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Resumo

O agente de software é o processo onde reside toda a componente de
Inteligéncia Artificial, responsavel por tomar as decisoes de alto nivel.
CAMBADA ¢ a equipa de futebol robético do grupo de investigacdo
IRIS, da unidade de investigacao IEETA, da Universidade de Aveiro
que participa na Liga dos Robos Médios do RoboCup.

A robédtica é uma area multidisciplinar emergente que junta ciéncias
da computacdo, eletrénica e mecanica e nesta tese estd incluida uma
explicacdo geral sobre a arquitetura dos robds CAMBADA, desde o
hardware ao software, sobre os quais foi desenvolvido todo o trabalho
apresentado. No contexto de competicdo, a capacidade de raciocinio é
o que define o sucesso ou o insucesso das equipas. Dado o dinamismo
atual dos jogos, torna-se vital tomar as decisdes corretas, no momento
certo e em equipa. Com esta tese pretende melhorar-se a estrutura do
agente, desde a organizacdo do cddigo a prépria arquitetura de soft-
ware. Um novo modelo de gestdo de comportamentos foi desenvolvido
e adotado para as competicoes.

A constante evolucao da Liga de Robos Médios leva as equipas a terem
de se adaptar a novas regras todos os anos. Neste contexto, alguns
comportamentos foram desenvolvidos de raiz e outros foram melhora-
dos na nova arquitetura. No entanto, para a criacdo, teste e validacao
destes comportamentos foi necessdria a criacdo de aplicacdes de su-
porte ao desenvolvimento, calibracdo e de depuracao.

A nova arquitetura permitiu um desenvolvimento mais rapido e robusto
de comportamentos, e os avancos nos comportamentos levaram a uma
melhoria consideravel no desempenho global da equipa em termos com-
petitivos.






Abstract

The software agent is the process where all the Artificial Intelligence
resides and is responsible for taking high-level decisions. CAMBADA
is the robotics soccer team of the IRIS research group, from IEETA,
University of Aveiro, that participates in the Middle-Size League of
RoboCup.

Robotics is an emerging multidisciplinary area that joins computer sci-
ence, electronics and mechanics and this thesis includes an overview
on the general architecture of the CAMBADA robots, from hardware
to software, over which all the presented work has been developed. In
the competitions context, the reasoning capabilities define the success
or the failure of a team. Given the high dynamism of the games, it
becomes vital to take the correct decisions, at the right time and in a
collaborative way. This thesis intends to improve the structure of the
agent, from the code organization to the actual software architecture.
A new behavior management model was developed and adopted for
the competitions.

The constant evolution of the Middle-Size League pushes teams to
adapt to new rules each new year. In this context, some novel behaviors
were developed and others have been refined in the new architecture.
Moreover, for the creation, test and validation of these behaviors, the
creation of a series of applications was needed for development, cali-
bration and debugging.

The new agent architecture provided a faster and more robust behav-
ior development, and the improvements made on behaviours led to a

better global performance of the team in the competitions.
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Chapter 1
Introduction

Multi-Agent Systems is a research field in computer science that has been gaining
much interest since the mid-1990s. A Multi-Agent System consists of more than one
agents, each one being a computer system capable of executing tasks autonomously, but
working together to achieve a common goal. Therefore, these agents have to cooperate,
coordinate and negotiate with each other.

In this Chapter, an introduction to RoboCup is made, with focus on the Middle-Size
League, where the CAMBADA team participates. The General Architecture of the robots
is described, leading us to the motivation for this thesis: restructure the CAMBADA agent
code, streamlining the whole process of developing, testing, debugging and refining agent
behaviors. In the context of the RoboCup competitions, some new behaviors were also
developed, due to new rules requirements for the league. In order to efficiently develop,
test and validate the new behaviors, there was also some work done on debugging and

calibration tools.

1.1 RoboCup

RoboCup [1] is a huge commitment from scientific and research groups all over the world
on developing better and smarter robots that one day will be able to help us (humans) in our
daily lives. Robocup is also a series of competitions that are held in a different country each
year since 1997. The main objective is not only to create challenging environments that
give an extra motivation to the teams to keep participating every year in the competitions,
showing new abilities and sometimes unexpected improvements, but also a discussion forum
for researchers in the robotics domain, the Symposium, in which teams have the chance to

share ideas, knowledge and implementations, so the technology can improve faster.



By organizing an annual event, RoboCup creates opportunities for researchers to test
their work and exchange technical and scientific information. At the same time, it enter-
tains and educates the public, taking people to be more aware of the state of the art in
robotics and its current problems. Moreover, with the ambition of keeping a high level
of interest and competitiveness, the RoboCup Federation has even created a challenging

milestone:

“By the middle of the 21st century, a team of fully autonomous humanoid robot
soccer players shall win a soccer game, complying with the official rules of FIFA,

against the winner of the most recent World Cup.”

We are clearly very far from this goal, but a significant progress has been made so
far. The competition is divided into several leagues, each one tackling a specific problem,
whether at the software level, or on both hardware and software, in a multi-agent or single-

agent environments, cooperative and/or competitive:

e RoboCup Logistics - robots for logistics problems

RoboCup@Work - industrial robots

RoboCup Rescue - robots for disaster scenarios

RoboCup Junior - robots for education

RoboCup@Home - service robots

RoboCup Soccer - robots that play soccer

Each league is detailed in the following sections.

1.1.1 RoboCup Logistics

In this league, a team of three Robotino® robots has to solve logistic challenges of an
almost unknown production system. Participants are allowed to add any sensors they need

and face no limitations regarding their approach to program the robots.

“This interdisciplinary challenge in the fields of Mechatronics, Computer Sci-
ence and Logistics has to be answered with o flexible yet precise autonomous
solution to deal with out-of-order machines, express goods, changing delivery

gates and a random machine distribution.” [2]

'http://www.festo-didactic.com/int-en/services/robotino/ - accessed at 19-Jun-2014


http://www.festo-didactic.com/int-en/services/robotino/

Figure 1.1: The RoboCup Logistics challenge.

1.1.2 RoboCup@Work

RoboCup@Work targets specific challenges that have not been pursued by other leagues,
namely cooperative mobile manipulation, multi-agent scheduling and multi-criteria opti-
mization. The solutions are aimed at industrial applications, where robots cooperate with
human workers for complex tasks ranging from manufacturing, automation, and parts

handling up to general logistics. Figure 1.2 shows the type of robots used in this league.

“RoboCup@Work aims to foster research and development that enables use of
innovative mobile robots equipped with advanced manipulators for current and
future industrial applications, where robots cooperate with human workers for
complex tasks ranging from manufacturing, automation, and parts handling up

to general logistics.” [3]

Figure 1.2: The platform used in RoboCup@Work - Kuka YouBot.



1.1.3 RoboCup Rescue

In the RoboCup Rescue, teams are faced with disaster scenarios and related challenges:

mobility, sensory perception, mapping and planning.

“Disaster rescue is one of the most serious social issue which involves very large

numbers of heterogeneous agents in the hostile environment.” [4]
The Rescue league includes two sub-leagues:

e Rescue Robots (Figure 1.3)
e Rescue Simulation:

— Agent Simulation

— Virtual Robots

In the Rescue Robots league, teams are required to search and rescue victims in un-
structured environments.

In Rescue Simulation, a virtual environment is provided by a simulator where multiple
intelligent software agents have to cooperate to in order to achieve the common objectives

in a disaster response scenario.

Figure 1.3: Rescue robot from Darmstadt University of Technology.



1.1.4 RoboCup Junior

RoboCup Junior is an educational league for young students to participate and take
their first contact with robotics. Many professors take this opportunity to teach electronics

and programming in school projects to their students.

“RoboCupJunior is designed to introduce RoboCup to primary and secondary
school children, as well as undergraduates who do not have the resources to get

involved in the senior leagues yet.” [5]
There are currently three leagues in RoboCup Junior:

e Soccer Challenge (Figure 1.4)
e Dance Challenge

e Rescue Challenge

Figure 1.4: A RoboCup Junior Soccer match.

In the Soccer Challenge, students are required to design and program two robots to
compete against an opposing pair of robots by kicking an infra-red transmitting ball to
the opponent’s goal. In RoboCup Junior Dance Challenge, participants have to program
their robots to move to music or a soundtrack. Finally, the Rescue Challenge mirrors the
real life use of robots in disaster situations, since they are required to identify victims in

different scenarios from line-following on a flat surface to mazes on uneven terrain.



1.1.5 RoboCup@Home

This league started in 2006 and is aimed at the development and deployment of service
robots for domestic applications. These assistive robot technologies are put to the test in a

realistic environments created specifically for specific challenges that arise in this domain.

“The RoboCup@Home aims to offer a combination of interdisciplinary com-
munity building, scientific exchange and competition, which iteratively defines
benchmarks and performance metrics on which service robots can be evaluated

and compared in a realistic, dynamic and non-standardized domestic environ-
ment.” [6]

Figure 1.5 shows Autonomous Mate for IntelliGent Operations (AMIGO) [7], an ex-
ample of a typical service robot developed mainly to help elderly people. This 1.5 meters
high robot has two arms that enable it to execute several tasks and has a set of three
omnidirectional wheels to move. The vision system is composed of a Microsoft Kinect
camera, which enables it to see in 3D.

Figure 1.5: AMIGO robot from Eindhoven University of Technology.

Currently, the scenario consists in a living room and a kitchen, but there are plans to

evolve to other social areas of the daily-life, such as shops, streets, gardens and parks.



1.1.6 RoboCup Soccer

An interesting fact is that RoboCup is a contraction of the competition’s full name,
"Robot Soccer World Cup”. Soccer was the obvious choice: it moves masses, it engages
people and it is easy for anyone visiting the venue to understand the purpose of these

robots.

“RoboCup (Soccer) is an attempt to foster Al and intelligent robotics research
by providing a standard problem where wide range of technologies can be inte-
grated and examined. In order for a robot team to actually perform a soccer
game, various technologies must be incorporated including: design principles
of autonomous agents, multiagent collaboration, strateqy acquisition, realtime

reasoning, robotics, and sensor-fusion.” [1]

This league includes a series of sub-leagues:

Middle-Size (Figure 1.6)

Small-Size (Figure 1.7)

Standard Platform (Figure 1.8)

Simulation:

— Simulation 2D

— Simulation 3D (Figure 1.9)

Humanoid:

— Teen-Size
— Kid-Size (Figure 1.10)
— Adult-Size

Just like in human soccer, the players must work as a team in order to win and defend
their own goal at the same time, while adapting to new situations and different opponents.
This makes soccer a rich domain for fundamental exploration and development of multi-
agent solutions related to perception, sensor fusion, world state representation, high-level

decision and coordination and communications.



Figure 1.9: Simulation 3D.

Figure 1.10: Humanoid Kid-Size. Figure 1.11: Humanoid Adult-Size.

1.2 RoboCup Soccer - Middle-Size League

In the context of RoboCup Soccer, the Middle-Size League is one of the most challenging
and also a great testbed for multi-agent systems research, due to its rich and dynamic
environment. In this league, the robots have no standard format, but must comply with

some dimension and weight limits: they must fit in a 50cm x 50cm x 80cm box and are not



allowed to weight more than 40Kg. Each team can have up to five robots (including the
goal-keeper) in a 18m x 12m field (Figure 1.12), playing soccer completely autonomously
for two halves of 15 minutes. Teams are identified by a color (either cyan or magenta) and

the robots wear body markers with that color and the number of the robot.

Figure 1.12: Dimensions of the MSL field, in meters, not in proportion.

Because human intervention is forbidden, excluding the referees and for removing or
putting robots on the field, each robot needs sensors to perceive the world around it, a
computer for reasoning and actuators to interact with that world.

These robots have to play as a team, so they require a mean of communication for
coordination purposes. Communication among robots is established by the rules to be
done via WiFi (802.11a or 802.11b), with limited bandwidth to be spent by each team.
The robot’s network device is usually part of the computer, since most of the teams use
laptops on-board.

Teams also receive commands from a so-called “referee-box”, which is an application
running on a separate computer, responsible for making the bridge between the human
referee and the teams.

Each team has a basestation, a computer application for visualization of the state of
the world perceived by the robots, running on a computer connected to the referee-box and

also to the team’s robots. In these basestation computers, teams are able to get realtime

9



feedback from the robots and usually run a process that can be compared to a coach in
human soccer.

Referee’s decisions (start, stop, foul, goal, etc.) are sent to the teams basestations,
which then communicate the state of the game to the robots. Figure 1.13 shows a typical

setup during an MSL match in the competitions.

Team Cyan Team Magenta
Basestation Basestation

Ref-box

Figure 1.13: A typical MSL match setup. Two teams of five robots on the field. Below,

the "referee-box” standing between each team’s basestation.

1.3 CAMBADA Team

Cooperative Autonomous Mobile roBots with Advanced Distributed Architecture (CAM-
BADA) [8] is the RoboCup Middle-Size League robotic soccer team from the University of
Aveiro. The project involves people working on several different areas: mechanical struc-
ture of the robot, hardware architecture and controllers, software on image analysis and
processing, sensor fusion and decision and cooperation architecture.

The team development started in 2003 and a steady progress was observed since then,

with the participation in several competitions, both national and international, including
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RoboCup World Championships and the annual Portuguese Open Robotics Festival. Table

1.1 shows a summary of participations and the respective results on the tournaments.

Year | Competition Dates Location Result
9004 Robotica April 22 - April 25 Porto, Portugal 5th Place
RoboCup June 27 - July 5 Lisbon, Portugal 1st Round
2005 | Robotica April 29 - May 1 Coimbra, Portugal 4th Place
DutchOpen April 7 - April 9 Eindhoven, Netherlands 7th Place
2006 | Robotica April 28 - May 1 Guimaraes, Portugal 3rd Place
RoboCup June 14 - June 20 Bremen, Germany 1st Round
9007 Robotica April 27 - April 30 Paderne, Portugal 1st Place
RoboCup June 30 - July 10 Atlanta, USA 5th Place
9008 Robotica April 2 - April 6 Aveiro, Portugal 1st Place
RoboCup July 14 - July 20 Suzhou, China 1st Place
9009 Robotica May 6 - May 10 Castelo Branco, Portugal | 1st Place
RoboCup June 29 - July 5 Graz, Austria 3rd Place
Robotica March 25 - March 28 | Batalha, Portugal 1st Place
2010 | GermanOpen | April 15 - April 18 Magdeburg, Germany 2nd Place
RoboCup June 19 - June 25 Singapore 3rd Place
9011 Robotica April 6 - April 10 Lisbon, Portugal 1st Place
RoboCup July 5 - July 11 Istanbul, Turkey 3rd Place
Robotica April 11 - April 15 Guimaraes, Portugal 1st Place
2012 | DutchOpen April 25 - April 29 Eindhoven, Netherlands | 3nd Place
RoboCup June 18 - June 24 Mexico City, Mexico 4th Place
9013 Robotica April 25 - April 28 Lisbon, Portugal 2nd Place
RoboCup June 27 - June 30 Eindhoven, Netherlands 3rd Place
IranOpen April 9 to April 11 Tehran, Iran 2nd Place
2014 | Robotica May 14 to May 18 Espinho, Portugal 2nd Place
RoboCup July 19 - July 24 Joao Pessoa, Brazil N.A.

