
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

Chapter 2

A New Approximation Method for Constant Weight
Coding and Its Hardware Implementation

Jingwei Hu and Ray C.C. Cheung

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.75041

Abstract

In this chapter, a more memory-efficient method for encoding binary information into
words of prescribed length and weight is presented. The solutions in existing work include
complex float point arithmetic or extra memory overhead which make it demanding for
resource-constrained computing platform. The solution we propose here solves the prob-
lems above yet achieves better coding efficiency. We also correct a crucial error in previous
implementations of code-based cryptography by exploiting and tweaking the proposed
encoder. For the time being, the design presented in this work is the most compact one for
any code-based encryption schemes. We show, for instance, that our lightweight implemen-
tation of Niederreiter encrypting unit can encrypt approximately 1 million plaintexts per
second on a Xilinx Virtex-6 FPGA, requiring 183 slices and 18 memory blocks.

Keywords: code-based cryptography, McEliece/Niederreiter cryptosystem, constant
weight coding, FPGA implementation

1. Introduction

Most modern public-key cryptographic systems rely on either the integer factorization or

discrete logarithm problem, both of which expect to be solvable on large-scale quantum

computers using Shor’s algorithm [1]. The recent breakthroughs of powerful quantum com-

puting have shown their strength in computing solutions to the hard mathematical problems

mentioned [2, 3]. The cryptographic research community has identified the urgency of insecure

vulnerabilities rooted in these cryptosystems and begun to settle their security on alternative

hard problems in the last years, such as multivariate-quadratic, lattice-based, and code-based

cryptosystems [4]. In this chapter, we address the problem of encoding information into binary

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

words of predefined length and Hamming weight in resource-constrained computing envi-

ronment, e.g., reconfigurable hardware, embedded microcontroller systems, etc. This is of

interest, in particular, of efficient implementations of McEliece’s scheme [5, 6] or Niederreiter’s

scheme [7], the most prospective candidates for code-based cryptography.

In the case of Niederreiter/McEliece encryption, the binary stream of plaintext is requested to

be converted into the form of constant weight words. Constant weight means that there exists

a constant number of “1” in the binary plaintext. Note that in the hybrid Niederreiter encryp-

tion systems (KEM/DEM encryption) [8–10], KEMs are designed to exchange symmetric keys

securely, and DEMs use these symmetric keys for transmitting long messages. This class of

encryption techniques does not get constant weight coding involved. Nevertheless, if we want

to construct a complete code-based cryptography including standard public-key encryption,

digital signature, and hybrid encryption, constant weight coding must be efficiently

implemented as it is required by both public-key encryption [11, 12] and signature [13]. The

exact solution [14] of constant weight coding needs to compute large binomial coefficients and

has a quadratic complexity though it is assumed to be optimal as a source coding algorithm. In

[15], Sendrier proposed the first solution of linear complexity by incorporating Huffman codes.

Later, the author of [15] further improves its coding efficiency very close to 1 by means of

Goloumb’s run-length encoding [16]. The new proposal is particularly easy to implement on

hardware and has linear time complexity. The disadvantage though is that the length encoding

is variable [17]. He also proposed an approximation version in this paper by regulating the

value of d to the power of two. This approach significantly simplifies the encoding procedure

and thus improves coding throughput.

Heyse et al. [18, 19] continued the research and proposed to adapt the approximation method

in [17] to embedded system applications. Their design is implemented on AVR microcontrollers

and Xilinx FPGAs. However, we observe that such method is not applicable to large parameter

sets for the Niederreiter scheme (see Table 1) [20–22]. The work in [18, 19] preserves a lookup

table of pre-stored data with the space complexity of O nð Þ to encode input messages into

constant weight words. The memory overhead of this table is still intolerable for small embed-

ded systems, and therefore their design is unscalable if n is large. CFS signature scheme [20]

exploits very large Goppa code, and it requires to compress the lengthy constant weight signa-

tures into a binary stream. MDPC-McEliece/Niederreiter encryption [23] uses very large n for

practical security levels. For instance, n is set as large as 19,712 for 128-bit security and 65,536 for

256-bit security. Baldi et al. proposed a novel LDGM sparse syndrome signature scheme [13]

with compact key size, which also requests a large constant weight coding within the signature

generation. His methodwas successfully attacked in 2016 by a French research group [24]. At the

time being, we do not have a considerably lightweight yet efficient solution for the constant

weight encoding if we consider realizing such encoding in real-world applications.

The purpose of this work is to tweak Sendrier’s approximation method [17] and hence to make

it easy to implement for all possible secure parameters of the Niederreiter cryptosystem

proposed in literature while maintaining the efficiency. Our contributions include:

1. We propose a new approximation method of constant weight coding free from complicated

float point arithmetic and heavy memory footprint. This method permits us to implement a

compact yet fast constant weight encoder on the resource-constrained computing platform.

Recent Advances in Cryptography and Network Security6

2. We improve the coding efficiency by fine-tuning the optimal precision for computing the

value of d, in comparison with other approximation methods. The experiments have

shown that the performance of our new method is better than Heyse’s approximate

version [18] and even comparable to Sendrier’s original proposal [17].

3. We integrate our design with the Niederreiter encryption and obtain a more compact

result. We fix a critical security flaw of Heyse et al.’s Niederreiter encryptor [19]. Our

secure implementation of Niederreiter encryptor can encrypt approximately 1 million

plaintexts per second on a Xilinx Virtex-6 FPGA, requiring 183 slices and 18 memory

blocks.

