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Resumo Vivemos num mundo tecnológico, onde assistimos a uma evolução

progressiva dos dispositivos e de comunicação digitais. Hoje em dia,

os smart-phones e smart TV vieram substituir o telemóvel e a tele-

visão, respetivamente. A internet está cada vez mais rápida, com mais

serviços e aplicações, tornando-se num bem essencial e indispensável a

nível mundial. Com uma constante interatividade entre utilizadores, as

redes sociais são uma das grandes fontes de comunicação, dando-se,

por vezes, prioridade à comunicação através do tão conhecido Face-

book à comunicação pessoal. Estamos perante uma convergência e

avanços tecnológicos, um mundo cada vez mais inter-relacionado e

complexo. Devido a esta permanente necessidade de comunicação e

ligação, as redes veiculares estão a atrair um interesse signi�cativo.
As redes veiculares têm sido desenvolvidas, não só para melhorar o

tráfego rodoviário, mas também para proporcionar interligação e en-

tretenimento aos seus utilizadores. A comunicação entre os veículos

e o acesso à internet por parte dos passageiros têm sido o principal

objetivo na evolução e investigação destas redes.
Todavia, na evolução destas redes, permanecem inúmeros desa�os.

A grande mobilidade dos veículos durante o seu trajeto tem como

consequência a necessidade de uma in�nidade de handovers. Face a

isto, é necessário um protocolo de mobilidade apropriado de forma a

evitar a perda de ligação. Este protocolo deverá ser capaz de fornecer

mobilidade, não só ao veículo, mas também aos seus passageiros.
O objetivo desta dissertação de mestrado centra-se no estudo do pro-

tocolo de mobilidade já existente da Cisco Systems, The Locator/ID

Separation Protocol (LISP), e da sua extensão LISP-MN da organiza-

ção LISPmob, de maneira a veri�car a possibilidade de o adaptar para

redes veiculares.



Através do router virtual da Cisco CSR 1000v, criou-se e con�gurou-se

num ambiente privado um servidor capaz de armazenar e monitorizar

todos os veículos bem como os seus passageiros. Cada veículo, repre-

sentado por um identi�cador, regista-se no servidor indicando a sua lo-

calização no momento, sendo esta sempre atualizada quando o veículo

muda de rede e já não estiver ao alcance da anterior. Assim, o servi-

dor é a parte central na comunicação entre veículos funcionando como

um mapa contendo todas as localizações associadas a cada veículo e

fornecendo assim, sempre que requisitada, a localização necessária de

um veículo a outro, permitindo a criação de um túnel entre eles e con-

sequente estabelecimento de ligação. Para proporcionar um handover

mais rápido entre estações �xas e móveis foram feitas alterações a

nível de software do LISP-MN. Alterou-se a implementação LISP-MN

de maneira a garantir mobilidade para veículos, ou seja, para handovers

com rápidas transições, visto que na implementação da LISPmob só

é garantida mobilidade para handovers lentos, tornando assim impos-

sível o handover entre veículos e à consequente inutilização da tec-

nologia WAVE, criada especialmente para tal. Alterou-se também a

forma de processamento na atualização das caches dos nós móveis que

estão em comunicação, de maneira que, na ocorrência de handover,

as atualizações das cache fossem permitidas, não só na receção de

um novo endereço, como também na receção de uma nova gateway,

evitando assim possíveis problemas de falhas de mensagens de con-

trolo do protocolo essenciais para o estabelecimento de comunicação

e transmissão de dados entre veículos. Posteriormente, criou-se um

Connection Manager capaz de gerir o handover de forma automática

independente da ligação de acesso bem como da versão do protocolo

de internet utilizada, permitindo assim a ligação por parte dos veículos

e seus passageiros à rede com melhor sinal. Assim, através do mecan-

ismo de mobilidade referido garantiu-se a mobilidade entre veículos e

respetivos passageiros.