Table 1.1: Summary of team results in Tournaments.

Apart from the soccer tournament, there are two additional challenges in RoboCup
with special requirements: the Scientific and Technical Challenges. The achievements
of the team in these Challenges are summarized in Table 1.2.

The Scientific Challenge requires teams to do a small pitch about relevant developed
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Competition Challenge Result

RoboCup 2011 | Scientific Challenge - ”Formation in CAMBADA” | 1st Place
Scientific Challenge - "Flexible Setplays in MSL” | 1st Place

RoboCup 2012

Technical Challenge 1st place
RoboCup 2013 Scient.iﬁc Challenge - ”"Dynamic Strategy” 3rd Place
Technical Challenge 1st place

Table 1.2: Summary of team results in RoboCup Challenges

work in the context of MSL for other teams to evaluate several criteria: presentation,
novelty, interest for the league, scientific/technical complexity, importance of experimental
results and relevance of the published results presented as a support for this challenge.

In the end, all weighted averages given by other teams are summed and the score
ranking determines the places in this challenge.

On the other hand, the Technical Challenge has been an opportunity for teams to
test, improve and show their coordination abilities. With some variations, this challenge
has been focused on a sequence of tasks that require multiple robots. In 2014, the rules
have changed to being able to play in an uneven terrain, with the objective of letting teams

do some experiments in different terrains and seek the respective difficulties.

1.3.1 CAMBADA General Architecture

An overview of the general architecture of a CAMBADA robot has been thoroughly
described in [9, 10, 11] and the main blocks are illustrated in Figure 1.14.

Main
Processing Unit

Communications
IEEE 802.11x

A
A

> Vision System

Coordination Layer

Low-level Control Layer

Low-Level System
Sensors/Actuators

Figure 1.14: Overview of a CAMBADA robot architecture.
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Currently, a PC is being used as the main processing unit, responsible for processing the
video stream from the vision system, executing the high-level decision, coordination and
controlling a series of signals for the low-level system, while reading information coming
from other sensors in the platform and communicating with other robots via Wi-Fi IEEE
802.11a or 802.11b standards. This communication protocol supports the Realtime Data
Base (RtDB) [9], which is a middleware that provides a seamless access to the complete

team state using a distributed database, partially replicated to all team members, as is

Communications
“‘ - IEEE 802.11x -
’
|

depicted on Figure 1.15.

J
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|
|
|
|
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Figure 1.15: A RtDB setup example with three agents.

The information in the RtDB includes the absolute positions and postures of all players,
as well as the position of the ball in global coordinates. This is extremely useful while in-
game, for example when a certain robot does not see the ball, it can use other teammate’s
information as a guide. The structure also encompasses some coordination variables, used
for the regulation of teamwork tasks.

The RtDB is also intensively used as an inter-process communication mean, due to its
capability of defining local memory items that are not broadcasted to other robots, but
are still accessible by other processes running on the same agent environment (Figure 1.16,
adapted from the Software Description document?). This local information includes sen-
sorial data from the vision system and the hardware platform and also commands that are

sent to the low-level control layer though a gateway interface.

2http://robotica.ua.pt/CAMBADA/docs/qualif2014/CAMBADA-software_structure-2014.pdf
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Figure 1.16: Processes running on each robot and on the basestation.

In a nutshell, the description of each process is the following:

monitor
Controls the other processes running on the same PC. If a process fails, the monitor

relaunches it.

vision
Process responsible for capturing a frame from the digital camera and analyzing it,
extracting the relevant information. That data is then stored at a local RtDB item

for the agent to use.

hwcomm

Used to communicate with the low-level layer via a USB gateway.

agent

The process responsible for decision, coordination and reasoning.

comm
This process handles the Wi-Fi communication both for sending information to the

multicast group and receiving data from other agents [12, 13].

basestation

An application [14] used to visualize and control the robots state remotely.

coach
Coach is a software agent responsible for controlling the team basic strategy. It

defines formation and assigns robots to specific strategic positions.
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1.3.2 Hardware Description

In 2013, the robots’ hardware has been fully redesigned and revised. A new platform
was completely built in-house with ease of transportation, robustness and modularity in
mind, reusing the model and functionalities that have proven to be efficient in the previous
platform and introducing new changes in some aspects that required a new approach.
Furthermore, a new geometric solution with an asymmetrical hexagon shape was chosen to
exploit side dribbling possibilities. In this section, a top-down overview of a CAMBADA
robot (Figure 1.17) hardware is made.

Figure 1.17: A CAMBADA Robot

Vision System

The CAMBADA omnidirectional view in Figure 1.18a is obtained by the vision system,
which consists of a catadioptric set with an IDS Gigabit Ethernet camera pointing upwards
at an hyperbolic mirror (Figure 1.18b). Currently, the video stream is sent to the main
processor unit via a wired network at a 50 frames per second (FPS) rate, but the frequency
can be adjusted at will (the camera FPS is actually what defines the cycle time/frequency).
In the latest version of the vision system, it is even possible to make precise manual
adjustments on the position of the mirror in relation to the camera, using some screws on
the side.

One of the drawbacks of the previous catadioptric set was its mechanic weakness: the
mirror changed its position when a ball hit the set. In the new platform, the mirror is

supported by four titanium bars, which is a much stronger solution.
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(a) An image acquired by the vision system. (b) The vision catadioptric set.

Figure 1.18: CAMBADA vision system.

Before actually using it, some of the vision system parameters have to be calibrated,
namely: the camera’s colormetric parameters, the inverse distance map computa-
tion, the definition of the region of interest in the image that has to be processed,
and finally the color ranges for object segmentation [15].

The parameters of the camera (gain, exposure, gamma, white balance, etc.) can either
be calibrated automatically or manually. The distance map consists in a translation from
pixel coordinates to real-world relative coordinates at the ground plane. There are several
parameters to adjust using a procedure that involves placing the robot manually in the
center of the field, recording a video and use an offline application that uses landmarks
(either on the robot or the field lines) to extract values of interest via an exploring back-
propagation ray-tracing approach and the geometric properties of the mirror. The same
application allows the definition of the area of the image that will be processed by the
object detection algorithms.

Lastly, the detection of objects is currently a mixture of color-based and shape-based
approaches. For the first one, the calibration is done in the HSV (Hue, Saturation and
Value) color space. The ranges for each of the objects of interest are specified manually
and then translated to a Look-Up Table (LUT) to be used in real-time.

Several radial search lines start on the center of the robot and end in the limits of the
image are used to detect objects (field lines, ball, obstacles) by identifying color transitions.
Circular search lines are also used to improve the detection. Then, some shape-detection

algorithms are applied to increase the precision on the perceived ball position.
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Main Processor Unit

The Main Processor Unit consists in a typical laptop (currently a 13” Fujitsu Siemens
with an Intel Core 15-3340M CPU at 2.70GHz quad-core processor, 4Gb RAM and a Solid-
State Drive), running a lightweight Linux distribution. It is responsible for receiving and
analyzing the information coming from the Vision System and sensorial data from the
hardware, executing high-level coordination and decision algorithms and producing signals
for the Low-Level Layer. This unit is also responsible for the robots inter-communication
handling - receiving information coming from the teammates and the base-station and

broadcast its own information.

Figure 1.19: CAMBADA Main Processor Unit.

Low-Level Layer

The low-level sensing and actuating system consists in a series of nodes (electronic
boards) inter-connected with a CAN (Controlled Area Network) bus. Each board is re-
sponsible for certain tasks and the communication between the Main Processor Unit and
the Low-Level Bus is done via a USB bi-directional gateway.

Figure 1.20 shows the current configuration of the CAN bus and its nodes, after the
changes for the new platform. The Motion function is accomplished by using three different
nodes, one per motor/encoder pair. These Motor Nodes are responsible for driving the
motors and reading encoder data at the same time. Then, the IMU Node reads information
from the Compass, Accelerometer and Gyroscpope sensors. The Kicker Node is responsible

for controlling and driving current for the kicker solenoid and controlling the servo-motor
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that is used for making passes. Finally, the Grabber Node is responsible for reading the
impulses sent by the encoders attached to the grabbers’ arms and driving the respective

DC motors accordingly.

USB Gateway
Node
CAN BUS
| | | | i i
Motor 1 Motor 2 Motor 3 IMU Kicker Grabber
Node Node Node Node Node Node
F\ ;o\ y\ 1 N
[M]Enc][M][Enc][M]Enc]i,[ Comp.|[Accel]| Gyro |!, [Kicker] [Servo ]
Motion IMU Kicker Grabber

Figure 1.20: Low-level layer architecture.

Ball Handling Mechanism

Another very important mechanical part of the robot is the ball handling mechanism,
also known as "grabber” (Figure 1.21). The new grabber is based on a double active
handler similar to some of the solutions already presented by other teams. It relies on two
DC motors with Sweedish wheels that control the ball’s surface velocity on two points.
Direction and speed of the ball interface rollers is closed-loop controlled in order to ensure
full compliance with the current ball handling rules. It contains two additional free-rolling

Sweedish wheels to reduce the friction when dribbling the ball.

Figure 1.21: The ball handling mechanism.
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Ball Kicking Mechanism

The kicker device of the soccer team, responsible for making lob-shots and passes, is an
electromagnetic kicker whose main element is an electromechanical solenoid (Figure 1.22).
The solenoid consists of a coil, wound around a movable iron core producing a magnetic

field when an electric current passes through it.

The magnetic field causes the iron core to move towards the ball, making the lever lift
the ball to perform a lob-shot (Figure 1.23 and 1.24).

It is also possible to switch to a pass mode using a servo-motor that moves the lever

sideways (Figure 1.25), making the shaft actuate directly on the ball.

Figure 1.22: The solenoid of the kicker

system. lever.

Figure 1.24: Kicker servo-motor in lob- Figure 1.25: Kicker servo-motor in pass

shot mode. mode.
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Motion Hardware

In terms of mechanical parts, the wheels that were previously bought were changed
to new, custom made, omni-directional wheels based on an aluminum 3-piece sandwich
structure, in which 2 sets of 12 off-phase free rollers are supported (Figure 1.26). The
concept of the "sweedish wheel” remains, while improving the robustness of the parts, as

well as the traction.

Figure 1.26: One of the wheels partially assembled.

Moreover, a new power transmission system based on synchronous belts and sprockets
was introduced in this platform (Figure 1.27). This allowed the team to re-use the current
Maxon 150W DC motors providing power transmission to the wheels by a synchronous
belt system instead of the previous direct drive approach. The motor control boards had

to be upgraded to take into account the changes regarding this new configuration.

Figure 1.27: Power Transmission System.
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1.4 Coordinate Systems

Localization algorithms are able to estimate the position and orientation of a robot,
but they work in an absolute base. The CAMBADA team uses two different coordinate
systems for different purposes. Absolute coordinates are used in respect to the field,
where origin resides in the field’s center and the y-axis points to the direction where the
team is attacking. On the other hand, the relative coordinate system has its origin on

the center of the robot and its y-axis grows to the front of the robot (Figure 1.28).

y

Figure 1.28: The relative coordinate system used by CAMBADA.

1.5 Motivation and Main Contributions

Some improvements on the robots hardware platform (Figure 1.29) have been conducted
for the RoboCup 2013 [16] and 2014 [17], allowing the exploitation of new behaviors, such
as dribbling with the robot’s side.

entes
rihantesy

t

¥4,

|

Figure 1.29: The CAMBADA team robots in RoboCup 2013, in Eindhoven.
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In the competitions context, the reasoning capabilities define a success or a failure of a
team. Given the high dynamism of the games, it becomes vital to take the correct decisions,
at the right time and in a cooperative manner. It is very important that the team is able to
make small adjustments between matches as easy and fast as possible, with the minimum
risk of compromising the final result. Therefore, the code needs to be extremely clear and
flexible. During its 10 years of development, the CAMBADA source code has evolved with
contributions from several professors and students and like any other long-term project,
it was requiring a refactoring. With the changes on the hardware platform, this was the
perfect timing for the team to make enhancements also on the software level.

This thesis intends to improve the structure of the agent, from the code organization
to the actual software architecture, while streamlining the whole process of developing,
testing, debugging and refining agent behaviors. In brief, the developed work included the
improvement of the current CAMBADA agent architecture, by presenting a new solution.

The constant evolution of the MSL pushes teams to adapt to new rules each new
year. In this context, some novel behaviors were developed and others have been refined
in the new software architecture. Moreover, for the creation, test and validation of these
behaviors, a series of applications were needed for development, calibration and debugging,
namely an upgrade to the basestation visualization widget and an Augmented Reality tool
that is useful, not only for visualization purposes, but is also helpful for development of
behaviors that are dependent on the opponents team dynamic attitude. All the developed
work during in thesis was not only fully integrated into the main CAMBADA source-code,
but also was it used and presented in the IranOpen 2014 [18] and the RoboCup 2014 [17].

1.6 Thesis Structure

In chapter 2, an overview on robotics agents architecture is presented and a simple
introduction on Multi-Agent Systems is performed. The chapter finalizes by summarizing
the CAMBADA general architecture with main focus on the software agent architecture.
Following, in chapter 3 the new Agent Architecture is defined and explained in detail. An
example is given for one of the main roles in free-play, the Striker Role. Moreover, a new
class for defining HeightMaps is presented. Chapter 4 explain a series of new and improved
behaviors, including ball pass, reception, dribbling, kicking and goal protection. In order
to develop, test and debug these new behaviors, a series of tools have also been developed
and presented in chapter 5. Finally, a conclusion is made in Chapter 6 on all the developed

work.
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Chapter 2

Robotic Agent Architectures

This chapter introduces some concepts needed to understand the architectures of robotic
agents. The definition of Software Agent is presented and the bridge to Multi-Agent Sys-
tems is made. Finally, an analysis on coordination and decision is presented in the context
of the Middle-Size League, with special focus on the CAMBADA Agent Architecture at
the time this thesis started.

