoisomerase, efflux 
pump proteins, and PBP2a. The reported pharmacological targets are depicted in Figure 1.

4.1. Cell wall and membrane

Cell wall of S. aureus is a popular pharmacological target of various antibiotics such as 

penicillins, cephalosporins, vancomycin, bacitracin, and others [152]. These antibiot-

ics interfere with the cell wall biosynthesis and leading to death of the bacteria. Among 

all, peptidoglycan is the major cell wall components and has been targeted by various 

drugs [153]. Other cell wall components including adhesins, teichoic acids, immunodomi-

nant antigens, and cell wall enzymes are also being targeted by multiple antibiotics [154]. 

Figure 1. Pharmacological targets of drug-resistant Staphylococcus aureus from reported bactericidal natural products.
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Similarly, a variety of bactericidal natural compounds also act on bacterial cell wall. For 

instances, Cao and coworkers showed that a natural compound emodin that targets MRSA 

could damage the cell wall and compromise the intracellular components. The cellular 

morphology was altered after the treatment when observed under transmission electron 

microscopy (TEM) [62]. Kim and colleagues also showed that magnolol targeted cell wall 
components to exert its pharmacological effect. In a mechanistic study, it has been shown 
that magnolol inhibited mecI’s pathway [63]. In addition, magnolol also targets various 

resistant genes, such as mecA, femA, and femB in mRNA form. It has also been shown that 

Juglans regia (English walnut) targeted the bacterial cell wall and resulted in the anti-staph-

ylococcal effects [140]. While showing synergism in combination with antibiotics, apigenin 

was shown to compromise the cell membrane followed by subsequent leakage of intracel-

lular constituents. This finding was demonstrated using TEM which showed significant 
morphological change of bacterial cell wall, shape, and plasma membrane [123].

4.2. Efflux pump

The function of efflux pumps of bacteria is to eliminate metabolites or materials that are 
potentially toxic and stress-inducing to the cells including antimicrobial compounds [155]. 

Hence, the bacterial efflux pumps have been known to contribute significantly to antimicro-

bial resistance by extruding a large number of antibiotics or drugs. They are often known as 

multidrug resistance (MDR) efflux pumps [155]. For decades, MDR efflux system has served 
as an excellent antibacterial target. Numerous promising candidates have previously demon-

strated their potencies in targeting efflux pumps as the major mechanism to killing the bacte-

ria [156, 157]. For examples, Wang and colleagues showed that genistein killed the MRSA by 

inhibiting NorA efflux protein when used in combination with drugs [134]. Mechanistic stud-

ies have also shown that various bactericidal natural compounds such as coumarin deriva-

tives [68], linoleic and oleic acids [144], clerodane diterpene [67], and Anadenanthera colubrina 

(Cebil/Vilca) [150] acted on MRSA’s efflux pump or proteins.

4.3. Penicillin-binding protein 2a (PBP2a)

PBP2a is encoded by mecA resistance gene and this gene can be acquired across different 
species for methicillin resistance [158]. Both PBP2a protein and mecA gene are emerging anti-

microbial targets for therapeutics development [159, 160]. Various type of natural products 

targeting mecA gene or PBP2a have also been reported, these compounds include curcumin 
[161], tiliroside, pinoresinol, magnatriol B, and momorcharaside B [151], Acalypha wilkesiana 

(evergreen shrub) extract [136], and Poncirus trifoliata extract [139]. In combination with anti-

biotics, several natural compounds have also reduced the expression of PBP2a. For instances, 
Mun and colleagues showed that the combination of morin and oxacillin synergistically killed 

the MRSA depending on the PBP2a-mediated resistance mechanism [124]. Another study 

demonstrated that the combination of ampicillin and Duabanga grandiflora extract inhibited 

the PBP2a protein [132]. Hong and colleagues also showed that β-lactams and Phellinus baumii 

extracts synergistically killed the MRSA by targeting PBP2a [146].
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4.4. Cell division protein FtsZ

FtsZ is a tubulin-like GTPase that recruit cell division proteins for new cell wall formation 

[162, 163]. Due to its pivotal role in cell division, it has been recognised as an important tar-

get for various antibacterial compounds or drugs including natural products. Liu and col-
leagues successfully developed several phenolic compounds targeting FtsZ of MRSA using a 

computer-aided simulation. These natural compounds showed potent bactericidal activities 

against MRSA [72]. It has also been shown that Letharia vulpina (lichen) extract possess anti-

microbial activity by damaging cell membrane of MRSA, as well as disrupting cell division 

processes, possibly targeting FtsZ [65].

4.5. Other targets

Other bacterial proteins that are being targeted by natural products for antimicrobials discov-

ery are pyruvate kinase (PK) and DNA topoisomerase IV. Pyruvate kinase serves as a catalyst 
to catalyse pyruvate and regulate carbohydrate metabolism [164] whereas DNA topoisom-

erase IV relaxes supercoiled DNA and performs decatenation events during DNA replica-

tion [165]. When used in combination with erythromycin, diosmetin drastically suppressed 

the MRSA PK activities in a dose-dependent manner. Chan and colleagues also speculated 
that the inhibition of PK could result in ATP deficiency and efflux pump malfunction [64]. 