Os testes efetuados em laboratório e na estrada incidiram sobre as tec-

nologias de acesso IEEE 802.11p (WAVE), uma tecnologia desenvolvida

especialmente para as redes veiculares, e o IEEE 802.11g (WI-FI), uma

das tecnologias mais utilizadas atualmente. Veri�cou-se através dos

resultados obtidos que os tempos de handover através da tecnolo-

gia WAVE eram signi�cativamente inferiores aos da tecnologia WI-FI,

inferindo assim que a tecnologia de acesso IEEE 802.11p é a mais

apropriada para as redes veiculares.

Os resultados de handovers realizados em vários cenários de laboratório

e estrada mostram que os mecanismos desenvolvidos permitem fornecer

mobilidade transparente dos veículos e seus passageiros.





Abstract We live in a technological world, where we witnessed a progressive

evolution of devices and digital communication. Nowadays, the smart-

phones and smart TV have replaced the phone and television, respec-

tively. The internet is getting faster, with more services and appli-

cations, making it very essential and indispensable worldwide. With

a constant interactivity between users, social networks are a major

source of communication, giving up sometimes priority to communica-

tion through the well-known "Facebook", instead of personal commu-

nication. We are facing a convergence and technological advances, an

increasingly complex and interrelated world. Due to this constant need

for communication and connection, vehicular networks are attracting

signi�cant interest.

Vehicular networks have been developed, not only to improve road

tra�c, as well as interconnection and to provide entertainment to their

users. The communication between vehicles and internet access by pas-

sengers have been the main goal in the development and investigation

of these networks.
However, in the evolution of these networks, many challenges remain.

The high mobility of vehicles during their commute entails the need

of a plethora of handovers. Mobility protocol suitable to prevent the

connection loss is required. This protocol should be able to provide

mobility, not only to the vehicles, but also to the passengers.

The purpose of this dissertation focuses on the study of existing mobil-

ity protocol from Cisco Systems, the Locator/ID Separation Protocol

(LISP), and its extension LISP-MN from LISPmob organization, in or-

der to verify the possibility to adapt to vehicular networks.



Through the virtual router from Cisco CSR 1000v, it was created and

con�gured in a private environment a server capable to store and mon-

itor all vehicles and their passengers. Each vehicle, represented by an

identi�er, is recorded on the server indicating its location on the time,

and it is always updated when the vehicle changes the network and it

is no longer reachable through the other. Thus, the server is the cen-

tral part in the communication between vehicles functioning as a map

containing all locations associated at each vehicle and thus providing,

when required, the necessary location of a vehicle to another, allowing

the creation of a tunnel between them and consequent establishment

of connection. To provide faster handover between �xed and mobile

stations, changes were made to the software of LISP-MN. LISP-MN

implementation has changed in order to ensure vehicular mobility, with

fast handover transitions, which with LISPmob is not guaranteed, it

just only ensures mobility in slow handovers case. Thus, it makes

impossible handovers between the vehicle and the consequent use of

WAVE technology, specially created for these networks. It was also

changed the way to update the caches of mobile nodes that are in

communication, so that when the handover occurs, cache updates are

allowed not only on the reception of a new address, but also on the

reception of a new gateway, thereby avoiding potential problems on

control messages of the protocol essential to establish the communi-

cation and further data transmission between vehicles. Subsequently,

a Connection Manager was created capable to manage the handover

automatically independently of the access network and of the Internet

protocol version used, thus allowing the connection of the vehicle and

its passengers to the network with best signal. Given those facts it was

guaranteed the mobility of vehicles and their respective passengers.

The tests performed in the laboratory and on the road were focused on

the access technology IEEE 802.11p (WAVE), a technology developed

especially for vehicular networks, and IEEE 802.11g (WI-FI), one of the

most used technologies today. It was veri�ed by the results obtained,

that handover times through the WAVE technology were signi�cantly

lower than those of WI-FI technology, and thus inferring that the access

technology IEEE 802.11p is the most suitable for vehicular networks.



The results of handover performed in various lab and road scenarios

show that the developed mechanisms provide transparent mobility of

vehicles and their passengers.
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Chapter 1

Introduction

1.1 Motivation

In a technological world, connection is the watchword. Information technology and

communication de�nitely has entered in our lives. We are increasingly dependent on them,

in the private context as well as in the workplace.