This chapter is organized as follows. Sendrier’s proposal of constant weight coding and its

approximation variant [17, 18] is first revisited in Section 2. After analyzing the downside of

these schemes, we are motivated to propose a new approximation method and to fine-tune it for

an optimal source coding performance, presented in Section 3. Our detailed implementations

for the proposed constant weight encoder/decoder and Niederreiter encryption unit on FPGAs

are described in Section 4 and Section 5. We present our experimental results compared with the

state of arts in Section 6. Finally, Section 7 summarizes this chapter.

2. Sendrier’s methods for constant weight coding

Sendrier presented an algorithm for encoding binary information into words of prescribed

length and weight [17]. His encoding algorithm returns a t-tuple δ1; δ2;…; δtð Þ in which δi s are

the lengths of the longest strings of consecutive “0”s. This method is easy to implement and

has linear complexity with a small loss of information efficiency. In this work, we unfold the

n; tð Þ Security

level

Application Coding

system

Public/secret key size

(kbits)

Prestored data for CW coding

(kbits)

1024; 38ð Þ 60 bit Encryption Goppa code 239=151:4 4

2048; 27ð Þ 80 bit Encryption Goppa code 507=108:3 8

2690; 57ð Þ 128 bit Encryption Goppa code 913=182:4 10.5

6624; 117ð Þ 256 bit Encryption Goppa code 7488/2268.5 25.9

65536; 9ð Þ 80 bit Signature Goppa code 9000/1019 256

262144; 9ð Þ 80 bit Signature Goppa code 40,500/4525 1024

1048576; 8ð Þ 80 bit Signature Goppa code 160,000/20,025 4096

9800; 18ð Þ 80 bit Signature LDGM code 936/— 19.1

24960; 23ð Þ 120 bit Signature LDGM code 4560/— 58.4

46000; 29ð Þ 160 bit Signature LDGM code 13,480/— 117.2

19712; 134ð Þ 128 bit Encryption MDPC code 9.6/— 77

65536; 264ð Þ 256 bit Encryption MDPC code 32/— 256

Table 1. Parameters recommended used in the Niederreiter cryptosystem, referenced partly from [13, 19, 23, 25].

A New Approximation Method for Constant Weight Coding and Its Hardware Implementation
http://dx.doi.org/10.5772/intechopen.75041

7

recursive encoding and decoding algorithms originated from [17] and rewrite them in Algo-

rithm 1 and Algorithm 2 [26].

We use the same notations from [17, 26] in the above two algorithms to keep consistency. For

example, read B; ið Þ moves forward and reads i bits in the stream B and returns the integer

whose binary decomposition has been read, most significant bit first; Write B; ið Þ moves for-

ward and writes the binary string i into the stream B; and encodefd δindex; dð Þ returns a binary

string and decodefd d;Bð Þ returns an integer. These two functions are actually the run-length

encoding and decoding methods proposed by Golomb [16, 17]. best_d n; tð Þ returns an integer

such that 1 ≤ best_d n; tð Þ ≤n� t and Sendrier suggested to choose it close to the number

defined by Eq. (1). In fact, best_d n; tð Þ can take any value in the range though the efficiency

would be reduced if this value is too far from Eq. (1):

Recent Advances in Cryptography and Network Security8

d ¼ n�
t� 1

2

� �

1�
1

2
1
t

� �

(1)

Sendrier also presented an approximation of the best d where the values of d (given by Eq. (1))

was restricted to the power of two [17]. More precisely, d is first computed via Eq. (1) and then

round to 2 log 2 dð Þd e. This approximation greatly simplifies the functions of encodefd �ð Þ and

decodefd �ð Þ and therefore outperforms in speed, while the loss of coding efficiency is trivial.

The simplified versions of encoding and decoding with encodefd �ð Þ and decodefd �ð Þ after

approximation are described as follows [26]:

encodefd δ; dð Þ ¼ base2 δ; uð Þ (2)

decodefd d;Bð Þ ¼ read B; uð Þ (3)

where base2 δ; uð Þ denotes the u least significant bits of the integer δ written in base 2 and

u ¼ log 2 dð Þd e. For the above two equations, the minimum allowed value of d is noteworthy

in the case of d ¼ 1. In this case we have u ¼ 0, and therefore we define by purpose that

base2 δ; 0ð Þ ¼ null and read B; 0ð Þ ¼ 0 to guarantee that our algorithm applies to all possible u.

Recently, Heyse et al. implemented Niederreiter encryption scheme on embedded microcon-

trollers in which they used a lookup table to compute the value of d for constant weight

encoding [18]. Their method is based on the approximation method from [17]. One major

contribution of their work is they observe that the last few bits of n can be ignored for constant

weight encoding because these bits make little difference to the value of d. They do not keep

n � t entries but instead n entries; the least significant log 2td e bits of n are not considered and

are substituted by t. This method significantly reduces the size of the lookup table. According

to our analysis, the lookup table is shrunk to roughly O nð Þ. It works pretty well for small

parameters of n, for example, n ¼ 211 in the applications of Goppa code-based McEliece or

Niederreiter encryption schemes. However, we occasionally found that it does not work well

when we were implementing a Niederreiter signature scheme, called CFS signature. CFS

requires an extremely large value of n, typically n ¼ 218, n ¼ 220. On the one hand, the size of

lookup table increases linearly with n, resulting in somewhat unscalability. On the other hand,

the coding efficiency drops dramatically and thus lowers the throughput of the constant

weight encoder as n increases. All these downsides motivate us to figure out better ways of

computing d. We would describe and analyze our new methods in the next section.

3. Proposed approximation method of d

3.1. Reduce memory footprint and computational steps

The computation of the value of d is the most crucial step of constant weight encoding and

decoding, as suggested by Eq. (1) which involves floating-point arithmetic. However, many

embedded/hardware systems do not have dedicated floating-point units for such computations.