Furthermore, Okamura and group demonstrated that a compound derived from Nuphar 

japonicum (water-lily) inhibited DNA topoisomerase IV of MRSA, but not DNA gyrase which 

is also carrying an important role in DNA replication [66].

5. Challenges and limitations

Despite great potentials shown by natural products of botanical origin, there is still a long 

way for them to be used for clinical application. Majority of these products function as supple-

ments for their nutritional and immune-enhancing values, but none of these non-microbial 

derived natural products is FDA-approved, nor being used for treating bacterial infections. 

Several natural products antibacterials of microbial origins have been approved since 2010, 

including fidaxomicin, ceftaroline, dalbavancin, oritavancin, ceftolozane-tazobactam and 
ceftazidime-avibactam [166, 167]. Between 1980 and 2014, 59% of the total of 140 the FDA- 
approved antibacterials are originated from natural products or their derivatives, but none of 

them is originated from plants [166], despite the increasing evidences suggesting that plants 

may be promising antibacterials as discussed in this review. A few key challenges and lim-

itations are highlighted and discussed in this section, including (a) design of antibacterial 

screening; (b) solubility and bioavailability of natural compounds; and (c) research directions 

towards clinical trials.

5.1. Design of antimicrobial screening

Antibacterial screening generally involves phenotypic screening relying on both Kirby-Bauer 
disc diffusion or broth micro-dilution methods. These methods are commonly used until 
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today due to the cost-effective and ease of preparation nature [168]. In disc diffusion method, 
antibacterial activity of an extract or compound is determined based on the presence of inhibi-

tory zone on agar plates seeded with susceptible bacteria while broth micro-dilution method 

examines the MIC of the antibacterial that inhibits bacterial growth [169]. Very often, these 

methods are used in the initial antibacterial screening of crude extracts, which may comprise 

up to hundreds of compounds. This complexity may jeopardise the identification of true anti-
microbial effects, leading to false negative results, as some active components may be of low 
abundance nature [170]. The exclusion of extracts and compounds that have high MIC values 

following initial screening means giving up on potential novel antibacterials. To overcome 

this, if crude extract is used, pre-fractionate followed by antibacterial screening to identify the 

most potent fraction is recommended. These fractions with promising results can be further 

sub-fractionated until potent compounds are identified. The fractionation technique usually 
involves the use of HPLC coupled to mass spectrophotometry [171]. By doing this, it reduces 
the chances of losing potent antibacterial during the screening step

In addition to the use of disc diffusion and broth-dilution methods, various techniques are cur-

rently used in the antibacterial studies. One such technique is the time-kill assay (also known 

as time-kill curve). In this technique, following the broth-dilution method, the bactericidal 

effects of different concentrations of the antibacterial agents (usually covering the ½ x MIC, 1 
x MIC and 2 x of the MIC) at different time points, e.g. 0, 4, 6, 8, 10, 12 and 24 h, are assayed, 
revealing a time-dependent or a concentration-dependent antibacterial effects of these anti-
bacterials [172]. At the moment, there is a lack of such studies in most of the reviewed articles. 

As the time-kill assay is able to provide a wealth of information on the dynamic interaction 

between antibiotics and the microbial strains, specifically S. aureus in this context, the inclusion 

of time-kill assay will further verify the antibacterial activity observed in natural products.

5.2. Solubility and bioavailability of natural products

One of the main limitations of adopting natural products for clinical applications is its solubil-

ity and bioavailability [161, 173]. This is highly related to the chemical properties, in particular 

aqueous solubility of the natural compounds. For examples, curcumin which is a polyphe-

nolic compound, is known to have poor solubility in water, and the main solvents used are 

usually DMSO, DMF or ethanol [161]. The water insolubility has significant impact on its 
antibacterial effect and the reported biological action is further reduced under the physiologi-
cal conditions [161]. There have been several studies demonstrating the reduced antimicro-

bial effects of natural compounds in the presence of normal human serum. Marinopyrrole 
A, which has previously shown potent antibacterial action against MRSA, showed approxi-

mately 256-fold higher MIC when tested in the presence of 20% serum [72]. The reduced 

activity could be due to the non-specific serum protein bindings and protein degradation due 
to metabolic enzymes and complements that largely affect the bioavailability. It has also been 
reported that curcumin showed reduced antibacterial activities against S. aureus when tested 

in the presence of human plasma and whole blood [174]. Similarly, human serum albumin 

has significantly decreased the bactericidal properties of curcumin [174, 175].

Numerous methods have been developed to overcome the solubility and bioavailability 

issues. Natural products loaded into nanocarriers such as nanoparticles, microemulsions, 

Non-microbial Natural Products That Inhibit Drug-Resistant Staphylococcus aureus
http://dx.doi.org/10.5772/intechopen.74588

13



micelles, etc. have improved the overall stability and bioavailability [176]. Incorporation of 

natural compounds such as resveratrol and thymol into liposomes has also increased the 

solubility and stability for their medicinal uses [173]. Furthermore, development of biocon-

jugates and nanoformulations also greatly improves the pharmacological action of natural 

products. This has been extensively reviewed for curcumin [161, 177].