There is a constant need to always be connected which has made the technology to

develop in a fast pace. Mobile phones have become an integral part of our daily lives, now

commonly used for data rather than voice. The internet has become a necessity, increas-

ingly faster with more services and capacity; WI-FI hotspots have been spread around the

world, allowing user connections to the internet, although some limitations remain such as

the lack of handovers capabilities, short range and the time lost in authentication. On the

other hand, we had a strong evolution on cellular networks and technologies.

People need to be connected and the vehicles are not exempt from this trend. The op-

portunity to be connected to the Internet during a journey would be great for all passengers

being able to access to their work tools, such as e-mail and entertainment contents sharing

their experiences instantaneously. Vehicular networks can also be an important approach

in order to improve the quality for all drivers and pedestrians, such as safety warnings and

tra�c information. It is often believed that acting as a network could avoid accidents and

tra�c congestions, than if each vehicle tries to solve these problems individually.

A Vehicular Ad-hoc Network (VANET) turns every participating car into a wireless

router or node, allowing cars to connect, creating a network with a wide range. As cars

fall out of the signal range and drop out of the network, other cars can join in, connecting

vehicles to one another so that a mobile Internet is created. The concept used is similar to

the one applied on ad-hoc networks. Cars act as mobile nodes carrying a device called On
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Board Unit (OBU), which allows other nearby nodes (vehicles) to connect through several

wireless technologies, such as WAVE (IEEE 802.11p), WI-FI (IEEE 802.11a/b/g), LTE

(4G). Thus, users are allowed to connect to this OBUs inside the vehicles; besides that,

the vehicles should be capable to bind to stationary providers, which are present along the

road. These stationary providers can be Road Side Units (RSUs) or WI-FI Access Points

(APs), which in turn will provide them access to the Internet.

Thanks to VANETs, users are approaching to the main goal, which is always being

connected to the best network available without losing their connection during their jour-

ney. To ensure that and taking into account high mobility in vehicular networks it is

imperative that, with an appropriate mobility protocol, OBUs provide seamless handover

between APs along the road. There are several studies about mobility protocols, but it still

remains unsolved in commercial networks. Furthermore, WAVE is a new developed access

technology special to vehicular networks, and the mobility protocols lack their evaluation

with this technology.

Some mobility protocols have already been evaluated on a vehicular scenario in our

group, such as in the work developed by [16] and [34]. According to [16], this work has

proven that the Proxy-Mobile IPv6 (PMIPv6) protocol is capable of providing mobility

to the cars moving along the road, and changing their attachment points between the

available �xed infrastructures or even through a 3G connection. It has also demonstrated

that the WAVE protocol is the most suitable access technology to be used in the VANETs,

since it provides seamless handover capabilities without loss of packets and with reduced

times. However, this protocol cannot support mobility to the entire network, as it was

mentioned before, and, as it is an IPv6 mobility protocol, it does not have any support for

IPv4 mobility. Regarding the work in [34] developed in our group, it is mainly focused on

N-PMIPv6 mobility protocol, which made a signi�cant progress comparing with PMIPv6.

The mobility for the entire network was guaranteed, and this means that the mobility for

the vehicles and their passengers was ensured regardless of the access technology. Further-

more, cars must be able to connect to a �xed infrastructure, such as AP or RSU through

WI-FI or WAVE access technology, and on the other hand, they must allow their pas-

sengers (single-hop) or others vehicles (multi-hop) to connect to the network through the

same access technologies. In other words, vehicles can act at the same time as mobile

nodes and routers capable of providing network connection, not only to its passengers, but

also to other vehicles nearby. Thus, a multi-hop connection over vehicular network extends

the range of the internet access decreasing the necessity of �xed infrastructures, which in

turn translates into lower cost for the development of vehicular networks; however, the

more hops you have, the lower is the bandwidth (BW), being a problem in the connection
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quality.