A New Approximation Method for Constant Weight Coding and Its Hardware Implementation
http://dx.doi.org/10.5772/intechopen.75041

9

[19] proposed to replace floating-point units by a lookup table with predefined data for

reconfigurable hardware. The problem of their method is that, for some large n; tð Þ, the lookup

table could be sizeable. For example, n ¼ 216; t ¼ 9
� �

requests the size of lookup table to be

256 kb, which is obviously not a negligible memory overhead for embedded systems.

To solve this problem, we propose to eliminate such lookup table by computing d directly

using fixed-point arithmetic. We separate the computation of d into two parts. In the first part,

θ t½ � ¼ 1� 1=2
1
t

� �

is precomputed and stored in the fixed-point format. In the second part,

n� t�1
2

� �

� θ is then efficiently calculated by a fixed-point multiplier. In this fashion we notably

shrink the size of lookup table from O nð Þ to O tð Þ [26].

Furthermore, we substitute n� t�1
2

� �

by n due to the following observations [26]:

• n≫ t such that n� t�1
2 ≈ n.

• Eventually d must be round to an integer, and hence the difference between n� t�1
2

� �

θ

and nθ is very likely to be ignored.

This substitution enables the removal of the computational steps of n� t� 1ð Þ=2, and hence a

faster and simpler realization of constant coding which makes use of a single integer multipli-

cation is achievable.

In summary, our new proposal of the approximation of d is as follows [26]:

d ¼ n � θ t½ �b c (4)

where θ t½ � ¼ 1� 1=2
1
t

� �

is a function of t and precomputed. Our new approximation of d is

lightweight, requiring only one multiplication. In the following, we will demonstrate that this

method also permits reasonable high-coding efficiency as a source coding algorithm.

3.2. Represent θ t½ � in fixed-point format

As aforementioned, θ t½ � is actually a vector of fractional numbers and should be stored in

fixed-point format. Note that the integer part of θ t½ � is always 0, and therefore we only need to

preserve its fractional part. Hereafter, we denote our fixed-point format as fixed_0_i, where i

indicates the bits we have used for storing the fractional part of θ t½ �.

In practice, we hope to use fixed_0_i with the smallest i while maintaining desirable coding

efficiency [26]. Smaller i means lower data storage and a simpler multiplication with smaller

operand size, which is particularly advisable for resource-constrained computing platforms.

Indeed, one of the key issues of this chapter is to determine the best fixed_0_i for θ t½ �. In the

next section, we describe our experiments on exploring the optimal fixed_0_i.

3.3. Find the optimal precision for constant weight encoding

The purpose of the precision tuning is to find the lowest precision that still maintains a

relatively high coding efficiency. A lower precision means we can use a multiplier of smaller

Recent Advances in Cryptography and Network Security10

operand size leading to better path delay and slice utilization. A higher coding efficiency

means one can encode more bits from the source into a constant weight word. This is of

interest, in particular, when someone encrypts a relatively large file using code-based crypto:

It takes much less time for encryption if we have a high coding efficiency close to 1 [26].

To find the optimal precision of fixed_0_i, we studied the relationship between distinct i’s and

their coding performance. In our experiments, all possible precision from fp_0_32 to fp_0_1 are

investigated to compare with the Sendrier’s methods [17] and Heyse’s approximate version [18].

Figure 1. The performance of different methods for choosing the optimal d. We have listed five most frequently used sets

of n; tð Þ for the Niederreiter cryptosystem. We have done three experiments for each n; tð Þ in which the input binary

message contains “1”with the probability p = 0.1, 0.5, and 0.9, respectively. The results of each experiment are obtained by

running 10,000 different messages. The X-axis lists different methods including Senderier’s primitive [17], Senderier’s

approximation [17], Heyse’s approximation [19], and our n*fixed_0_16 — N*fixed_0_2. The Y-axis represents the average

length (bits) of the input message read for a successful constant weight encoding.

A New Approximation Method for Constant Weight Coding and Its Hardware Implementation
http://dx.doi.org/10.5772/intechopen.75041

11

We measured the coding efficiency by calculating the average coding length for a successful

encoding because longer coding length indicates a better coding efficiency. Since constant

weight coding is variable length coding, we must consider how different plaintexts as input

could affect the performance in order to determine which approximation is the best. To be

thorough, different types of binary plaintexts, classified by the proportion of “1” contained,

should be tested for evaluating the real performance of different encoding approximation

methods. In our instances, we measure three particular types to simplify the model: “0”

dominated texts (p = 0.1, “1” exists with probability of 0.1 in the plaintext), balanced texts

(p = 0.5, “1” exists with probability of 0.5), and “1” dominated texts (p = 0.9, “1” exists with

probability of 0.9) (Figure 1).

Figure 2 describes the coding performances when we adjust the precision of θ t½ �. Taken as a

whole, the p = 0.1 group and the p = 0.5 group have a similar trend of average message length

encoded as the arithmetic precision decreases: The message length drops slightly from

n*fixed_0_16— n*fixed_0_2 in consistency. On the contrary, the p = 0.9 group appears to be quite

different where the numbers of bits read for a single constant weight coding first stay stable and

Figure 2. best_d module for CW encoder and decoder. We list here the detailed configurations of n ¼ 211, t ¼ 27 for

demonstrative purpose.