2.1 Software Agent Architectures

A Software Agent is, by definition, a complex software entity in the form of a computer
program, which works towards a generic high-level goal, as opposed to discrete tasks. It
works autonomously and continuously in a dynamic environment, making decisions based
on what it perceives to be the current world state and taking actions that may influence
the world [19].

Software Agents usually include abilities such as learning and reasoning, and are able to
transform goals into action tasks without continuous direct supervision or control. Agent

architectures can be organized mainly in four different groups:

¢ Reactive Agent

Reactive agents base their decisions on the present information, discarding all refer-
ences to history. In this type of architecture, there is no world-model representation
and the final behavior can be obtained with very little processing power, because
there are no internal states and the agent output are simple deterministic reflexes
to the perceptual inputs. An example of this type of agent is Brook’s subsumption
architecture [20].
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e Deliberative Agent

Usually, the information perceived by an agent is insufficient to make a smart decision,
because it requires a broader world understanding. Under those conditions, the agent
needs to retain some information as an internal state. The deliberative agent, also
known as intentional or hierarchical agent, has a good symbolic world model, can
build symbolic maps and has planning abilities, which it uses to make decisions like

selecting behaviors [21, 22].

e Behavior-based Agent

In this architecture, an agent is decomposed into simple behaviors, each of them
storing their own world representation of the world. The final behavior is chosen
by evaluating a set of pre-defined conditions. This modular approach falls between
the reactive and deliberative agents and simplifies the development of new behav-
iors by enabling fast prototyping. Pattie Maes [23] presented some advantages and
disadvantages of this method.

e Hybrid Agent

The hybrid agent combines the ideas of the reactive and deliberative approaches,
by trying to get the best out of both. In this architecture, symbolic knowledge
of the world state is very important, because all the decisions are based upon this
representation. Planning and immediate reaction are evaluated in parallel, so the

challenge of this approach is to join and coordinate both [24, 25].

2.2 Multi-Agent Systems

“Multi-Agent Systems (MAS) is a subfield of Al that aims to provide both prin-
ciples for construction of complex systems involving multiple agents and mech-

anisms for coordination of independent agents’ behaviors.” [26]

MAS [27] enable the use of multiple problem solving agents (which may have their own
interests and goals and may differ from agent to agent) collaborating with each other to
achieve a common goal. Although not all of the problems need to be tackled with MAS,
Peter Stone highlights a series of advantages for using them in his survey [26], and some
of them can easily be related to a robotics soccer team participating in the Middle-Size

League:
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e Some domains require it
That is exactly the case of an MSL team. A strong team can only be developed with

multiple robots, each playing a specific role in the game.

e Parallelism
The ability to have more than one agent working in parallel could potentially speed
up a process. In particular, if the position of the ball in the field is unknown, a smart

way to search it may be to use all the robots instead of just one.

¢ Robustness
If one agent fails, we can replace it with another agent probably faster than we can
repair the first. In the case of a soccer match, it is sometimes needed to take a robot
out of the field when it has some problem. If it is the case of a robot responsible for
restarting the game in a set-piece situation, another robot has to immediately take

over its position.

e Simpler Programming
From an agent’s perspective, it may be simpler to identify subtasks and assign them

to different agents than to tackle the whole task with a centralized agent.

2.2.1 MAS Example Applications

Agogino and Tumer presented a “multi-agent approach to managing air traffic flow” [28].
The developed algorithm included agents that used reinforcement learning to reduce con-
gestion through local actions. A simulator developed by NASA (FACET, in Figure 2.1)
was used to measure the efficiency of their approach, showing that agents receiving per-
sonalized rewards reduce congestion by up to 80% over agents receiving a global reward

and by up to 90% over a current industry approach.

RoboCup Rescue simulation (Figure 2.2) also requires the use of pure Multi-Agent
solutions for simulating search and rescue operations in large-scale disasters. In this com-
petition, several heterogeneous agents (Police, Fire Brigades, and Ambulances) have to
cooperate in order to save as many civilian as possible and minimize the damage of the

simulated city disaster scenario.
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Figure 2.2: An example of a rescue situation in a simulated city.

2.3 Coordination and Decision in MSL

In the Middle-Size League there is a huge room for autonomy in each team imple-
mentation on the coordination and decision layer of the agents. While some teams rely
on case-based reasoning, others use more sophisticated methods. In this section, the ap-
proaches of some of the most successful international teams are detailed.

In 2012, Tech United Eindhoven from The Netherlands presented their utility field
approach for dynamic positioning on the Scientific Challenge. Their source-code is publicly
available and prove that they are currently using a mixture of Finite State Machines and
Utility Fields for the strategy and decision.

In RoboCup 2013 Scientific Challenge, MRL team from Qazvin University, Iran, pre-

sented their Integrated Development Environment which included a template wizard for
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Figure 2.3: Tech United task utility field, adapted from their 2014 Team Description
Paper [29].

creation of new states in their Finite State Machines. They rely purely on case-based
reasoning, supported by some useful graphical representations of the transitions.

The Carpe Noctem team from Kassel, Germany, developed a framework: ALICA (A
Language for Interactive Cooperative Agents) [30]. It is a planning language for Multi-
Agent Systems that supports hierarchical plans, agent heterogeneity and explicit synchro-
nization between team members.

The Brainstormers Tribots team from Freiburg University were one of the more success-
ful teams in the RoboCup championship. They had a Behavior-Based approach [31, 32],
which combined the concepts of two different architectures: Brooks’ subsumption archi-
tecture [20] and Rao&Georgefl’s Belief-Desire-Intention architecture [33].

The CoPS team from University of Stuttgart used a State Machine modeled in XABSL
[34]. The XABSL file was generated using a special GUI editor, where the pre-conditions

for each state could easily be edited.

2.4 CAMBADA Agent Architecture in 2013

At the time of the start of this thesis, the CAMBADA agent architecture was behavior-
based, with Finite State Machines for decision and some real-time adaptive dynamism.
The base strategy was defined beforehand, but minor adjustments were made in gameplay
based on the opponent’s team attitude. The main blocks of the architecture are presented

in this section.

1. Behaviors
Responsible for executing certain basic tasks, like moving to a point (Move), dribbling
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(Dribble), kicking the ball (Kick), receiving a pass (CatchBall) or interception the
ball (Active Interception). Behaviors take some input (typically a target position
and /or orientation) in the constructor and have a calculate() method to compute
the required velocities in X, Y and Angular components, typically using (although

not restricted to) three PID compensators, one for each component.

2. Roles
Responsible for assuming a certain role in the game, such as Striker, Midfielder
or Goalie for instance. The Roles use behaviors to achieve their objectives and
were implemented as Finite State Machines, although the interface allowed the use

of other behavior selection techniques.

3. Decision
A unique module that is responsible for selecting the Role, based on the current
game conditions and some history. As a rule of thumb, robot number 1 is always the
Goalie. Then, in free-play, the robot closer to the ball is the Striker, the remain
are Midfielders. On the other hand, if we are in an own set-piece, the Striker
becomes the Replacer (the robot responsible to perform the pass) and the others
are Receivers. If the set-piece is for the opponent team, all the robots assume the

Barrier Role, that tries to block opponent’s passes.

4. Strategy
Responsible of defining the team’s strategic positioning, based on the current game
state, usually based on the ball position. Different formations can be defined before-
hand, using Delaunay Triangulation as proposed for the first time in the simulation
league [35]. The coach process, running on the basestation computer, decides which

formation to use at a given time, given certain pre-defined conditions [36].

5. Integrator
The module responsible for gathering information from the sensors, filtering it and

updating the agent’s internal state of the world.

6. WorldState
A module that holds information about the world state, such as robots’ position,
velocity, role, behavior, perceived ball position and velocity by each robot, some

coordination flags, lines or vectors, obstacles pose, among other information.

This certainly is a well organized approach. However, there were two major drawbacks

of this architecture, that were preventing the team from evolving faster:
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e Lack of History - at each new cycle, the Decision module deletes the last picked
role and instantiates a new one, based a set of conditions. Then the Role has its own
conditions to instantiate a new Behavior. All of this reasoning was lost for the next

cycle.

e Complexity of Roles - Roles were implemented as Finite State Machines (FSM)
that needed to handle several different aspects of the gameplay, including several
special conditions, with multiple control variables, Timers and more. Furthermore,
taking the example of when the robot has the ball engaged, it has mainly three
possible Behaviors (Dribble, Pass or Kick), which can be invoked with different
parameters, therefore, as expected, all the complexity is moved to the module calling
these Behaviors - the Role. The Role decides the parameters to input to the selected
Behavior to achieve a certain result. This helps explaining why most of the roles
had hundreds of lines of code (between 176 and 675) and making simple changes was

always a challenge.

The main goal of this thesis is to improve the structure of the software agent code,
tackling the above stated problems: on one hand, add persistence properties to Behaviors
and Roles, so that history can influence the decisions and, on the other hand, try to reduce
the complexity of roles. Chapter 3 introduces the proposed software agent architecture in
detail.
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Chapter 3

CAMBADA Agent Architecture

To address some of the problems identified in the previous agent architecture, one of the
objectives of this thesis was the development of a new one. The first step was to identify the
various modules that, when combined, would lead to a strategy solution. The refactoring
was mainly aimed at the Behaviors, Roles and Decision layers, but some adjustments have
also been made on the Worldstate. Figure 3.1 compares the main blocks of the proposed
CAMBADA software agent architecture with the previous one. The Roles described in
Section 3.5 contain an Arbitrator (Section 3.4) to select a Behavior (Section 3.3) that then
calls a certain Controller (Section 3.2) to calculate a DriveVector (Section 3.1) with all the

required low-level information.

2013 Arch. Decision | Role » Behaviour =|T>>
'3
I's

New Arch. Decision | Role | Arbitrator | Behaviour | Controller —>DriveVector—>|3
|

Figure 3.1: Comparison between the old and new software agent architectures.

The Arbitrator contains a set of Behaviors instantiated in the initialization phase, thus
eliminating the problems of history loss. At each cycle, it selects one of them using a set of
conditions, as an alternative to Finite State Machines. This architecture allows both the
Behaviors and the Roles to hold a persistent internal state throughout the agent lifespan.
The Controller deals with the generation of robot velocities and currently implements a
PID compensator, while leaving space for the exploitation of other types of compensators
in the future, transversal to any Behavior. Therefore, the Behaviors are responsible for

calculating targets to input into a Controller that knows the system and how to control it.
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3.1 DriveVector

As last step, at each cycle, the agent needs to calculate some information to send
to the low-level - a DriveVector. Although the name chosen may be misleading, the
DriveVector not only contains the desired velocities, but also some data for the kicker

and grabber desired states. This module contains the following items:

e float velX

The linear velocity in the robot’s xx axis (in m/s).

e float velY

The linear velocity in the robot’s yy axis (in m/s).

e float velA

The angular velocity around robot’s center (in rad/s).

e unsigned char kickPower
The requested power to the kicker. Ranges from 0 (no kick) 50 (maximum strength).
The Most Significant Bit (MSB) in the byte toggles between a pass and a lob-shot.

e GrabberType grabber
One of the following: GRABBER_ON, GRABBER OFF or GRABBER DEFAULT.

The kickPower is zero by default, and there are two methods responsible for calculating
the correct kickPower for a certain distance regarding a lob-shot or a pass. As it is a public
member of the DriveVector class, it is still possible to set its value manually, although it
is not recommended.

The grabber is set to GRABBER DEFAULT at the beginning of each new cycle and if it
is not changed by any Behavior or Role, a method is called that turns it ON under
certain conditions (mainly the distance and alignment of the robot regarding the ball).
This approach enables the use of a default grabber state, but also the possibility of forcing
it to a certain state at will.

Currently, a unique DriveVector object exists during the agent’s lifespan. It is com-
pletely orthogonal to the various decision layers, in order to extend the flexibility of the
architecture. Therefore, it can be easily changed by the Controllers, Behaviors, Roles,
Decision, and finally in the Cambada class where the “main® cycle block resides. This
means that a higher level block can override decisions made on layers below. However,
the architecture allows the creation of multiple DriveVectors during the decision cycle, but

ultimately, a single one is sent to the low-level.
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3.1.1 Interface

A few methods have been added to this class, in order to have a common way of

manipulate some of the inner attributes:

e void allOff()
Turns all of the attributes off, i.e. all velocities and the kick power are set to zero

and the grabber is turned off.

e void motors0Off()

Sets all velocities to zero.

e void pass( double distance )
Calculates and sets a value for the kickPower attribute as a pass strength based on
the distance of the pass (including the set of the MSB).

e void kick( double distance, double height )
Calculates and sets a value for the kickPower attribute as a kick strength based on
the distance of the kick and the desired ball height at that distance.

e void grabberControl()
This method defines the default behavior of the ball handling mechanism. If no role
or behavior sets a value for the grabber attribute, this function is called and, based

on certain conditions, sets or resets the grabber state.

e void setLinearVel( float absLinearVel )
Scales the current linear velocity to a module specified by the float parameter, main-

taining its orientation.

e void limitVel( float maxLinVel, float maxAngVel )

Clips the linear and angular velocities to the specified values.

3.2 Controllers

The desired robot movement determines the linear and the angular velocities to be
applied. These values were being calculated inside the Behaviors, with most of them
in the form of PID controllers. However, in the future there might arise the interest in
exploring other types of controllers. This was how the concept of Controller was born in
the CAMBADA agent context. Controllers are the modules responsible for calculating
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the desired robot velocities, based on a certain target which may vary from controller to
controller.

Controllers can be (and are) used by the behaviors intensively, eliminating the need of
calling the PID compensator individually on each behavior.

Therefore, in order to achieve different type of movements, four types of controllers

were implemented as described next.