5.3. Clinical trials

In the past decades, research organisations are de-prioritising natural products in their drug 

discovery programmes because of the costs associated with the development and licensure. 

For instance, between 1995 and 2001, Glaxo Smith Kline conducted 70 HTS campaigns, each 
worth approximately USD 1 million to identify only five potential antibacterial leads [178]. 

This early screening does not guarantee marketing and launching of these potential antibac-

terials as only approximately 30% of drugs, including natural products used as anti-infec-

tives receive FDA approval [179]. Following initial in vitro testing, clinical (phase I to III) 

testing is required to ensure the efficacy and safety of new antibacterials on human subjects. 
The complexity of clinical trial adds another barrier to the development of new antibacterials 

[180, 181]. On one hand, pharmaceutical companies are faced with multiple regulatory bottle-

necks such as increased stringency of trial design, increased demands regarding the design of 

phase III studies, and increased stringency of safety requirements for pre-licencing and post-

licencing procedures of drugs [181]. On the other hand, bacteria are acquiring resistance at 

fast pace. It complicates clinical trials as these trials cannot be completed without a substan-

tial number of the enrolled patients being infected with new, highly resistant strains. Clinical 

trials involving rare infectious diseases such as meningitis or endocarditis are most affected 
as these trials may take years and require multiple centres to complete [180]. Upon comple-

tion and success of clinical trials, pharmaceutical companies are required to file for approvals 
from the relevant agencies such as FDA in the US and European Medicines Agencies in the 

Europe. The entire process may take up to 15 years for the drug discovery to the launching 

stage [178]. The lack of interest and investment in antibacterial of natural sources reflects in 
the identification of only one such antibacterial agent, New Mexico Honey, as a decoloniza-

tion agent for CA-MRSA abscess in the phase II clinical trial phase (ClinicalTrials.gov identi-

fier number NCT00532324, accessed on the Dec 18, 2017).

In recognition of a lack of novel antibacterials in the clinical pipelines, FDA launched incen-

tives such as Generating Antibiotics Incentives Now (GAIN) Act to foster the research and 

development of new antibacterial. For instance, granting five additional years of exclusivity 
to new antibacterials to the pharmaceutical companies, providing incentives for drugs used 

for treating serious and life-threatening infections, including S. aureus, and reducing new 

antibacterial drug application time to 6 months [182].

5.4. Future directions

The search for new antibacterial agent in natural products remains an exciting yet challenging 

task. Evidences show that regulatory agencies are working collaboratively with pharmaceuti-

cal companies in improving the development of new antibacterials from natural sources. The 
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combined efforts are the key in shaping the development and marketing of potent antibacte-

rials in the coming years. Scientists working in the field, however, may play a bigger role in 
the discovery of novel antibacterials by addressing technical shortcomings of the screening of 

natural products for novel antibacterials.

One such aspect for consideration is to expand the antibacterial screening to include anti-

virulence screening such as quorum sensing systems, biofilm formation and pilus adhesins. 
The investigation of anti-virulence rationalises that because anti-virulence drugs do not kill 

bacterial cells and thus exerting less selective pressure for resistance. It is believed that the 

development of resistance is slower compared to bactericidal agents. Anti-virulence would 

constitute a valuable alternative to bactericidal agents [183, 184]. Anti-virulence of natural 

product such as anti-quorum sensing of goldenseal (Hydrastis canadensis L.) [185], anti-biofilm 
of dihydrocelastrol and dihydrocelastryl acetate present in many plants [186] in MRSA have 

been reported. This area of research is still lacking, in-depth investigation on anti-virulence 

potentials and solid evidence of slow resistance rate is still required.

Another challenging aspect of natural product not mentioned earlier is low bioavailability of 

natural products, creating inconsistent results between preclinical and clinical studies [187–189]. 

To overcome this challenge, scientists are exploring the incorporation of nanoparticles into a 

delivery system for natural products in order to increase therapeutic effects of natural products 
[190]. Preclinical successes of curcumin-nanoparticles in inhibiting in vitro growth of S. aureus 

[191] and MRSA and enhancing wound healing in in vivo murine wound model [192] have been 

documented thus far. This emerging field holds promises for natural products in treating bacte-

rial infections. However, drug targeting using nanoparticles remains a challenge, toxicity and 

safety needs further in-depth evaluations.

6. Conclusions

Non-microbial natural products have shown promising bactericidal activities against drug-

resistant S. aureus. The mechanisms of bacterial killings are under investigation and great 

efforts are being made to evaluate their antibacterial activities in clinical trials. This chapter 
provides an important update on the anti-staphylococcal activity of natural products against 

S. aureus and the underlying challenges are highlighted. These issues need to be addressed 

in order to transform the antibacterial natural products into clinically useful antibiotics in 

the future.
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