Recent Advances in Cryptography and Network Security12

then drop with the approximation precision decreasing. The numbers first keep stable because

the loss of precision in θ t½ � is comparatively trivial but if the precision drops too low, for instance,

with fixed_0_2 representation θ t½ � ¼ 0 for 2 ≤ t ≤ 38 and hence d ¼ 0. It leads to a constant n and

small value of i in Algorithm 3 forcing us to read more bits of input stream before the algorithm

halts. According to the evaluation criteria mentioned in the last paragraph, we compute the

average length of the three types of plaintexts and identify the best approximation of d from

our proposal after analyzing the statistics obtained. On the one hand, the n*fixed_0_5 group

outperforms at n ¼ 210; t ¼ 38
� �

and n ¼ 211; t ¼ 27
� �

. On the other hand, the n*fixed_0_4 group

beats the others at n ¼ 216; t ¼ 9
� �

, n ¼ 218; t ¼ 9
� �

, and n ¼ 220; t ¼ 8
� �

.

Table 2 compares our proposed methods with the Sendrier’s [17], Sendrier’s original approx-

imation using power of 2 [17], and Heyse’s table lookup approximation [18]. From this table, it

is seen that our proposal gains better coding efficiency than the original approximation and

Heyse’s approximation among all five parameter sets used for the Niederreiter scheme. Note

that the average number of bits we have to read before producing the constant weight words is

n t Method Number of bits read Coding efficiency Efficiency improved

Maximum Minimum Average

210 38 Sendrier’s [17] 236 164 214.70 93.19% —

Sendrier’s approx. [17] 263 124 210.45 91.32% �1.98%

Heyse’s approx. [19] 261 143 210.73 91.44% �1.85%

n*fixed_0_5 311 183 225.54 97.89% +5.05%

211 27 Sendrier’s [17] 208 160 194.46 95.51% —

Sendrier’s approx. [17] 227 119 187.55 92.11% �3.56%

Heyse’s approx. [19] 224 127 190.96 93.78% �1.80%

n*fixed_0_5 361 132 196.30 96.41% +0.95%

216 9 Sendrier’s [17] 133 113 124.87 99.50% —

Sendrier’s approx. [17] 133 77 117.80 93.84% �5.10%

Heyse’s approx. [19] 133 86 116.34 92.68% �6.83%

n*fixed_0_4 135 95 121.98 97.20% �2.37%

218 9 Sendrier’s [17] 148 132 142.61 99.38% —

Sendrier’s approx. [17] 151 91 135.17 94.18% �5.22%

Heyse’s approx. [19] 300 101 133.21 92.81% �6.60%

n*fixed_0_4 154 112 139.64 97.31% �2.08%

220 8 Sendrier’s [17] 149 135 144.00 99.52% —

Sendrier’s approx. [17] 151 99 136.94 94.64% �4.90%

Heyse’s approx. [19] 265 17 110.07 76.07% �23.56%

n*fixed_0_4 158 109 140.81 97.31% �2.22%

Table 2. The coding performance of the optimal d chosen from our approximation method.

A New Approximation Method for Constant Weight Coding and Its Hardware Implementation
http://dx.doi.org/10.5772/intechopen.75041

13

upper bound by log 2

n

t

� �

, and the thus the ratio of the average number read and the upper

bound measures the coding efficiency [17]. Additionally, our proposal even outperforms the

Sendrier’s method at two of these parameter sets— n ¼ 210; t ¼ 38
� �

and n ¼ 211; t ¼ 27
� �

with

5.05 and 0.95% of improvements, respectively. It is also worth mentioning that for

n ¼ 216; t ¼ 9
� �

, n ¼ 218; t ¼ 9
� �

, and n ¼ 220; t ¼ 8
� �

, the performance of our proposal falls

slightly behind with 2.37, 2.08, and 2.22% of loss when compared with the Sendrier’s method;

it nonetheless outruns Sendrier’s approximation and Heyse’s approximation. In particular, the

performance of Heyse’s approximation becomes unfavorable with 23.56% loss at

n ¼ 220; t ¼ 8
� �

, and we are pushing the limits of Heyse’s method here as the lower bits of n

are innegligible and cannot be removed with such large n.

4. Proposed constant weight encoder and decoder

4.1. best_d module

The best_d module is the most critical arithmetic unit which computes the best value of d

according to the inputs n and t. Our proposal of computation of best_d consists of three stages

which performs the following task in sequence:

1. Compute θ t½ � via a priority encoder. As discussed in Section 3, format fixed_0_5 is chosen

to represent θ t½ � for n ¼ 210; t ¼ 38
� �

and n ¼ 211; t ¼ 27
� �

, and fixed_0_4 is used for

Value of t θ t½ � ¼ 0:θ1θ2θ3θ4θ5ð Þ2
*

θ t½ � ¼ 0:θ1θ2θ3θ4ð Þ2
†

22 ≤ t ≤ 38 00000 N/A

11 ≤ t ≤ 21 00001

8 ≤ t ≤ 10 00010 0001

6 ≤ t ≤ 7 00011

t ¼ 5 00100 0010

t ¼ 4 00101

t ¼ 3 00110 0011

t ¼ 2 01001 0100

t ¼ 1 10,000 1000

*This θ t½ � is represented in fixed_0_5 form, e.g., θ t½ � ¼
P5

i¼1 θi � 2
�i. This format is used in n ¼ 210; t ¼ 38

� �

and

n ¼ 211; t ¼ 27
� �

.
†This θ t½ � is represented in fixed_0_4 form, e.g., θ t½ � ¼

P4
i¼1 θi � 2

�i. This format is used in n ¼ 216; t ¼ 9
� �

, n ¼ 218; t ¼ 9
� �

,

and n ¼ 220; t ¼ 8
� �

.

Table 3. Encoding of θ t½ �.