3.2.1 CMove

This controller is used for straight line movements and positioning. It controls both
position and orientation of the robot and allows the user to avoid obstacles and set a top
speed if needed.

e void setAvoidLevel( avoidLevel avoid )
Allows the user to set an avoidance level (no avoidance, avoid ball only, avoid obsta-

cles, etc.) before calculating the output DriveVector with the calcVel method.

e void setDistribute( bool distribute )
Setting distribute to true will enable the controller to distribute the orientation
along the linear movement. This will result in both corrections ending at the same
time. If the movement is not distributed, the linear and angular PIDs are called
independently and as a result, the angular movement takes precedence since it can

compensate much faster than the linear one.

e void calcVel(DriveVector* dv, Vec relPos, Vec relOri, float maxSpeed)
The method is used to calculate the output DriveVector, based on a relative position
and relative orientation targets. It is even possible to limit the linear velocity using

the maxSpeed parameter.

3.2.2 CArc

The CArc controller implements the ideas coming from the previous Dribble behavior,
which results in arc movements. Receives an orientation target and a maximum linear

velocity as parameters for calculations.

e void calcVel(DriveVector* dv, float relOri, float maxSpeed)
Calculates the output velocities in a DriveVector, based on the given relative orien-

tation target and on a maximum linear velocity.
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3.2.3 CRotateAroundTheBall

The result of this Controller is a set of velocities that make a robot rotate around a
point that is the ball center when it is fully engaged. It is intended to be used when the

robot has possession of the ball and wants to rotate around it.

e void calcVel(DriveVector* dv, float relOri)
Calculates the output velocities in a DriveVector, based on the given orientation

target. The velocity is the fastest possible in order for the robot not to lose the ball.

3.2.4 CRotate

This controller results in a simple rotation around the robot center. The only required

parameter is the relative angular target.

e void calcVel(DriveVector* dv, float relOri)
Calculates the output velocities in a DriveVector, based on the given orientation
target. The output linear velocity is zero and the angular velocity is calculated from
the angular PID.

3.3 Behaviors

In the 1st International RoboCup MSL Workshop !, held in Kassel in November 2008,
the Brainstormers Tribots (Neuroinfromatics Group, from University of Osnabriick) pre-
sented their Behavior-Based approach [31, 32], which combined the concepts of two different
architectures: Brooks’ subsumption architecture [20] and Rao&Georgeftf’s Belief-Desire-
Intention architecture [33]. Their implementation included an interface extension to the

behaviors, with two additional conditions that reflect the respective constraints:

e Invocation Condition (IC) - specifies the conditions that will trigger the behavior.

e Commitment Condition (CC) - reflects the conditions for the behavior to keep in

control.

Linking Behaviors to the respective activation and release conditions seemed like a
good approach, therefore the Behavior interface has been extended to have, not only a

calculate() method, but also two important methods to verify Invocation Conditions

'http://carpenoctem.das-1lab.net/research/1stRMW, accessed in 1 June 2014.
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(IC) and Commitment Conditions (CC). The behavior can be selected if the IC are

true and the CC will remain true while that behavior is suitable for the situation.
Moving from the previous architecture to this one included the formulation of more

complex behaviors (that previously were states of the FSM) and also the extraction of all

the transition conditions and special pre-conditions associated with that state to formulate
the IC and CC.

3.3.1 Interface

The new Behavior base class has several methods that have to be implemented by the

derived behaviors.

e virtual void calculate(DriveVector* dv)
The main block of the Behaviors, where it calculates a DriveVector with the desired

velocities and the kicker and grabber states.

e virtual bool checkIC()
The derived Behaviors have to implement this method and define the Invocation

Conditions inside.

e virtual bool checkCC()
The derived Behaviors have to implement this method and define the Commitment

Conditions inside.

e virtual void gainControl()
The derived Behaviors can implement this method to be notified when they gain

control. The callback can be used, for instance, to initialize variables.

e virtual void loseControl()
The derived Behaviors can implement this method to be notified when they lose con-

trol to other Behavior. The callback can be used, for instance, to clean up variables.

3.3.2 List of Current Behaviors

After the refactoring work, a list of behaviors was produced and is presented in this
section. Some new behaviors have been developed and integrated into this new architecture
as part of the developed work for this thesis. Those were not included in this list, since

they will be explained in detail in Chapter 4.
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Generic Behaviors

e BAvoidTheirGoalArea makes the robot avoid the opponent’s goal area. If the
robot is going to move inside that area, this behavior will be triggered and force the

robot to move outside the area, following the target.

e BStop makes the robot stop and it is used as a default or fallback behavior. The IC

and CC are always true.

e BStopRobotGS inherits the BStop behavior, overriding the IC and CC to be true
only when the game is in a STOP state.

Ball Handling Behaviors

e BKickToTheirGoal makes the robot rotate to the opponent’s goal and kick the

ball, under certain conditions.

e BRelieveBall is used to kick the ball to the opponent’s side as fast as possible,

usually as a fallback behavior.

e BDribble makes the robot dribble the ball towards the opponent goal.

Behaviors Without Ball

e BActivelnterception is used to grab a free-rolling ball, taking into account the

acceleration and maximum velocity of the robot.
e BCatchBall is used to catch the ball from a team-mate pass.

e BGoToBall is a Priority Arbitrator used to grab the ball or search for it in case its

position is unknown.
e BGoToVisibleBall goes directly to the ball to grab it.

e BSearchBall searches the ball when its position is unknown.

Striker Behaviors

e BStrikerGoToBall inherits the BGoToBall and adds some preconditions for the
Striker.
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e BStrikerOurFieldDribble was used to dribble in our side of the field, when the
ball was grabbed in our side. This was used because in the 2013 rules, no team was
allowed to dribble the ball from their side to the opponent’s side of the field.

e BStrikerPass is used to make a pass to a teammate.

e BStrikerRelieveBall inherits BRelieveBall, adding preconditions for when there

are no receivers in free-play or the robot is taking too long dribbling on the own side
of the field.

Midfielder Behaviors

e BGoToStrategicPosition makes the midfielder to position itself in its strategic

position.
e BMidLineBlock makes the midfielder block a possible pass over the field mid-line.

e BMidfielderReceiveBall used to receive a ball in free-play.

Goal-Keeper Behaviors

e BGoalieDefend implements the basic goal-keeper defensive behavior.

e BGoalieGoToGoal is triggered to move the robot to the center of their own goal

when it is outside certain limits.

¢ BGoalieKickAway is used to grab the ball when it is stopped for some time in the

penalty area and kick it away.

Replacer Behaviors

e BReplacerAlign aligns the robot with the target receiver.
e BReplacerBallPassedStop stops the robot after making a pass.
e BReplacerPass makes a pass to a receiver.

e BReplacerPos positions the Replacer near the ball before the referee starts the

play.

38



3.4 Arbitrator

As stated before, Finite State Machines (FSM) proved themselves not to be the best
option in this scenario, so a research has been made through other implementations. In
the context of MSL, the dynamic environment forces teams to develop an hybrid agent: a
reactive component is mandatory to be able to react to fast changes of the environment
(the opponent team), but some deliberative part is still needed, since there is a growing
need of predicting the near future to base decisions on. The concept of Arbitrator was
introduced as the module responsible for selecting a certain behavior in a cycle, based on
the ideas of the Tribots [31]. Several Behaviors can be added to an Arbitrator as options

and are selected based on their IC and CC conditions.

3.4.1 Priority Arbitrator

The Priority Arbitrator receives a set of candidate behaviors, which are arranged in a
priority queue (in the options field). In run-time, it will run the Algorithm 1 to select the

best Behavior among all options.

Algorithm 1 Priority Arbitrator

Input: currentBehavior, options > The last picked behavior and the options list
Output: currentBehavior, driveVector > The selected behavior and its output
if not currentBehavior.CC() then > If the current behavior is not suitable
currentBehavior < BStop > Stop the robot, by default
end if
for i = 0 to options.length() do > Iterate through all options
if options[i] = currentBehavior then > If this is the current behavior
break > continue with the same behavior
end if
if options[i].IC() then > If the IC is true
currentBehavior < options]i] > Select this behavior
break
end if
end for

driveVector < currentBehavior.calculate()

return driveVector
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Figure 3.2 shows an example of the Priority Arbitrator functionality with 4 Behavior
candidates (A, B, C and D) in five consecutive cycles. The chosen behavior (amongst the

options) at each cycle is highlighted.

CycleN | Cycle N+1 | Cycle N+2 | Cycle N+3 | Cycle N+4
[ [ I I
alic DX |ee D || alie X fee X [|'falc v |cev/ [ Aalc DX |cew/ || alic D |ccX
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\ | | | |

Figure 3.2: Example of the Priority Arbitrator.

In the first cycle, the first behavior (from top to bottom) with a true IC becomes the
active behavior. In Cycle N+1, its CC becomes false, but it is still chosen as the best
behavior, since its IC is still true. In the next cycle, a behavior with higher priority has a
positive IC and becomes the active behavior. In Cycle N+3, the IC of behavior A becomes
false, but since its CC is still true, it is the chosen behavior for that cycle. Lastly, in
cycle N+4, the CC of behavior A became false and none of the options has a positive IC,
therefore the fallback behavior is activated (BStop), which stops the robot.

The IC and CC conditions typically depend on certain values and the decision is done
by comparing that values with a certain threshold. When using the same threshold for

both IC and CC, it is easy to end up with a cyclic unstable behavior.

For example, a Behavior has both IC and CC that return true when the ball is on the
opponent side of the field and the ball is on the middle line. Due to camera sensor noise
and errors in measurements, from cycle to cycle, the ball may easily be interpreted to be
alternating between our side and the opponent side. This results in an unstable result,

because that Behavior keeps activating and releasing.

Therefore, having different thresholds for a behavior’s IC and CC becomes very con-
venient and this is a procedure that is being used to create hysteresis and to overcome

problems like the one stated above.
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3.4.2 Finish Plan First Arbitrator

A “finish plan first” arbitrator takes a behavior and does not release it until its CC
becomes false. Consequently, each Behavior has to execute its task until the end, which
is defined by the CC. The algorithm becomes a little bit different and is presented in
Algorithm 2.

Algorithm 2 Finish Plan First

Input: currentBehavior, options > The last picked behavior and the options list
Output: currentBehavior, driveVector > The selected behavior and its output
if not currentBehavior.CC() then > If the current behavior is not suitable
currentBehavior <— BStop > Stop the robot, by default
for ¢ = 0 to options.length() do > Iterate through all options
if options|i].IC() then > If the IC is true
currentBehavior < options]i] > Select this behavior
break
end if
end for
end if

driveVector < currentBehavior.calculate()

return driveVector

This type of arbitrator has a huge importance, since it helps improving the stability.
For instance, several behaviors are available to approach the ball in a different manner and
as soon as one is selected, keeping switching between “modes” is perhaps not desired. To
overcome this problem, this type of arbitration can be used to select one behavior once

and let it keep control until it believes its task is achieved or is not achievable.

3.4.3 Combining Both Arbitrator Types

Having set the rules and fundamentals of the two types of Arbitrators, there was
the need of mixing the ideas of both, because sometimes a Priority Arbitrator is not
suitable and the Finish Plan First Arbitrator can become limitative in some cases. These
two support the final version of the CAMBADA Arbitrator (algorithm 3), where a level
of arbitration can be set per Behavior. This property is set on the assignment of the

Behaviors on an Arbitrator. As a result, an Arbitrator is a Priority one by default, but
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can act as a Finish Plan First for certain Behaviors.

When a Behavior is added to an Arbitrator, it can be flagged as non-interruptible.
This means that even if a higher priority Behavior becomes positive in its IC, the arbitrator

will not drop the non-interruptible Behavior.

Algorithm 3 CAMBADA Arbitrator

Input: currentBehavior, options > The last picked behavior and the options list
Output: currentBehavior, driveVector > The selected behavior and its output
if not currentBehavior.CC() then > If the current behavior is not suitable
currentBehavior <~ BStop > Stop the robot, by default
if currentBehavior.nonInterruptable then
for i = 0 to options.length() do > Iterate through all options
if options|i].IC() then > If the IC is true
currentBehavior <— options]] > Select this behavior
break
end if
end for
end if
end if
if not currentBehavior.nonlnterruptable then
for i = 0 to options.length() do > Iterate through all options
if options[i] = currentBehavior then > If this is the current behavior
break > continue with the same behavior
end if
if options|i].IC() then > If the IC is true
currentBehavior < options]i] > Select this behavior
break
end if
end for
end if

driveVector < currentBehavior.calculate()

return driveVector

42



3.4.4 Inheritance

One interesting feature of the Arbitrators is that they are Behaviors themselves,
however, instead of calculating a DriveVector, they are responsible for calling other be-
haviors. This is extremely useful for general purpose behaviors, like “go to the ball”. The
way the robot approaches the ball depends on several conditions, so a generic BGoToBall
behavior was developed, which is a Arbitrator itself that will evaluate the IC and CC of

various types of movements to grab the ball.

3.5 Roles

Roles now have an Arbitrator by default, as well as a callback method that can be
implemented by the derived Roles to make decisions and/or update internal variables or
own worldstate information. In the constructor of the Role, a set of behaviors is added
to its Arbitrator queue. Behaviors and Roles are created once in the beginning and are

selected based on their conditions, and can then keep track of the past decisions.

3.5.1 The Role Striker Example

Figure 3.3 shows a graphical representation of the behaviors currently in use for the
Striker.

RoleStriker
BStopRobotGS
BKickToTheirGoal
BAvoidTheirGoalArea
BStrikerPass
BStrikerRelieveBall
BBallBodyProtect
BStrikerGoToBall < BStrikerGoToBall
BSearchBall
BStrikerContourOpponent
BActivelnterception
BGoToVisibleBall

Figure 3.3: Behaviors added for the RoleStriker.

The most important thing above all the possible artificial intelligence is safety. On the
top of the behaviors list is BStopRobotGS, which will be triggered whenever the game state

changes to Stop. Although the Decision module releases the RoleStriker and activates
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the RoleStop under these conditions, this module is overridden if a Role is forced using
the basestation.

BKickToTheirGoal appears next on the list, since the most important objective in
a soccer game is to score. Then, it is also important to avoid the opponents goal area
(BAvoidTheirGoalArea).

The behavior used for passing the ball in free-play is BStrikerPass. It is activated
when the robot is aligned with a receiver Midfielder reporting a clear line of sight.