Apart from that, both PMIPv6 and N-PMIPv6 bring some limitations, as all the tra�c

needs to traverse one point known by LMA (server); vehicles can just establish a link with

an attachment stationary point. The network and mobility scalability are a strong problem

due to the fact that the LMA is a centralized entity. It is commonly recognized that today's

Internet routing and addressing system is facing serious scaling problems, which IPv6 is

not by itself a solution. Given these facts and in order to avoid a resource overhead as

well as much complexity, the Locator/Identi�er Separation Protocol (LISP) protocol was

developed by CISCO. This protocol splits the location from identity, which is a require-

ment to provide native mobility and multihoming. On the other hand, in order to face the

scalability problems, a distributed entity acting as a database anchor is needed. Moreover,

it is important to evaluate this mobility protocol, applied for a vehicular network, measure

the handover times in order to understand its applicability to these environments.

1.2 Objectives and Contributions

The work in this dissertation will focus on the implementation and evaluation of a

mobility protocol for vehicular networks, able to ensure the mobility of vehicles and their

passengers during their journey. The LISP-MN, an open-source implementation based on

LISP to allow mobility and multihoming natively will be used; in order to face routing

scalability problems, a virtual router provided by CISCO with LISP mobility features is

also used to work as a server.

To reach this goal, the thesis has the following objectives:

• Study LISP protocol: understand how it works and discover how it can be adapted

to vehicular networks.

• Protocol scenarios: de�ne in which scenarios LISP protocol can be tested.

• Protocol Adaptation: LISP needs to be adapted to vehicular networks, capable to

maintain network session while doing handover over WAVE or WI-FI. So, protocol

and software changes need to be performed in LISP-MN to ensure fast mobility into

the vehicles.

• Map-Server and Map-Resolver Implementation: through the virtual router from

Cisco CSR 1000v, it is created and con�gured in a private environment a server

capable to store and monitor all vehicles and their passengers.
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• Protocol Compile: as the OBUs do not have the compiler inside, a virtual machine

with OpenWrt repository (builder) will be used to generate the binary compiled for

OpenWrt and send it to the OBUs.

• Protocol Implementation: as LISP-MN implementation just allows slow handovers,

it was changed in order to ensure mobility for the vehicles which performing fast han-

dovers and consequently, due to the fast handovers implemented, it was also changed

the way of updating vehicular caches in order to not fail any LISP control message

fundamental to the process. Further, after compiled it was necessary to set �les ac-

cording to Map-Server con�gurations to run with the binary in each OBU, allowing

the vehicles and their passengers to register on Map-Server and to know where are

the other passengers.

• Connection manager implementation: to automate the handover procedure, it is

required an unity capable of monitoring the available networks. It shall identify the

best network available and trigger the handover whenever needed.

• Testing protocol: evaluate LISP mobility protocol in di�erent scenarios in the

laboratory (lab) and in the road, in order to realize weather it is an advantage for

vehicular networks.

1.3 Document Organization

This Dissertation is organized as follows:

• Chapter 1: presents the Dissertation contextualization, the motivation, the contri-

bution and the objectives.

• Chapter 2: presents the state of the art of vehicular networks, which addresses

mobility protocols and contains other vehicular features.

• Chapter 3: describes deeply the mobility protocol chosen to further implementation.

• Chapter 4: shows all implementations, components, tools, optimizations and adap-

tations performed for further evaluation of this mobility protocol into vehicular net-

works.

• Chapter 5: depicts used testbeds to test the mobility protocol implemented. Fur-

ther, it presents and discusses the results obtained in the laboratory and on the real

road environment.
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• Chapter 6: summarizes the work that has been performed during this Dissertation

and also suggests possible future development to continue and optimize the work

already done.
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Chapter 2

State of the Art

2.1 Introduction

This chapter describes the vehicular networks and their characteristics relevant for the

handover of the vehicles, and the current relevant mobility approaches.

In this context, the topics of this chapter and their organization are presented below.

Section 2.2 describes the meaning and the features of vehicular networks.

Section 2.3 portrays what are the equipments used in vehicular networks.

Section 2.4 illustrates the vehicular network architecture and its features.

Section 2.5 shows several network access technologies and their possible applications or

advantages to VANETs.