Recent Advances in Cryptography and Network Security14

n ¼ 216; t ¼ 9
� �

, n ¼ 218, t ¼ 9, and n ¼ 220, t ¼ 8. We notice via analysis that for some t, the

values of θ t½ � are identical. For instance, θ 6½ � ¼ θ 7½ � ¼ 0:00011ð Þ2 ¼ 0:09375 in fixed_0_5

format, shown in Table 3. This observation inspires us to exploit priority encoder to

streamline the encoding of θ t½ �.

2. Compute n � θ t½ � via a fixed-point multiplier. Xilinx LogiCORE IP is configured to imple-

ment high-performance, optimized multipliers for different pairs of n and t. The fractional

part of the multiplication result is truncated, but its integer part is preserved for the next

stage to process.

3. Output the value of d and u. Recall that the value of n � θ t½ � must be round to d ¼ 2u.

Another priority encoder is utilized to decode the integer part of n � θ t½ �. The detailed

decoding process is structured as lookup table mapping illustrated in Table 4.

Integer part of n � θ t½ � Value of d Value of u

nθ t½ � > 218 219 19

217 < nθ t½ � ≤ 218 218 18

216 < nθ t½ � ≤ 217 217 17

215 < nθ t½ � ≤ 216 216 16

214 < nθ t½ � ≤ 215 215 15

213 < nθ t½ � ≤ 214 214 14

212 < nθ t½ � ≤ 213 213 13

211 < nθ t½ � ≤ 212 212 12

210 < nθ t½ � ≤ 211 211 11

29 < nθ t½ � ≤ 210 210 10

28 < nθ t½ � ≤ 29 29 9

27 < nθ t½ � ≤ 28 28 8

26 < nθ t½ � ≤ 27 27 7

25 < nθ t½ � ≤ 26 26 6

24 < nθ t½ � ≤ 25 25 5

23 < nθ t½ � ≤ 24 24 4

22 < nθ t½ � ≤ 23 23 3

2 < nθ t½ � ≤ 22 22 2

1 < nθ t½ � ≤ 2 2 1

nθ t½ � ≤ 1 1 0

Table 4. Decoding of n � θ t½ �.

A New Approximation Method for Constant Weight Coding and Its Hardware Implementation
http://dx.doi.org/10.5772/intechopen.75041

15

Figure 2 depicts our best_d unit. This unit works in three-stage pipelines. It first computes θ t½ �

and then obtains n � θ t½ � using a multiplier. Finally, the value of d would be determined by a

priority decoder.

4.2. Bin2CWencoder

Figure 3 overviews the architecture of the proposed constant weight encoder. Input binary

message is passed inward the encoder by means of nonsymmetric 8-to-1 FIFO-read which

exactly imitates the function of read B; 1ð Þ. A serial-in-parallel-out shift register is instantiated

to perform read B; uð Þ, 0 ≤u ≤ log 2
n
2

� �� 	

. The proposed best_d module is exploited here to

calculate the value of d. The values of n, t, and δ are accordingly refreshed using three separate

registers.

4.3. CW2Bin decoder

Figure 4 renders the architecture of the proposed constant weight decoder. A symmetric m-to-

m bit FIFO is used to read the input t-tuple word by word. This logic is indeed the bottleneck

of the constant weight decoder when compared with the encoder. Three registers are utilized

to update the values of n and t as the Bin2CW encoder does, δ. The major difference is that the

shift register here outputs the value of δ bit by bit as step 9 of Algorithm 2 demands.

Figure 3. General architecture of CW encoder.

Recent Advances in Cryptography and Network Security16

5. Integrating with the Niederreiter encryptor

In this section, we demonstrate that the proposed Bin2CW encoder can integrate into the

Niederreiter encryptor for data encryption, shown in Algorithm 3.

Algorithm 3. Niederreiter Message Encryption, referenced from [25]

Input: message vector m, public key pk ¼{bH ,t} where bH is an n by mt matrix

Output: ciphertext c

1 Bob encodes the message m as a binary matrix/vector of length n and weight at most t.

2 Bob computes the ciphertext as c ¼ bHmT ; mT is the transpose of matrix m.

3 return c.

The Bin2CWencoder performs the first step in Algorithm 3. Note that Bin2CWencoder returns

a t-tuple of integers δ1;…; δtð Þ, which represents the distance between consecutive “1”s in the

Figure 4. General architecture of CWdecoder.

A New Approximation Method for Constant Weight Coding and Its Hardware Implementation
http://dx.doi.org/10.5772/intechopen.75041

17

string. Nevertheless such t-tuple cannot be directly transported to compute the ciphertext. We

believe that the way Heyse et al. [19] encrypts c ¼ bHmT with m ¼ δ1;…; δtð Þ is incorrect due to

two reasons [26]:

1. It is very likely that δi ¼ δj where i 6¼ j such that the number of errors is less than t, and it is

assumed to be insecure for cryptanalysis.

2. δ1;…; δtð Þ returns the integer ranging from 0 to n� t, but the constant weight word exactly

ranges from 0 to n. In other terms, the last t rows of the public key bH
T
are never used.

To correct this weakness from [19], we propose to generate the “real” constant weight binary

words of length n and Hamming weight t. Assume the constant weight is represented by

i1;…; itð Þ, the coordinates of the “1”s in ascending order, then i1 ¼ δ1, i2 ¼ δ2 þ i1 þ 1, …, and

it ¼ δt þ it�1 þ 1 are computed as the input of the second step, Algorithm 3.