Next on the list is BStrikerRelieveBall, which is triggered when the Striker is playing
alone and has no receiver to pass the ball to.

The BBallBodyProtect behavior is explained in detail in section 4.2 and it is respon-
sible for protecting the ball and for the the alignment with possible receivers.

Lastly on the RoleStriker Arbitrator options list is BStrikerGoToBall, which is a
Priority Arbitrator itself, with four different behaviors to choose from. This arbitrator
is composed of BSearchBall that searches for the ball in case this is not seen by any
of the team mate robots, BStrikerContourOpponent that is explained in section 4.5,
BActivelInterception, that is used to approach a ball that is not being dribbled by a
robot, and finally BGoToVisibleBall that goes directly to the ball to grab it.

3.6 HeightMap Class

Some of the developed behaviors (described in Chapter 4) rely on spacial height maps
(or cost maps). The TCOD? library was used, since it has built-in toolkits for management
of height maps and field of view calculations.

To facilitate the interface with these height maps, a HeightMap class has been devel-
oped. Internally, it contains a TCOD height map, but provides several methods for easy
manipulation of the map using intuitive parameters, since all the calculations regarding

the transformations between grid and world coordinates are performed seamlessly.
3.6.1 Interface
In this section, a list of the provided public methods is presented.

e void clear()

Clears the map, reseting all cells to zero.

2http://doryen.eptalys.net/libtcod

44



geom: :Vec grid2world(int x,int y)

Conversion from grid coordinates to world coordinates.

void world2grid(geom: :Vec pos, int &px, int &py)

Conversion from world coordinates to grid coordinates.

void addHill(geom: :Vec point, float radius, float height)
Adds a hill centered on the position defined by the parameter point with a certain
radius and height.

void digHill(geom: :Vec point, float radius, float height)

Digs a hill centered on the position defined by the parameter point with a certain
radius and height. Digging provides a way of limiting the height. Digging twice over
a zone that was previously digged, makes no difference on the map, whereas adding
two hills has a cumulative effect.

void addOffset(float value)

The value is added to every cell in the whole map.

void addOffset(geom::Circle circle, float value, bool inside)
The value is added to the cells inside or outside the circle, depending on the last

parameter.

void addOffset(geom::XYRectangle rect, float value, bool inside)
The value is added to the cells inside or outside the rectangle, depending on the last

parameter.

void addOffset(geom::Line line, float value, bool right)
The value is added to the cells on the right side or left side of the line, depending on
the last parameter.

void add(HeightMap* map2)
The cell values of map2 are added to the inner height map.

void cloneTo(HeightMap* destination)

The cell values of the inner height map are copied to the destination HeightMap.

geom: :Vec getMaxPos()

Returns the position of the cell with the highest value in world coordinates.
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e geom: :Vec getMinPos()

Returns the position of the cell with the lowest value in world coordinates.

e float getMaxVal()

Returns the highest cell value on the map.

e float getMinVal()

Returns the lowest cell value on the map.

e float getVal(geom: :Vec pos)

Returns the cell value from a defined position.

e void normalize(float valMin = 0.0, float valMax = 1.0)

Normalizes the map between two defined values (0.0 and 1.0, by default).

These are part of the environment symbolic representation and thus were included in
the WorldState module, to be easily accessible from any Behavior or Role.

3.6.2 Cost Maps

With the developed HeightMap class, several different spacial cost maps have been im-
plemented in the WorldState: fovBall (section 3.6.2), fovGoal (section 3.6.2), mapObstacles
(section 3.6.2), mapDribble (section 3.6.2), mapKick2Goal (section 3.6.2) and mapReceiveBallFP
(section 3.6.2).

The last two presented maps have been vital for the development of new behaviors,
namely the new dribble and kicking behaviors, as well as for selecting the ball reception
position in free-play.

Figure 3.4 shows the situation created to illustrate all the different maps in the following
sections. The team is attacking towards the yellow goal and Robot 4 has the ball engaged,
hence being the Striker. Robot 3 is a MidFielder trying to get in a good position to receive

the ball. Four obstacles have been placed in the field to simulate opponent robots.

Ball Field Of View Map

This map contains a Field Of View (FOV) map calculated from the ball position. The
obstacles around the ball by less than 1.5 meters are ignored to avoid large zones with no
FOV. The cells with no FOV are assigned the value of 1.0 and the others remain at 0.0.
Figure 3.5 shows the height map calculated by Robot 4.
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Figure 3.4: The example situation for illustration of the cost maps.

Goal Field Of View Map

This FOV map is calculated from the opponents goal. Cells with no FOV have a cost
of 1.0 and the others have 0.0 cost. Because this map is used for evaluating the kicking
conditions to the opponent goal. Since the kicks to the opponent goal are performed as
lob-shots, above a certain distance to an opponent the ball passes over it, so cells with
distances greater than 1.5m to an opponent aligned with the goal are also considered to
have zero cost. Figure 3.6 shows the height map calculated by Robot 4.

Obstacles Map

The obstacles cost map (mapObstacles) includes hills in the position of the obstacles
with 80% persistence to improve stability of decisions based on this map, which means
that it takes 5 agent cycles (100 milliseconds) for a new obstacle to reach the maximum
cost level. In the end, the map is normalized, thus holding values between 0.0 and 1.0.
Figure 3.7 shows the height map calculated by Robot 4.
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Dribble Map

The dribble cost map deals with the constraints regarding a generic dribble behavior,
complying with the current MSL rules. Some areas of the field have high costs, namely
both penalty areas, areas outside the field and outside a 3 meter radius circle centered on
the point where the ball was grabbed. Then, the mapObstacles is added to the map and
a cost associated with the robot movement is also considered. In Figure 3.8, the dribble

map calculated by Robot 4 is depicted.

Kick2Goal Map

The mapKick2Goal represents the costs for kicking to the opponents goal. This map
contains preferences such as the dribbling target position that can be easily changed in
the existing parameter configuration tool. The fovGoal is added, because the robot needs
to have free FOV for the opponent goal in order to perform a kick. Additionally, the
mapDribble is also imported to comply with the rules while dribbling. Zones near the
opponent corners also have raised costs, due to the small kicking angle to the goal. Finally,
the map is normalized to produce floating-point values between 0 and 1. This map is used

by the striker and is represented in Figure 3.9.

ReceiveBallFP Map

The mapReceiveBallFP is intended to select a good position on the field to receive a
pass during free-play. Therefore, only positions inside the field are considered, as well as
positions outside both penalty areas. Positions near the opponent corners (dead angles)
are also avoided. A minimum distance of 2 meters to the Striker is required and preference
is given to positions near the last chosen position, near the manually-defined strategic
position and also near the actual receiver robot’s position. Including the fovBall map
makes the robot search positions with FOV for the ball. With these constraints, the free-
play receiver robot will be constantly adapting to the changes of the opponent’s formation
and the ball position. Figure 3.10 shows the map calculated and used by the MidFielder
(Robot 3).
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Figure 3.5: The Ball FOV map. Figure 3.6: The Goal FOV map.

Figure 3.8: The Dribble cost map.

Figure 3.9: The Kick2Goal cost map. Figure 3.10: The ReceiveBallFP map.
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3.7 Conclusion

In this Chapter, a new CAMBADA Software Agent Architecture has been described
and proposed. The previous agent architecture has been successfully ported to this new
solution, without any loss of functionality. After this software structure refactoring, making
changes is now much easier than it was before. The Behaviors are well-defined and self-
contained, and the Invocation and Commitment Conditions are directly associated to the
behaviors themselves, which makes them a lot easier to tune.

If previously, when using state machines, all the transitions between states had to
be hand-coded, now each behavior can ultimately be seen as a state, but the transition
conditions are now implicit in the IC and CC of each behavior.

Furthermore, this structure makes it easier to develop new behaviors or to test spe-
cific ones. For example, to test the BStrikerPass behavior, all the other behaviors were
removed from the arbitrator list, isolating that behavior for fine-tuning.

The new Software Agent architecture is modular and flexible, leaving space to use
other types of compensators inside the Controllers other than the PID or other types of
Arbitrators, such as utility arbitrators, which could select a behavior with the highest
utility.

Because the Roles and Behaviors are instantiated once in the loading phase of the
agent and the objects exists until the agent dies, the problem of losing history disappeared.
Now both types of modules can easily maintain history, which can me wisely used to
formulate new decisions.

The complexity of Roles has been decreased as shown in table 3.1 - line counting made
at 4th of July, 2014. Although source lines of code is a very poor productivity measurement,
having ported all the functionality and even added new behavious, the expressive numbers

of the ratio prove that the requirement of relaxing the complexity of Roles has been met.

Role Agent vl | Agent v2 | Ratio
Striker 083 28 4.8%
Midfielder 193 29 15.0%
Goalie 176 28 15.9%
Replacer 541 94 17.4%
Receiver 675 322 47.7%

Table 3.1: Roles source lines of code comparison between architectures.

The developed Cost Maps have been very useful in the development of new behaviors,
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namely the new dribble and kicking behaviors, as well as for selecting the ball reception
position in free-play. The usage of height maps has broken some deterministic behavior
and has improved the overall performance of the robots in such a dynamic environment as
the MSL provides.
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Chapter 4
New and Improved Behaviors

This Chapter includes all the behaviors developed in this thesis. The changes not
only aim at adaptation to new rules for the Middle-Size League but also on the overall
performance of the team, by tackling some of the weak points.

The first behavior to be studied and improved was the ball reception, since there was a
noticeable low efficiency on that aspect by analyzing some of RoboCup 2013 matches videos.
Then the 2014 rules forced a reimplementation of the dribbling behavior and coordination
between robots to perform passes during free-play. On one hand, the changes made on
the dribbling behavior increased the kicking chances, but on the other hand prejudiced
the kicking efficiency, due to the robot’s motion on the moment of the kick. Therefore, a
closer look to the kicking behavior was taken. The system was characterized and a model
was extracted in order to compensate for the robot’s linear and angular velocities on the

moment of a lob-shot.

4.1 Ball Reception Behavior - BReceiveBall

Receiving a ball in an efficient way is a very important aspect to achieve good results
in soccer. Due to the high level of dynamism in the Middle-Size League games, the faster
the receiver robot can engage the ball, the more opportunities to kick it will have.

After analyzing the games from last year, the ball reception behavior (BCatchBall) was
one of the crucial aspects to be improved in the CAMBADA team, since most of the times
the robot did not catch the ball at first. One of the last results [37] show a 10% efficiency
of the BCatchBall behavior, which includes some calculations to be able to catch the ball
with a certain velocity difference between the robot and the ball that is almost zero. To

do that, it calculates the ball linear path from its velocity and when the robot is in the

23



trajectory line it starts to move back to catch the ball.

There are, however, two problems with this approach. Firstly, it relies on the ball
velocity estimation, which is too erroneous to be used at this detail when the robot is
moving fast. While moving in the field, the robot shakes, affecting the vision system pose
and thus injecting noise in the perception of the robot position. Since the ball is firstly
detected in relative coordinates (with some associated error) and then its absolute position
is calculated based on the robot’s position, both errors will sum, resulting in ball absolute
positions that provide weak accuracy.

Secondly, when a long pass is made, the receiver may not see the ball in the first cycles
and will use the information shared by the passer, namely, the ball position and velocity.
While this may seem like a good procedure conceptually, it introduces some problems when
we take it to a real-world situation.

The robot localizes himself on the field using the perceived field lines and the ball is
detected in relative position, and then projected to absolute coordinates. The ball velocity
is calculated using a linear regression of the absolute positions [38]. Of course, all of these
measurements have errors, resulting in significant discrepancies between real and perceived
positions. In addition to this, the information shared by the receiver has a considerable
delay (approximately 100ms).

This abrupt change between shared information and local information can cause critical
discontinuities that could lead to unusual behavior. On the other hand, discarding infor-
mation that might be useful is probably not a smart decision. The challenge is how can
we use information from both robots in an elegant and efficient way. In order to address
the above stated problems, the BReceiveBall behavior was developed.

The first tests showed that with the new ball handling mechanism, the robot could en-
gage the ball faster without moving backwards, so the developed work was mainly targeted
at aligning with the ball trajectory.

Figure 4.1 may help visualize the algorithm behind this new behavior: when a robot
(on the left) makes a pass, it calculates a pass line (dashed line) that is broadcasted to all
the teammates. While the receiver (robot on the right) doesn’t see the ball, he will move
to the closest point on that line. When the ball becomes visible, a positional displacement
of the ball in relation to that line is calculated (vector in red) and compensated from the
closest point on the line.

In this approach, the trajectory of the ball is calculated by the passer robot, which is
the robot that can potentially generate a better approximation, since it is closer to the
ball from the first moment of the pass. The linear regression is performed for all the ball

positions closer than a certain fixed (yet configurable) threshold.
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Figure 4.1: BReceiveBall graphical representation.

Obviously, if this robot has considerable positional error in its localization, this calcu-
lated pass line will also reflect that positional error. Nevertheless, the slope of the pass
line will not be affected by this deviation and therefore, this slope is the most useful
information. Although there is currently no way of calculating the robots’ angular error,
this can be considered negligible in this case.

The pass line is used to calculate a positional displacement to be corrected at each new
cycle and, ultimately, the calculated position will converge to the best reception point,

since it is calculated by the receiver robot.

4.1.1 Results

The efficiency of this behavior has been tested along with the ball passing algorithm.

Therefore, the results are presented in Section 4.3.4.

4.2 Dribble - BBallBodyProtect

The changes in 2014 MSL Rules included a new limitation on the dribbling movement.
Currently, a robot is not allowed to dribble the ball continuously more than 3 meters away
from the point where it was grabbed. This means that to overcome this limitation, the
robot needs to explicitly release the ball, passing to other robot or to grab it again. The
whole dribble behavior had to be completely rethinked, since the movement is now much

more limited and complex. Therefore, dribbling the ball can be one of these two situations:

e Simply holding the possession of the ball
Example: 1 grabbed the ball, but still can not score a valid goal (I still have to make
a pass), so dribbling means holding the ball while a teammate is trying to get in a

good position to receive a pass.
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e Dribble to a point where the ball can be kicked to the goal
Example: T have conditions to score a goal (by the rules), so now I have to dribble
the ball to a point in the field that has free line-of-sight to the other team’s goal

while trying to avoid opponent robots.

Based on these requirements, a new behavior called BBallBodyProtect is proposed,

which is based on a mixture of spacial and angular utility field maps.

4.2.1 Implementation

The first step was to create a basic behavior that would make the robot turn his back
to the opponents, while holding the ball, which is a very basic protective behavior.

One simple approach could be to iterate through each known obstacle and select the
closest one to the robot and do the necessary calculations to turn the robot’s back to that
obstacle. However, a problem of discontinuity arises. If we do this, we can easily end up
in a loop that keeps changing from obstacle to obstacle in consecutive cycles, which means

unpredictable output and most certainly a loss of the ball’s possession.

270

(a) Single obstacle near the robot. (b) Angular costmap and chosen relative angle (arrow)

Figure 4.2: Representation of the angular cost map for a single obstacle.

Therefore, an angular cost map was developed. Every obstacle within a certain thresh-
old of relative distance counts to what this map is concerned, but they can have different
weights from each other. A gaussian is added per obstacle, which will span a cost across
other angles in its vicinity. In theory, if we chose the angle with the lowest cost, we are

avoiding looking directly at the obstacle. Figure 4.2 represents the simplest situation with
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just one obstacle. As Figure 4.2b shows, the chosen orientation angle is the opposite from
the obstacle.

Now we consider the case when another robot from the opponent team approaches our
Striker, like in Figure 4.3a, it is more or less intuitive to think that a closer obstacle
should influence more the robot’s behavior. In practical terms, this means that looking
directly to the closest obstacle costs more than looking to the other obstacle. However,
the goal is still to avoid looking at both.

270

(a) Two obstacles near the robot. (b) Angular cost map and chosen relative angle (arrow).

Figure 4.3: Representation of the angular cost map for two near obstacles.

So, in a situation like the one on Figure 4.3a, a gaussian is also added to the angular
cost map, centered on the relative angle to each obstacle. Also, the magnitude of the
gaussians decreases with the squared distance, so that closer obstacles have higher cost
than distant obstacles. The result of the map can be represented on polar coordinates and
can be seen in Figure 4.3b.

The cost of rotation is also taken into account, in order to improve stability. For
instance, when there are no near obstacles, the robot keeps the same orientation and this
can also help to choose between angles with similar costs - it makes the robot chose the
closest one. This is done by adding values to the map that linearly increase with the
module of the relative angle (0.0 for relative angle (0°, K for relative angles -180° and
+180° , and linear distribution in-between).

Following the selection of the orientation, a target has to be chosen to position the robot,
as it is counter-productive for a robot to stay always in the same place. The positioning
in this behavior is done via the spacial cost map mapKick2Goal described in section 3.6.2.

The behavior selects the position with the minimum cost value as the target position.
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Having both the target position and orientation, the cMove controller is called to cal-
culate the required velocities (X, Y and angular) to be sent to the low level and applied to
the platform.

However, the controller was designed to make the robot move freely (and without the
ball), so chances are that the output of the controller would make the robot inadvertently
release the ball. To overcome that problem, we inject some more velocity in relative X, to

account for the angular velocity, using the formula that relates angular and linear velocities:

Vo = (4.1)

In equation 4.1, v, represents the angular velocity, v; the linear velocity and r the
radius of the movement. So if we use the distance between the robot center and the ball
center when it is engaged, the result seems more like a rotation around the ball. This is

why v, % r is added to v, (linear velocity in relative X axis) after the controller call.

4.2.2 Results

The new dribbling constraints are too different from the previous to be able to directly
compare both efficiencies. The most significant measurement in this case is probably the
ball possession. In principle, a better dribbling algorithm will allow the team to have a
higher ball possession ratio.

Therefore, the available log files from RoboCup 2013 have been compared with the
ones from Robotica 2014 and an estimate of ball possession over the matches has been
extracted. This estimate is not very accurate since it relies on the ball engagement flag
reported by the robots, not taking into account situations when the ball is being disputed
(engaged by both teams), thus not exactly in possession.

Figures 4.4 and 4.5 show the ball engagement ratio in RoboCup 2013 and Robotica 2014,
respectively. The green dashed lines represent the average over the analyzed matches.

A small increase has been observed, with an average ball possession improvement from
5.9% to 7.4%. However, by visual inspection of the recorded videos of the matches in
Robotica 2014, there were much less dispute situations. Therefore, the ball possession
estimate of Robotica 2014 is much more accurate than RoboCup 2013.

By avoiding dispute situations, the CAMBADA team was able to create more attempts
for passes or kicks to the opponent goal and the overall performance of the team has

improved.
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Figure 4.4: Ball Possession in RoboCup 2013.
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Figure 4.5: Ball Possession in Robotica 2014.

4.3 Free-Play Ball Passes

Passes between robots are already present in MSL for quite a few years, but most
teams made them only during set-pieces situations (like Kick-Offs or Free-Kicks), others
started to try out free-play passes. In 2009, some ideas have published [39] regarding the
coordination of two robotic agents to perform passes in free-play. With the current league
rules, it is mandatory for teams to be able to pass and receive a ball in free-play situations.

In the case of the CAMBADA team, passing is achieved using coordination variables
- a Coordination Flag to signal that the ball is about to be passed, was passed or is in

conditions to be passed, and a Coordination Vec (a position on the field).
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In set-pieces like a Kick-off or a Free-kick, the team has 10 seconds to decide to make a
pass, and can have a deliberative-like approach, with weak interference from the opponent
team. Ultimately, a robot can always receive a pass in a set-piece if its position is between
2 and 3 meters away from the ball position, since the opponents are not allowed to be

within a 3-meter radius around the ball in these situations.

A recent change in the rules states that the robots have to make a successful reception
of the ball on the opponent side of the field in order to make a valid goal, which means
that there has been a great effort in improving the free-play passing strategy. Being a true
challenge in terms of coordination among robots, free-play passes are much more complex
to achieve, due to the complete freedom the opponent team has to approach our Striker
or cover a Receiver. Because the robot making the pass has the ball in his possession, its
moves are very limited, so there was a huge effort to improve the receiver ability to select
a great place to receive the ball. A possible solution is presented in sections 4.3.1 for the

Receiver and 4.3.2 for the Passer.

4.3.1 Receiver

During free-play, one of the Midfielders is responsible for finding a good position to
receive a pass. In terms of configuration, the possible receiver will be the Midfielder with

the highest priority, since passes are so vital even if there are only two robots available.

In a first approach, the formation was manually defined with a position always on the
opposite side of the field, possibly ready to receive a pass from a teammate. However,
this is a static formation and it is now usual for the opponent team to cover our possible
receivers, so a much more dynamic approach was needed. Then, the mapReceiveBallFP
cost map (described in section 3.6.2 and illustrated in Figure 3.10) has been used for finding

a good receiver position.

In order to synchronize the passer and the receiver, a coordination flag is communicated
from the receiver to the passer: can either be Clear or NotClear. The Striker selects the
free-play receiver by searching for the Midfielder with a Clear or NotClear coordination
flag. NotClear means that the receiver is still moving to the reception position or is not
in conditions to receive a ball (for example, there is no line clear between the two robots
because an opponent is between them). On the other hand, Clear tells the Striker that this
is a good opportunity to perform a pass. Additionally, a coordination vector is also shared
to inform the passer of the receiver’s target position.
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4.3.2 Passer

In free-play the ball is passed from the Striker to a team-mate and therefore, passing is
one of the possible behaviors for the Role Striker. But how can the agent decide between
three possible behaviors (dribble, pass or kick)? The solution was to use the spacial height-
map the Striker uses for positioning when dribbling the ball, but instead of just extracting
the best position to be, the actual values of the map cells will be relevant to select the
Behavior.

The height-map was used as a cost map, with normalized floating-point values between
0.0 and 1.0, so cells with lower values represent higher chances of keeping ball’s possession,
thus being the best cells to decide to kick. Then, the robot decides to kick to the opponent’s
goal when it is on a cell which cost is less than 0.25.

The passing behavior activates when the robot is aligned with the receiver within a cer-
tain angle, making the Striker align with the receiver and passing when the angular error is
low enough. A higher difference on the receiver’s relative angle releases the alignment with
the receiver and the robot performs the fallback dribbling behavior (BBallBodyProtect).

4.3.3 Forward Passes

A forward pass consists in passing the ball to an area where there is no teammate nor
an opponent, but ensuring that the teammate is still able to grab the ball. Making forward
passes was a big necessity, since it is the solution to overcome the velocity of the adversary
team. However, it is quite challenging to coordinate two robots to do intelligent passes,
because it is too easy to release the ball and lose it on the pass.

A first approach on forward passes was made using some predictive components. The
receiver’s velocity was taken into account and used to predict its position in the future,
assuming its module and angle will remain the same.

So, instead of just using the receiver’s position, the Striker uses the receiver’s coordina-
tion vector (the position where it is moving to) and velocity. The time of the pass depends
on the pass distance, but to simplify it is assumed to last around 1 second. Consequently,
the receiver’s velocity (in m/s) is summed to its position and the result is used as an es-
timate of that robot’s position in one second. If that position is near the target reception
point, the Striker performs a pass to the latter. Figure 4.6 pretends to demonstrate the
ideas behind the implemented forward passing algorithm.

Although this is a fairly basic approach, it performed well, since it did not seem in-

crease the percentage of lost balls during passes, but there is certainly a big margin for

61



Robot Velocity x

Midfielder

Striker /'\\ ;

Figure 4.6: Forward Pass Algorithm.

improvement. Time constraints (time of Midfielder motion and time of ball travel) could

be taken into account when calculating the best moment to perform the pass.

4.3.4 Results

To test the efficiency of the new pass (always forward passes) and reception algorithm,
the RoleStriker Arbitrator has been changed to include only the dribble and pass behaviors.
Two robots ran for 5 minutes, making consecutive passes while moving freely on the field,
where 5 static obstacles have been randomly positioned. During the test, the robots have
performed 63 passes, and the ball was correctly received 52 times, making a 82.5% success
rate for reception.

Some tests have been conducted also with dynamic obstacles. Although there are no
actual measurements, the robots have struggled to perform a pass. However, they were
very conservative regarding the release of the ball - it was passed only when there was a
high confidence that the receiver would catch it. The ball has been passed to an opponent

very rarely.

4.4 Kick to Goal - BKickToTheirGoal

After playing with the behaviors described in the previous sections of this chapter in
IranOpen2014 (9th to 11th of April, 2014), CAMBADA has been able to create much more
opportunities to kick to the opponents goal. Previously, all the kicks were made with the
robot almost stopped, but this new behavior (BKickToTheirGoal) is much more dynamic

and allows the robot to kick the ball while moving.
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When the robot kicks the ball while having linear and/or angular velocity, the outcome
will be different from the situation of when it is stopped. For example, if the robot is moving
forward, part of the y-velocity of the robot (a factor representing the energy losses) will be
added to the ball velocity in the kicking process. The same happens to the x-velocity and
moreover, there will always be some delay between the instant of the kicking order and the
actual kick of the ball. Therefore, the BKickTheirGoal behavior has been revised, as well

as all the kicking calibration process.

4.4.1 Compensating the Linear Velocity

The linear velocity in the relative y-component was already being compensated, with
the decrease of the kicking strength by a factor depending on this velocity. This affects
the height of the kicking, but does not guarantee the correct alignment with the kicking
target.

As previously stated, before the developed work in this thesis, the Kick behavior simply
rotated the robot around the ball to align with a certain kicking target and as soon as the
robot was aligned, it sent a kicking order to the low-level layer. Aiming at continuity
between behaviors, the changes made on this behavior included having the robot selecting
the same target position using the same method as the BBallBodyProtect behavior. The
main difference is that now, it wants to orientate to a target laying on the opponents goal
(may not be exactly the goal’s center), instead of protecting the ball from the opponent.

As Figure 4.7 shows, the alignment with the chosen target (red cross) is evaluated based

on the intersection of two line segments.

v,

(a) Robot not aligned with the target. (b) Robot aligned with the target.

Figure 4.7: Representation of the kicking alignment algorithm.
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One of the line segments represents the robot’s front direction and the other is centered
on the target, perpendicular to the line between the robot and the target and with a certain
length representing the allowed error for the intersection. The chosen error was 10cm for
each side of the target.

However, an efficient kick should send a kicking order even if the robot is not physically
aligned with the target, but its motion (composition of instantaneous angular and linear
velocities) would result in the ball being released to the target direction. This means that
from the behavior’s perspective, it needs to account for the robot’s angular and x-axis
velocities, and therefore each has been separately evaluated. In order to accomplish these
objectives, two special behaviors have been developed to take measurements.

Figure 4.8 illustrates the test conducted to measure the influence of the robot’s x-
velocity on the kicking direction. The a angle was indirectly measured for several fixed
x-velocities. The robot made a path parallel to the goal line, from one side line to another
and kicks the ball as soon as it crosses the middle of the field. Then, the displacement to

the center of the goal was measured to extract a.

b
T

\

z /
Figure 4.8: Influence of robot’s x-velocity in kicking direction.

This was done for both positive and negative velocities with the conclusion that the
outcome was symmetrical, and all the values are present in Table 4.1. More tests could not
be made, because of the weak precision on the measurement of b (influencing the accuracy
of ) and also for higher velocities, the robot is unable to hold the ball.

A linearization was done to come up with a function that outputs the o angle based on
Vel,. This angle is then used in runtime to rotate the robot’s front line segment around

the center of the robot and then it is used to calculate the intersection for the alignment.
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Vel, [m/s] | d [m] | b[m] | o[]

0.5 6.0 0.5 4.76
1.0 6.0 1.0 9.46
2.0 6.0 1.8 || 16.70

Table 4.1: Measurements on the output angle for different robot’s x-velocities.

4.4.2 Compensating the Angular Velocity

Finally, the influence of the angular velocity was evaluated and measured, using a
special test behavior that makes the robot turn around its center with the ball at a certain
fixed speed, as depicted on Figure 4.9. The robot was placed 8 meters away from the goal
(d) aligned with the goal’s center and the kicking order was sent as soon as there was an
intersection between the two line segments. The allowed error (line segment above the
target point, b) was manually adjusted in order for the ball to hit the center of the goal
(the target, in this case). These two values allowed the extraction of the f.

The graph in Figure 4.10 shows a linear relation between the allowed angular error (in

degrees) versus the robot’s angular velocity (in degrees per second).
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Figure 4.9: Influence of robot’s Figure 4.10: Allowed error vs Angular Velocity.

angular velocity in kicking di-

rection.