Figure 5 illustrates our revision of Niederreiter encryption unit on the basis of [19]. The public

key bH
T
is stored in an internal BRAM and row-wise addressed by the 11-bit register. Two 11-

bit integer adders are instantiated to transform δ1;…; δtð Þ to i1;…; itð Þ which are eventually

stored in the 11-bit register. The vector–matrix multiplication in step 2, Algorithm 3, is equiv-

alent to XOR operation of the selected rows of bH
T
, which can be implemented as a GF 2297

� �

adder in this figure. It is also worth noting that the vector–matrix multiplication works con-

currently with the CW encoding: Whenever a valid ik has been computed, it is transferred

immediately to the GF 2297
� �

adder for summing up the selected row. Once the last it has been

Figure 5. Block diagram of the Niederreiter encryptor.

Recent Advances in Cryptography and Network Security18

computed, the last indexed row of bH
T

also has been accumulated to the sum. This sum, stored

in the 297-bit register, is now available to be interpreted as the ciphertext.

Our final remark is for the side channel attacks of code-based crypto using constant weight

encoding (CWE). Admittedly, we cannot give a satisfying answer of them at the time being. We

believe this is an open problem left to be solved. For the time being, if the users decide not to

take the risk of timing attacks, we suggest forcing the CWE to be constant time. We can set the

maximum time (it happens when we have all-zero input) for whatever the input is. Neverthe-

less, the price is a significant drop of timing performance.

We give here our analysis of timing attacks: The attackers can compromise the CWE if and

only if he could analyze the timing differences among different inputs and use this informa-

tion to recover the entire message. Unfortunately, the timing character of the operation of

reading “1” or “0” is different: when reading “1,” it consumes only 1 clock cycle count,

whereas when reading “1,” it continues to read log 2 dð Þd e more bits from B, consuming

1þ log 2 dð Þd e counts. These behaviors appear at first sight to be vulnerable to timing attacks:

For different inputs, the execution time is slightly different, and the distinction between

reading “0” and reading “1” is also significant. However, statistical approaches as [27, 28]

have introduced against RSA cryptosystems which seem to be not helpful: To our way of

thinking, the situation we encounter is much more difficult. (1) We need to recover this

particular message under attack, but the timing differences among different messages that

we collect do not leak any useful information on the targeted message. On the contrary, in

RSA we can use a large number of messages and compare the timing for recovering the

secret key in a bit-by-bit fashion. (2) Note that d is changing each iteration according to the

current state of n and t. That is to say, when reading “1,” the timing is variable, sensitive to

how “1” and “0” are permuted in the message and thus difficult to predict. Most impor-

tantly, even if CWE is somehow compromised, it does not reveal any information about

secret keys. In the case of decryption, the ciphertext is first decrypted by an error correcting

decoder (typically, Goppa-code or MDPC-code decoder) which holds the secret key. The

result after error correcting is a GF 2nð Þ vector, and then this vector is encoded by CWE for

the plaintext recovered. We can see the key points here: Timing attacks should be mounted

on error correcting decoders rather than constant weight decoders for retrieving the secret

keys. Perhaps a better strategy is to mount timing attacks on CWE for recovering the

plaintext directly. This raises one more question: how do we distinguish or measure the

peculiar timing of CWE out of the total execution time, given that error correcting decoders

also take nonconstant time for decoding? This is indeed a very exciting topic for which we

would investigate in our future work.

6. Results and comparisons

We captured our constant weight coding architecture in the Verilog language and prototyped

our design on Xilinx Virtex-6 FPGA (Table 5). The reason why we did our experiments on

Xilinx Virtex-6 is principally about a convention. Recent progress in FPGA implementations of

A New Approximation Method for Constant Weight Coding and Its Hardware Implementation
http://dx.doi.org/10.5772/intechopen.75041

19

Algorithm Platform Area

[slices]

Memory blocks

[36 + 18 kb RAM]

Frequency

[MHz]

Throughout

[Mbps]

Coding

efficiency

(a) n = 210, t = 38

This work Bin2CW, new

approx.

Xilinx

xc6vlx240t

74 0 + 1 330 160.2 97.89%

CW2Bin, new

approx.

79 0 + 1 330 148.1

Heyse

et al. [19]

Bin2CW,

Heyse’s approx.

Xilinx

xc6vlx240t

110 0 + 1 310 178.8 91.44%

CW2Bin,

Heyse’s approx.

88 0 + 1 310 162.1

(b) n = 211, t = 27

This work Bin2CW, new

approx.

Xilinx

xc6vlx240t

91 0 + 1 350 187.2 96.41%

CW2Bin, new

approx.

95 0 + 1 340 168.6

Heyse

et al. [19]

Bin2CW,

Heyse’s approx.

Xilinx

xc6vlx240t

118 0 + 1 340 208.4 93.78%

CW2Bin,

Heyse’s approx.

110 0 + 1 340 164.6

Sendrier

[17]*
Bin2CW,

original

Intel

Pentium 4

— — 2400 17.3 95.51%

Bin2CW,

approximate

33.0 92.11%

(c) n = 216, t = 9

This work Bin2CW, new

approx.

Xilinx

xc6vlx240t

103 0 + 1 440 316.1 97.20%

CW2Bin, new

approx.

109 0 + 1 310 212.9

Heyse

et al. [19]

Bin2CW,

Heyse’s approx.

Xilinx

xc6vlx240t

90 10 + 3 240 182.3 92.68%

CW2Bin,

Heyse’s approx.

90 10 + 3 230 170.3

Sendrier

[17]

Bin2CW,

original

Intel

Pentium 4

— — 2400 18.3 99.50%

Bin2CW,

approximate

22.0 93.84%

(d) n = 218, t = 9

This work Bin2CW, new

approx.

Xilinx

xc6vlx240t

138 0 + 1 410 295.5 97.31%

CW2Bin, new

approx.

118 0 + 1 320 219.5

Heyse

et al. [19]

Bin2CW,

Heyse’s approx.

Xilinx

xc6vlx240t

94 40 + 3 170 106.0 92.81%

CW2Bin,

Heyse’s approx.