In runtime, the robot uses the odometry information to get a better approximation
of the robot’s angular velocity and then calculates the maximum (. The robot creates

two line segments. The first line segment is created above the robot center position and
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the kicking target and then it is rotated by « (explained in Section 4.4.1). The second is
centered the target and is orthogonal to the line segment between the robot and the target,
with 10 e¢m to each side (the minimum allowed intersection error), by default. Then, using
the 8 angle, it calculates the dimension of b, to grow the second line segment. If the robot
is rotating with a positive angular velocity, the line will grow to the right and vice-versa.

As soon as an intersection between those line segments is found, a kicking order is

triggered by calling the DriveVector’s kick() method.

4.4.3 Results

In IranOpen2014, before the described work was done, the kick efficiency was as Table
4.2 shows. An average of 40,6% of kicks would never translate into valid direct goals,

since the ball was kicked outside of the field or to a post or a bar.

Phase Opponent Team ‘ Inside Goal ‘ Outside Goal | Efficiency

MRL 5 (3 goals) 0 100.0%
Friendly Matches Hibikino 4 (3 goals) 4 50.0%
MRL 2 (0 goals) 4 33.3%

Hibiki 6 (3 goal 5 54.6
Round-Robin 1 R (3 goals) ’
MRL 1 (0 goals) 0 100.0%

Hibiki 8 (5 goal 6 57.1
Round-Robin 2 R (5 goals) %
MRL 6 (2 goals) 4 60.0%
Final MRL 2 (2 goal) 8 20.0%

Table 4.2: Kick accuracy during I[ranOpen2014.

Table 4.3 shows the efficiency of the developed method in the Robotica2014 competition.
In average, 74.0% kicks were in goal, proving that the developed work resulted in an

efficiency improvement of 14.6%.

4.5 Contouring Obstacles - BStrikerContourObstacle

During IranOpen2014, the CAMBADA team has made quite a few foul tackles by
hitting an opponent robot that has the ball, making it lose the ball’s possession. Most
of the times, the CAMBADA robot’s intention was to go to the ball, but without any

consideration of the opponent robot.
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Phase Opponent Team ‘ Inside Goal ‘ Outside Goal | Efficiency

Tech United 3 (1 goal) 1 75.0%

Friendly Matches Tech United 5 (0 goals) 2 71.4%
Carpe-Noctem | 17 (10 goals) 3 85.0%

Tech United 1 (1 goal) 0 100.0%

Round-Robin 1 Carpe-Noctem 15 (6 goals) 6 71.4%
5DPO 17 (11 goals) 4 81.0%

Tech United 1 (1 goal) 1 50.0%

Round-Robin 2 Carpe-Noctem 12 (8 goals) 5 70.5%
5DPO 17 (12 goals) 1 94.4%

Semi-final Carpe-Noctem 7 (4 goals) 3 70.0%
Final Tech United 5 (1 goal) 6 45.5%

Table 4.3: Kick accuracy during Robotica2014

Therefore, the behavior responsible for going to and grabbing the ball was had to be
reviewed to take into account a possible obstacle that might be on the way. The behavior
BStrikerContourObstacle was then developed, which objective is to contour an adversary
with the ball until they are both almost face-to-face to be possible to directly attack the
ball.

4.5.1 Implementation

The developed and proposed algorithm is based on the usage of an intermediate way-
point between the current position of the robot and the target (the ball), in a way that it
will keep a certain minimum distance to the opponent holding the ball. The behavior was
developed to do this while protecting our goal, so the applied algorithm varies with three
different situations.

In the situation where the ball is visible, an obstacle is detected dribbling it and
the ball is closer to our goal than the robot, the waypoint is calculated using the
intersection between two circles. One circle is built around the ball with a fixed radius
and the other has its center on the robot and the radius is equal to its distance to the
ball. Then, in the first cycle, the intersection that is closer to our goal is picked and in
the consequent cycles, the intersection is picked based on minimum distance to last cycle’s
target. Figure 4.11 visually demonstrates this algorithm, with the opponent in black, the

robot in green and the green cross representing the selected intersection.
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Figure 4.11: BStrikerContourObstacle contour algorithm.

When the ball is visible, an obstacle is detected dribbling it and the robot is
closer to own goal than the ball, a protective behavior is implemented and the robot
positions himself between the goal and the ball (Figure 4.12).

| Own Goal

|
PP

Figure 4.12: BStrikerContourObstacle protective behavior.

A wise decision for the opponent would probably be to protect the ball from our robot.
It might turn around and the ball’s position might become unknown and therefore inval-
idating the developed algorithm. This is why this behavior is slightly different when the
ball becomes not visible. In this situation the behavior tries to track an obstacle from
cycle to cycle and the same protective algorithm is applied to the tracked obstacle instead
of the ball, as demonstrated on Figure 4.13.

This tracking method relies on using the last known position of the ball in the first
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Figure 4.13: BStrikerContourObstacle protective behavior without knowing ball position.

cycle it becomes invisible. After that first cycle, all the obstacles near the last tracked
position are aggregated into a cluster and the mean position of the cluster is used as the
tracked opponent. This is required because sometimes during fast movements of the robot
or the opponent or due to improper calibration, some perception errors can occur, resulting
in seeing multiple obstacles in a single real opponent. Using the mean of these perceived
obstacles is much more accurate than simply using the closest obstacle of the last tracked
position.

The Commitment Condition becomes false when both robots are almost face-to-face,

letting the parent arbitrator call a direct ball approach behavior (BGoTo VisibleBall).

4.5.2 Results

This behavior has been included in the RoleStriker Arbitrator list for Robotica2014.
In the final match of the tournament, the BStrikerContourObstacle behavior has been
selected by the Arbitrator 34% of the time in the first half and 37% on the second half,
having enhanced the defensive attitude of the team, by blocking many of the opponent’s

dribble attempts towards our goal.
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Chapter 5
Debug and Development Tools

In order to develop the new architecture and test the new behaviors, there was the need
of improving some of the current development tools or to create new ones for visualization
and calibration. The Basestation application [14] has been improved to allow a 3D visual-
ization with support for a height map visual representation. To test some behaviors that
are dependent on the opponents’ dynamic behavior, the team needed a tool that could
simulate a dynamic opponent in realtime, so an Augmented Reality tool was developed
for this purpose. Lastly, the deep study of the kicker system led to the creation of two

calibration tools during the process. Those are also presented in this chapter.

5.1 Basestation 3D Field View

The Basestation (Figure 5.1) is a crucial application used both in the competitions and
in the development phase to start and stop robots, assign roles, debug behaviors, simulate
referee-box signals, etc. This QT4 application contains buttons and other widgets that
can be used to interact with the robots and includes a visualization of the worldstate
representation.

The objective of the work mentioned in this section was to replace the current 2D Visu-
alization in the Basestation by a 3D view, maintaining the existing additional information
regarding each player and for specific game situations.

The Basestation application already has a module responsible to store all the informa-
tion transmitted by the robots and provide it to the various Widgets, so the developed
work was basically the replacement of the FieldWidget (the main visualization part). This
widget was previously done in low-level OpenGL calls, which require some time to be able
to modify. Therefore, the Visualization ToolKit (VTK) was chosen as a framework for this
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Figure 5.1: The 2D Basestation

visualization widget, because it provides an intuitive way of manipulate the 3D objects on
the scene with a high level of abstraction from the low-level OpenGL calls.

Before starting the development of a new solution, the existing one was studied at detail,
and a list of features were noted, in order to keep full functionality over the transition to

the new solution:

e Permanent Actors

— Field lines - the field dimensions are read from the XML configuration file and

are drawn accordingly.
— 6 Robots - the old robots were round and the new ones have flat surfaces

— 6 Balls - each robot sees the ball in different positions and all of them have to
be represented in the field.

— Ball Velocity - the ball velocity estimation was drawn based on the information

from the closest robot to it.

— Debug Points (4 per robot) - there are 4 available coordinates that are
shared by the robots. Those are used for debug purposes and should be visible

from the basestation view.

— Score Board - this was not present in the current 2D visualization, but makes
sense to include it in order to become a full functional visualization widget that
can be used out of the basestation - for instance, to display some information

to the audience.
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e Variable Actors

— Obstacles - each robot can see multiple obstacles around him, but will only
share up to 6 of those obstacles. Of course, in some situations, the robot will
see less than 6, can even happen that he does not see any obstacle. Therefore,

the number of obstacles to be drawn are arbitrary.

— Set-pieces lines - for some specific game situations such as set-pieces (for
instance, kick-off, corner-kick, throw-in, etc), some debug lines are drawn based
on some of the information reported by the robots: receive position, pass line

clear between ball and receiver position.

To carefully handle the memory, a dynamic array is available to store the variable
actors. Then, at the next update cycle, in the beginning, all actors in that array are

deleted from the scene and their associated memory is freed.

5.1.1 3D Models

Two (*.0obj) 3D models were created: goal (Figure 5.2a) and cambada_base (Fig-
ure 5.2b), with the help of Trimble Sketchup . The models were kept as simple as possible
in order to maintain a good performance in slower computers. All 3D models are loaded

and the actors are added to the scene in the loading phase.

N

b

R

(a) The model for the yellow goal. (b) The model for the robots.

Figure 5.2: 3D Models created for the new Basestation Field Widget.

5.1.2 Colors

In the 2D Basestation, there were 6 different colors assigned to each robot. Therefore,
the robot body, the ball and the obstacles seen by that robot will all have the same color.
These were maintained because sometimes it is useful to see which is the robot seeing a ball

(sometimes it is a false-positive that will require extra vision calibration in that robot).

'http://www.sketchup.com/
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Figure 5.3: Robot 3 has the ball engaged.

When a robot has the ball engaged, there was a stroke drawn around the circle that
represented the ball in the previous 2D view. In VTK, it is very difficult to achieve a similar
result, therefore there was a change in the way the ball is represented when it is engaged:

now, its size is bigger than a regular ball and its color is changed to red (Figure 5.3).

5.1.3 Set-pieces

For the Set-pieces (kick-off, corner-kick, throw-in, etc), some dashed lines are drawn
based on the information reported by the robots. As Figure 5.4 shows, there is a dashed-
line drawn between the passer and the point where the receiver will receive (may not be
exactly his current position), which is green when there is a free line of passing and changes

to red if an obstacle prevents a successful pass.

.

Figure 5.4: A Free-Kick set-piece example.

5.1.4 Widget Integration

After developing the basic functionality of the FieldWidget3D, it has been integrated in
the Basestation application (Figure 5.5). Because this is such a critical application and in
order to demonstrate the robustness of the solution, the new Basestation was intensivelly

used for several days and no problems occurred.
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Figure 5.5: The 3D Field Widget integrated into the Basestation.

5.1.5 Interaction

In VTK terminology, the Interactor is the module that defines a way of manipulating
objects or the camera on the scene. In this case, it is basically a mouse interaction.
vtkInteractorStyleTerrain was chosen as the base Interactor style, since it enables
the user to manipulate the camera in scene with the natural view up.

Using the left mouse button, the user is able to manipulate the camera’s azimuth (angle
around the view up vector) and elevation (the angle from the horizon). Using the middle
mouse button, the user can pan the camera around the scene. Finally, it is possible to
zoom in and out by holding the right mouse button and moving the mouse up and down.

Furthermore, the base vtkInteractorStyleTerrain has been extended to empower
the Basestation functionality. A different interaction is activated when the user clicks on a
robot. In these situations, the user is able to drag a model of a robot to a desired position.
This will trigger a new Role in the respective agent, called RoleTaxi, developed to relocate

a robot in the field without physical interaction.

5.1.6 Height Map Visualization

Since the development of the CAMBADA agent is evolving in a way that uses more
and more Height Maps, there was a need of adding a visualization of the Height Map to
the FieldWidget3D (Figure 5.6. This mode can be activated in the Field menu and can
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be shown as a color map or as a grey gradient and can also be displayed as a flat plane or
in 3D.
This mode has been extensively used when developing new behaviors that rely on height

maps for positioning and decision.

File Field Info RefereeBox

CAMBADAm OTHER

Figure 5.6: Colored Height Map in flat mode.

5.1.7 Results and Future Work

In terms of the objectives for this particular change, all of them were fulfilled: a new 3D
visualization for the basestation was successfully developed and integrated in the applica-
tion. Additionally, more information is displayed to help in the debugging process. VTK
was particularly useful for visualizing data such as the virtual potential fields directly on
the Basestation, which would be very difficult to implement using basic OpenGL functions.
Moreover, it is now possible to represent the ball in the 3D space, instead of just on the
field plane.

The developed widget can easily be integrated in a different application for representa-
tion purposes, for instance, for the audience during games.

There are some things that could complement the developed work, namely:

e A dynamic active camera that follows the ball (for demonstration purposes).

e Measurements over the performance dropage with high-detailed models of the robots.
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5.2 Augmented Reality Visualization

Virtual Reality (VR) and Augmented Reality (AR) are emerging research areas, with
limitless applications. The developed work included a first approach on bringing AR into
the CAMBADA environment and using it as a tool to support development. Furthermore,
due to the engaging experience and the general interest over this technology, the developed
work could possibly be also used for demonstration purposes.

Markers are features or objects that exist in the real world that, when they are within
the Field of View of the camera, allow the AR application to use them as a reference
guide that enables to join the virtual and the physical world. Although Augmented Re-
ality is possible to achieve without markers (called Markerless AR), in this application
bitonal markers have been used, since they provide a much more accurate estimation of
the camera’s pose (position and orientation).

In order to achieve the results, two external libraries were used: ARToolkit and VTK.
The first already has methods to access video and image capture devices, and tools for
detecting markers, giving direct access to translation and rotation matrices and some
transformation functions. VTK was picked for display purposes, since it was possible to
use a lot of the work previously developed for the Basestation 3D view (section 5.1).

In a first stage, two layers (Figure 5.7) have been configured in a separate VTK window.
The bottom layer is responsible for representing the captured image from the camera,
simply by having a vtkImageActor without perspective, covering the entire window. The
upper layer has a 3D scene vtkRenderer, in which the virtual world is represented, above

the captured image.

Figure 5.7: The two layers in VTK for the AR application.
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In this type of applications there are typically two options to what the representation

of the virtual world concerns:

1. Origin in the camera - the camera is fixed at the origin of the world and the

translation and rotation transformations are applied to all the objects.

2. Origin in the marker - we position all the objects in the virtual world in their
natural position and move the camera around, replicating the relative movement of

the real camera to the marker.

Given the objectives of the work and what was already done, the second approach
was chosen, establishing the origin of the world on the marker position (Figure 5.8), thus
reducing in a large-scale the number of operations (because it drops the need of applying

transformations to all objects per frame).

N

Figure 5.8: World axis centered in the pattern.

In VTK, the pose of the camera is set by calling three methods - SetPosition,
SetViewUp and SetFocalPoint, each one requiring a three-dimensional vector that are
either directly given by ARToolkit or can be calculated using matrices returned by that
library.

The camera clipping range has also been extended to allow the representation of objects
in shorter and longer distances. In this particular case, the only limitation is the distance
range at which the marker can be detected. Finally, the camera’s Field of View was also

adjusted to match the camera that was used.

78



5.2.1 Marker Detection

The detection of the markers is made by ARToolkit (ATK), which has its own coordinate
systems 2 (represented in Figure 5.9). Therefore, in order to get the correct values for the

expected result, some operations need to be performed over the matrices returned by ATK.

(;(amera Coordinates Observed Screen
c

XC i
Coordinates

Ideal Screen
Coordinates

Zc
Z

Marker

Xm

Zm is directed to upside

Figure 5.9: Coordinate systems used in ARToolKkit.

The arGetTransMat method from ARToolkit returns a matrix M, which includes the
position the marker in the camera coordinates. Its inverse (M ~!) is then calculated using
the arUtilMatInv method. The second column of M ~! represents the view-up vector
directly, but to synchronize it with the VTK coordinate system, all the components had

its signal inverted.

It is also possible to calculate the homogeneous transformation matrix for OpenGL
(column-major) H using the arglCameraView method, that treats the marker as lying
in the x-y plane, with the +z axis pointing towards the observer. This matrix contains
the position of the camera (x,y, z) — (Hi2, Hi3, H14). The focal point vector can be
obtained by adding (Hsg, Hy, Hip) to the position of the camera.

At this point, all the three needed vectors (view-up, position and focal point) to replicate

the behavior of the real camera in the virtual VTK scenario are known.

’http://www.hitl.washington.edu/artoolkit/documentation/cs.htm
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5.2.2 Interaction for Development Support

Currently, when developing new behaviors that require tests with an opponent robot,

there are only two possibilities:

1. Using the simulator, placing one or more static obstacles in the field, and performing

tests with a static opponent team.

2. Take the test in real robots, placing a turned off robot on the field, which can be

moved by one person, thereby recreating an opponent behavior.

However, neither of these solutions is practical. The second option requires at least two
people (one to move the obstacle and another to monitor the behavior of the robot and
stop it if necessary). The first option is currently the most used, but has the disadvantage
of conducting tests with a static opponent team, which never corresponds to reality.

Therefore, in an attempt to reach a viable and more practical solution to test and refine
behaviors that are dependent on the opponent dynamic behavior, a solution was thought:
in our AR scenario, we can rotate the camera in any direction, and know its exact position
and orientation (as long as the marker stays visible in the image), one can use the camera
as a pointer, which target is the point in the field intersected by the camera’s optical center
(Figure 5.10).

Figure 5.10: Intersection of the optical center line with the x-y plane as the target.

The objective is to use that intersection point to inject a virtual obstacle to the agents

list of obstacles. By maneuvering the camera, we keep updating the virtual obstacle posi-
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tion on the field, making it very easy for the user to simulate the behavior of an opponent
robot and test the behavior, both in a real CAMBADA robot and in a simulated environ-
ment, because the RtDB creates this level of abstraction. The information regarding the
virtual obstacle is stored in a shared item, which is broadcasted to the real robots by the
comm process or to the simulated agents by the simulator itself.

To achieve this, the Integrator module in the agent (responsible for integrating all the
information gathered from the various sensors and also the information shared by the
teammates) had to be changed. One of the tasks of the integrator is to merge all the
obstacles shared by the teammates and the ones seen by the robot itself into a single list
of obstacles. At this point, we introduced a fake obstacle in the list, in the position shared
by the AR application.

5.2.3 Results

As a proof of concept, the "hiro” pattern was printed in a A4 paper sheet and was used
as marker for the application. Although any webcam would work, Microsoft Kinect was
chosen, because it has decent resolution and is physically easy to manipulate with both

hands. The setup is represented in Figure 5.11.

4

Figure 5.11: The setup used to test the application.

The final result can be seen in Figure 5.12, where the five robots are represented in a
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Kick-off situation, and in the center of the image (the projection of the optical center), the
virtual obstacle is represented as a black cylinder. When the user moves the camera, the
virtual obstacle also moves on the field.

This type of interaction enables us to interact with the robots (whether they are real
robots or in a simulation environment) to test behaviors that are dependent on an oppo-
nent’s dynamism.

AR was introduced for the first time in the CAMBADA architecture. A new module and
application was developed to explore this area and conduct the first experiments, meeting
all the requirements set for both possible applications: the demonstration for audience in
the robotics venues and also a new way of interacting with the robots, by using a camera

as a pointer to the virtual world.

Figure 5.12: Final result of the AR application.

5.2.4 Future Work

The developed application is a good starting point to explore the AR world in the
CAMBADA environment and therefore was integrated into the repository to be used and
extended by all the team members. Although all the objectives for this application were
achieved, there are some possible improvements, which are presented in this section.

Using a paper sheet with just one marker printed in the center limits the camera

orientation range, because the marker needs to stay visible in the image to have an estimate
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on the camera position. To overcome this problem, a paper sheet filled with markers could
be used, which would not only extend the range of the camera freedom but also give a
better estimate on the camera pose in case there is more than one marker visible.

For each new frame, a camera pose is estimated and applied to VTK directly. Due to
noise in the acquisition, a small jitter can appear in the estimation and that can turn down
the AR experience. ARToolkit provides a method that uses the last frame detection in
order to improve stability that could be used. Adding a filter to the camera position and
orientation may also be a good improvement.

A little fine-tuning is needed to fully synchronize the two scenes (the captured frame
and the 3D virtual world), since there is still a little positional offset between them. Maybe
there are some parameters of the vtkCamera that can be explored to have them perfectly
matched.

Instead of having to look at the monitor to see the virtual world, it would be great to
use the camera as a pointer in the real field. This represents a big challenge, since there
is not much interest in having patterns inside the field, but some could be placed outside
the field, to serve as landmarks, and by attaching an IMU to the camera, its pose could
be tracked when there are no visible landmarks.

A bigger step would be to drop off ARToolkit and, using just OpenCV functions to
extract interest features, estimate the relative position of the camera on the real field. The
suggestion regarding the IMU also applies here.

An alternative to having a camera serving as the pointing device, is to have a camera
outside the field and a marker serving as the pointer. Again, having a sensor attached to
the marker would be beneficial.
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Chapter 6

Conclusion and Future Work

This main objective of this thesis was to improve the structure of the agent, from the
code organization to the actual software architecture, while streamlining the whole process
of developing, testing, debugging and refining agent behaviors. An introduction on Robotic
Agent Architectures was done and different solutions from other teams have been presented
and the weaknesses of the CAMBADA agent architecture were identified, namely lack of
history in Roles and Behaviors and high complexity of the Roles. Eliminating or

relaxing both problems was a requirement.

6.1 Conclusion

At the time this thesis started, the CAMBADA agent architecture was behavior-based,
with Finite State Machines with hand-coded conditions for decision and some real-time
adaptive dynamism. The base strategy was defined beforehand using calibration tools, but
minor adjustments were made in gameplay based on the opponent’s team attitude.

Based on the above-stated requirements, a new solution for the CAMBADA Agent
Architecture has been presented, with the introduction of new modules responsible for
producing a DriveVector (a new struct that holds the low-level information that is sent to
the platform). A unique DriveVector object currently exists and is completely orthogonal
to the various decision layers, in order to extend the flexibility of the architecture.

The Controllers have been introduced as the modules responsible for calculating the
desired robot velocities, based on a certain target(s), which may vary from Controller
to Controller. Four different controllers (CMove, CArc, CRotateAroundTheBall and
CRotate) have been implemented to be able to achieve different robot movements in dis-

tinct situations.
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Furthermore, the Behavior interface has been extended to include four additional meth-
ods: checkIC that returns the Invocation Condition, checkCC that returns the Commit-
ment Condition, gainControl and loseControl that are two callbacks that can be used
by the Behavior, for instance, to initialize variables and/or to free allocated memory when
needed.

As an alternative to FSM, the CAMBADA Arbitrator has been developed to select
and execute a certain Behavior from a list of options, based on their Invocation and
Commitment Conditions. The developed Arbitrator has the possibility of mixing the
ideas of Priority and Finish Plan First arbitrator types, since any Behavior can be
marked as non-interruptible when being assigned to the Arbitrator options list.

If previously, when using state machines, all the transitions between states had to
be hand-coded, now each behavior can ultimately be seen as a state, but the transition
conditions are now implicit in the IC and CC of each behavior.

Roles now have an Arbitrator by default, as well as a callback method that can be
implemented by the derived Roles to make decisions and/or update internal variables or
own worldstate information. In the constructor of the Role, a set of behaviors is added to
its Arbitrator queue.

Because the Roles and Behaviors are instantiated once in the loading phase of the
agent and the objects exist until the agent dies, the problem of losing history disappeared.
Now both types of modules can easily maintain history, which can me wisely used to
formulate new decisions.

Moreover, the developed structure makes it easier to develop new behaviors or to test
specific ones, by isolating that Behavior on the Arbitrator for fine-tuning. The new
Software Agent architecture is modular and flexible, leaving space to use other types of
controllers inside the Controllers other than the PID or other types of Arbitrators,
such as utility arbitrators, which could select the Behavior on the list with the highest
utility.

The complexity of Roles has been relaxed, resulting on 80% reduction of source lines
of code regarding the previous version. On the other hand, the number of Behaviors has
increased, as well as their respective lines of code. However, the behaviors are well-defined
and self-contained, and the Invocation and Commitment Conditions are directly associated
to the behaviors themselves, which makes them easier to tune.

The HeightMap class enabled the development of a series of useful cost maps for new
behaviors, namely the new dribble (BBallBodyProtect) and kicking (BKickToTheirGoal)
behaviors, as well as for selecting the ball reception position in free-play. The usage of

height maps has broken some deterministic behavior and has improved the overall perfor-
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mance of the robots in such a dynamic environment as the MSL provides.

Some new behaviors have been developed in order to comply with the new rules and
to keep the high competitiveness level of the team.

Regarding the new dribble behavior (BBallBodyProtect), a small increase on ball
possession in matches has been observed and, by visual inspection, there were much less
dispute situations. By avoiding these dispute situations, the CAMBADA team was able to
create more attempts for passes between teammates or kicks to the opponent goal, while
complying with the rules defined for 2014.

The 2014 MSL Rulebook also foments the passes between robots and therefore, the
reception and passing algorithms have been revised. The BReceiveBall has been changed
to optimize the reception behavior for the new platform, making use of the shared pass
line from the passer robot, but adjusting to overcome any inconsistency. Also, making
passes during gameplay is a true challenge in terms of coordination among robots, due to
the complete freedom the opponent team has to approach our Striker or cover a possible
receiver. There was a huge effort to improve the receiver intelligence, using a spacial
cost map to find the best reception position on the field. Some tests conducted on the
laboratory showed a 82.5% success rate for the passing (including some forward passes)
and reception behaviors.

With the developed work on the BKickToTheirGoal behavior, an efficiency improve-
ment of 14.6% has been observed regarding the accuracy on goal, resulting in more chances
of scoring goals, which is one of the most important objectives in soccer.

Additionally, a protective and defensive behavior (BStrikerContourObstacles) has
been developed for Robotica2014, having enhanced the defensive attitude of the team, by
blocking many of the opponent’s dribble attempts towards our goal, while foul plays.

Also in the context of this thesis, and in order to provide a solid base for the development
and testing of some of the above-stated modules and behaviors, two additional tools have
been developed.

A new 3D visualization for the Basestation was successfully developed and integrated
in the Basestation application. Additionally, more information is displayed to help in the
debugging process, namely the height maps, which would be very difficult to implement
using basic OpenGL functions. Moreover, it is now possible to represent and visualize the
ball in the 3D space, instead of just on the field plane.

Augmented Reality has been also introduced for the first time in the CAMBADA
software. A new module and application was developed to explore this area and conduct
the first experiments, meeting all the requirements set for both possible applications: the

demonstration for audience in the robotics venues and also a new way of interacting with

87



the robots, by using a camera as a pointer to the virtual world.
In conclusion, all the developed work has been included in the master source-code
branch and used in IranOpenl4 and Robotica2014 competitions, which helped the team

reach the finals and be awarded two honorable second places.

6.2 Future Work

Although positive results have been achieved, there is always margin for improvements
and in this section, a few suggestions are left for possible future work.

In the sequence of the work done on the new Software Agent Architecture, it might
be useful to separate the Invocation and Commitment conditions from the Behaviors.
Behaviors should hold the algorithms to perform tasks and when assigning a Behavior to
an Arbitrator, a Condition should also be linked to the Behavior. This way, the same
Behavior could be easily used with different conditions on distinct Roles.

In free-play passes, the Striker currently relies on the good positioning of the receiver,
performing a pass when they are almost facing each other. The receiver should also compute
the same angular cost map calculated by the Striker in order to try to position himself
in the direction where the Striker will be facing.

The work done on the BKickToTheirGoal to improve aiming with movement was based
on experimental data, but the influence of the linear y-velocity of the robot should also be
taken into account to calculate deviation angle from the robot’s front direction. It would
also be interesting to compare the results with a more analytical approach that computes
and uses the instantaneous linear velocity of the ball, instead of odometry data from the
robot.

A development tool for HeightMaps would also be useful. Currently, the agent code
needs to be changed, compiled and run to be able to see the HeightMap in the Basestation.
It could be interesting to have an application that could have a code editor and a visu-
alization (or simulator) side by side to help in the development of new HeightMaps from
scratch.

From the agent’s perspective, the HeightMap class could also be used for the rest of the
team positioning during gameplay, trying to block possible passes. Delaunay Triangulation
provides an easy way to change formation but used in combination with height maps could

lead to a very promising outcome.
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