93 40 + 3 180 104.9

Recent Advances in Cryptography and Network Security20

code-based cryptography accept Virtex-6 or even lower ends for implementation aspects [19,

29–32]. The benefit of using Virtex-6 from our standpoint is that we could fairly compare our

design with others given that most of them are also implemented on Virtex-6. To the best of

our knowledge, the only compact implementations of constant weight coding have been

proposed by Heyse et al. [19]. Their lightweight architecture is generally identical to ours

except the design of best_d module. Their best_d module works in two pipeline stages: In the

first stage, it retrieves the value of u by table lookup. Then in the second stage, it outputs d

according to the value of u using a simple decoder. Comparatively, our best_d module has

three stages of the pipeline, and thus it leads to a lower throughput, but our architectures are

smaller and improve the area-time tradeoff of the constant weight coding implementations

proposed by Heyse et al. [19], shown in Table 5. In particular, we use only one 18 kb memory

block for all parameter sets of our experiments.

We also observe that in our designs, the memory footprint does not increase, and the high clock

frequency also maintains as the parameters grow. This is because the main difference among

encoders or decoders with distinct parameters n and t is the data width of multiplier embedded in

the best_d module, which increases logarithmically from 10bit� 5bit to 20bit� 4bit. On the other

hand, the memory overhead of Heyse’s implementations grows linearly with n and might intro-

duce problems when n is large as aforementioned. To verify this argument, we re-implemented

Heyse’s work for n ¼ 216; t ¼ 9
� �

, n ¼ 218; t ¼ 9
� �

, and n ¼ 220; t ¼ 8
� �

. The experimental results

validate this point. Additionally, another negative side effect of heavy memory overhead is that

the working frequency of circuits drops rapidly as shown in Table 6. For small parameters (a) and

(b), the lookup table in Heyse’s design could be made of distributed memory (LUT) and therefore

has little impact on frequency. However, for large parameters (c), (d), and (e), such lookup table

can no longer be instantiated as LUTs because Xilinx Virtex-6 distributed memory generator only

allows maximum data depth of 6,5536. We instead use block memory resource of the FPGAs to

construct the table, and this accordingly hinders speed performance due to relatively far and

complicated routing. The usage of block memory is the real bottleneck of Heyse’s work as n

grows.

Algorithm Platform Area

[slices]

Memory blocks

[36 + 18 kb RAM]

Frequency

[MHz]

Throughout

[Mbps]

Coding

efficiency

(e) n = 220, t = 8

This work Bin2CW, new

approx.

Xilinx

xc6vlx240t

156 0 + 1 370 284.9 97.31%

CW2Bin, new

approx.

122 0 + 1 300 222.7

Heyse

et al. [19]

Bin2CW,

Heyse’s approx.

Xilinx

xc6vlx240t

124 160 + 3 130 96.6 76.07%

CW2Bin,

Heyse’s approx.

125 160 + 3 130 98.8

*Sendrier implemented a different but very close parameter set n = 211, t = 30. We also put it here for reference.

Table 5. Compact implementations of CW encoder and decoder on Xilinx Virtex-6 FPGA.

A New Approximation Method for Constant Weight Coding and Its Hardware Implementation
http://dx.doi.org/10.5772/intechopen.75041

21

We finally implemented the Niederreiter encryptor, a cryptographic application where con-

stant weight coding is used exactly as described in Section 5. Table 6 compares our work with

the state of art [19, 26]. It is seen that our new implementation is the most compact, with better

area-time tradeoffs. The same amount of block memory is occupied in our design as [19] did

where 16� 36kb + 1� 18kb RAMs are utilized to save the public-key matrix bH and one 18 kb

RAM for the 8-to-1 FIFO within the constant weight encoder.

7. Conclusion

A new approach for determining the optimal value d in constant weight coding is proposed in

this chapter. This method innovates a more compact yet efficient architecture for constant

weight encoder and decoder in resource-constrained computing systems. Afterward, we

exploited this new encoder to implement the Niederreiter encryptor on a Xilinx device. Exper-

iments show that our work competes for the state of art and works better in terms of both

RAM usage and processing throughput for large parameters.

Author details

Jingwei Hu* and Ray C.C. Cheung

*Address all correspondence to: jw.hu@cityu.edu.hk

Department of Electronic Engineering, City University of Hong Kong, Hong Kong

References

[1] Shor PW. Polynomial-time algorithms for prime factorization and discrete logarithms on

a quantum computer. SIAM Journal on Computing. 1997;26(5):1484-1509

Aspect (Virtex6-VLX240) Niederreiter [12] This work

Slices 315 183

LUTs 926 505

FFs 875 498

BRAMs 17 18*

Frequency 300 MHz 340 MHz

CWencode e = Bin2CW(m) ≈200 cycles 349.1 cycles

Encrypt c ¼ e � bH ≈200 cycles 352.1 cycles

*We used 16�36kb RAMs and 2�16kb RAMs.

Table 6. FPGA implementation results of Niederreiter encryption with n ¼ 2048, t ¼ 27 compared with [19] after PAR.

Recent Advances in Cryptography and Network Security22

[2] Vandersypen LM, Steffen M, Breyta G, Yannoni CS, Sherwood MH, Chuang IL. Experi-

mental realization of Shor’s quantum factoring algorithm using nuclear magnetic reso-

nance. Nature. 2001;414(6866):883-887

[3] Xu N, Zhu J, Lu D, Zhou X, Peng X, Du J. Quantum factorization of 143 on a dipolar-

coupling nmr system. arXiv preprint arXiv:1111.3726; 2011

[4] Bernstein DJ. Introduction to post-quantum cryptography. In: Post-Quantum Cryptogra-

phy. Berlin: Springer; 2009. pp. 1-14

[5] McEliece RJ. A public-key cryptosystem based on algebraic coding theory. DSN Progress

Report. 1978;42(44):114-116

[6] Sendrier N. Code-based public-key cryptography. In: Post-Quantum Cryptography Sum-

mer School. 2014

[7] Niederreiter H. Knapsack-type cryptosystems and algebraic coding theory. Problems Of

Control and Information Theory-Problemy Upravleniya I Thorii Informatsii. 1986;15(2):

159-166

[8] Persichetti E. Secure and anonymous hybrid encryption from coding theory. In: Interna-

tional Workshop on Post-Quantum Cryptography. Springer; 2013. pp. 174-187

[9] von Maurich I, Heberle L, Güneysu T. Ind-cca secure hybrid encryption from qc-mdpc

niederreiter. In: International Workshop on Post-Quantum Cryptography; Springer; 2016.

pp. 1-17

[10] Chou T. Qcbits: Fast constant-time code-based cryptography. In: Cryptographic Hard-

ware and Embedded Systems-CHES 2016; Springer. 2016. pp. 250-272

[11] Biswas B, Sendrier N. Mceliece cryptosystem implementation: Theory and practice. In:

International Workshop on Post-Quantum Cryptography; Springer; 2008. pp. 47-62

[12] Overbeck R, Sendrier N. Code-based cryptography. In: Post-Quantum Cryptography.

Springer; 2009. pp. 95-145

[13] Baldi M, Bianchi M, Chiaraluce F, Rosenthal J, Schipani D. Using ldgm codes and sparse

syndromes to achieve digital signatures. Post-quantum cryptography. Springer. 2013:1-15

[14] Cover TM. Enumerative source encoding. Information Theory, IEEE Transactions on.

1973;19(1):73-77

[15] Sendrier N. Efficient generation of binary words of given weight. Cryptography and

Coding. Springer. 1995:184-187

[16] Goloumb G. Run length encoding. Information Theory, IEEE Transactions on. 1966;12:

399-401

[17] Sendrier N. Encoding information into constant weight words. In: Information Theory,

2005. ISIT 2005. Proceedings. International Symposium on. IEEE. 2005. pp. 435-438

[18] Heyse S. Low-reiter: Niederreiter encryption scheme for embedded microcontrollers. In:

Post-Quantum Cryptography; Springer; 2010. pp. 165-181

A New Approximation Method for Constant Weight Coding and Its Hardware Implementation
http://dx.doi.org/10.5772/intechopen.75041

23

[19] Heyse S, Güneysu T. Towards one cycle per bit asymmetric encryption: Code-based

cryptography on reconfigurable hardware. In: Cryptographic Hardware and Embedded

Systems–CHES 2012; Springer; 2012. pp. 340-355

[20] Courtois NT, Finiasz M, Sendrier N. How to achieve a Mceliece-based digital signature

scheme. In: Advances in Cryptology-ASIACRYPT 2001; Springer; 2001. pp. 157-174

[21] Landais G, Sendrier N. CFS software implementation. IACR Cryptology ePrint Archive.

2012;2012:132

[22] Finiasz M. Parallel-CFS. In: Selected Areas in Cryptography. Berlin: Springer; 2011. pp.

159-170

[23] Misoczki R, Tillich J-P, Sendrier N, Barreto PS. Mdpc-mceliece: New mceliece variants

from moderate density parity check codes. In: 2013 IEEE International Symposium on

Information Theory Proceedings (ISIT); IEEE. 2013. pp. 2069-2073

[24] Phesso A, Tillich J-P. An efficient attack on a code-based signature scheme. In: Interna-

tional Workshop on Post-Quantum Cryptography; Springer; 2016. pp. 86-103

[25] Hu J, Cheung RC. An application specific instruction set processor (ASIP) for the

Niederreiter cryptosystem. Cryptology ePrint Archive. Report 2015/1172; 2015. http://

eprint.iacr.org/2015/1172.pdf

[26] Hu J, Cheung RC, Güneysu T. Compact constant weight coding engines for the code-

based cryptography. IEEE Transactions on Circuits and Systems II: Express Briefs. 2017;

64(9):1092-1096

[27] Kocher PC. Timing attacks on implementations of diffie-hellman, rsa, dss, and other

systems. Annual International Cryptology Conference. Springer. 1996:104-113

[28] Dhem J-F, Koeune F, Leroux P-A, Mestré P, Quisquater J-J, Willems J-L. A practical

implementation of the timing attack. In: International Conference on Smart Card

Research and Advanced Applications; Springer; 1998. pp. 167-182

[29] Heyse S, Von Maurich I, Güneysu T. Smaller keys for code-based cryptography: QC-

MDPC Mceliece implementations on embedded devices. In: Cryptographic Hardware

and Embedded Systems–CHES 2013; Springer; 2013. pp. 273-292

[30] Beuchat J-L, Sendrier N, Tisserand A, Villard G. FPGA Implementation of a Recently

Published Signature Scheme. France Doctoral dissertation, INRIA; 2004

[31] Chen C, Eisenbarth T, Von Maurich I, Steinwandt R. Differential power analysis of a

mceliece cryptosystem. In: International Conference on Applied Cryptography and Net-

work Security. Springer; 2015. pp. 538-556

[32] von Maurich I, Güneysu T. Lightweight code-based cryptography: QC-MDPC McEliece

encryption on reconfigurable devices. In: Proceedings of the Conference on Design, Auto-

mation & Test in Europe. European Design and Automation Association; 2014. p. 38

Recent Advances in Cryptography and Network Security24