Section 2.6 describes di�erent mobility protocols, the main features and how they work,

and �nally they are compared with each other.

In sum up, section 2.7 is the chapter summary.

2.2 Features

Primarily, it is important to be acquainted with the thematic of vehicular networks

(VANETs). Above all, VANETs are a group of vehicles interconnected via several tech-

nologies, such as WI-FI, IEEE 802.11p (WAVE) or even cellular. Moreover, they are

capable of sharing software, hardware, and information between them and many users.

Thus, cars and users, both seen as mobiles nodes (MNs), are able to communicate between

them and sharing informations. Further, an internet connectivity is possible to all users

inside the vehicles, which nowadays it is an essential commodity.

There are some special characteristics [21] exclusive of vehicular networks as follows:
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• Predictability: predictability is possible thanks to GPS that are in all cars, pro-

viding the position, and to the road that limit the movement of vehicles.

• Higher computational capability: OBUs can a�ord signi�cant communication,

computing and sensing capabilities.

• No power constrains: as the the components inside the cars are powered by them,

this should not be an issue.

• Partitioned network: vehicular networks are usually fragmented due to the dy-

namic environment where they are inserted, resulting in some isolated clusters.

• Rapid topology changes: vehicles are constantly moving, and they are the net-

works nodes.

• Large scale: each vehicle is going to have two functionalities, acting as a MN and

a router. Scaling the network to the number of vehicles in the roads is a major

challenge in these networks.

2.3 Equipment

There are several essential elements responsible to the functioning of the vehicular net-

works, such as Road Side Units (RSUs) and On Board Units (OBUs), which are indubitably

important.

The RSUs and OBUs may be similar, with di�erent functionalities in the vehicular net-

work. RSUs act as �xed infrastructures along the road, providing several wireless technolo-

gies as well as a physical connection and internet access for vehicles and their passengers.

OBUs are inserted inside the vehicle with the functionality to provide wireless technologies

to allow the connection with users. To describe what is the main hardware inside of this

OBU and at the same time the RSU, Maria Kihl [21] presents their equipment as follows:

• Central Processing Unit (CPU): responsible for the communication protocols op-

erations and the application performance.

• Wireless transceiver: needed to provide the way to send and receive data between

car's working as Antennas.

• GPS: provides location and several metrics which maintain the vehicles synchronized.
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• Sensors: necessary to analyse some variables needed to be sent between vehicles.

• Input/Output interface: is the part that interacts with humans and the board

itself.

Regarding the equipment described before, it is illustrated in �gure 2.1 the element

developed in our group with the required features [4] which are detailed as follows:

• PCEngines Alix3D3 Module with a 500 MHz AMD Geode LX800, 32-bit x86 archi-

tecture, 256 MBytes of memory and Ethernet connection.

• DSRC/WAVE Module compliant with IEEE 802.11p.

• WI-FI Module compliant with IEEE 802.11b/g.

• Omnidirectional antenna prepared for frequencies in the range of 2.4 GHz, with a

5dBi gain.

• Omnidirectional L-Com Antenna prepared for frequencies between 5.150 and 5.9

GHz, with a 5dBi gain.

• Linux Debian (squeeze) Operating system, with the 2.6.32 kernel compiled with the

options to support mobility protocols.

• Driver ath5k modi�ed to support the IEEE 802.11p/1609.x [4].

• GPS GlobalTop (MediaTek MT3329).

The main di�erence between both boards units illustrated above is the presence of the

WAVE communications, very useful in vehicular mobility, which their features are:

• Wave fast association.

• Support for the WAVE Short Message Protocol.

• Existence of Control Channel (CCH) and Service Channel (SCH) and support for

operations with channel switching.
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Figure 2.1: On Board Unit (OBU)

2.4 Network Architecture

This section introduces the VANET network architecture. One example is illustrated in

�gure 2.2 which shows vehicles connecting with each other and with �xed infrastructures.

According to Lee and Gerla [47], there are three possible vehicular architectures subdivided

in three categories:

• Hybrid: Considered an intelligent and at the same time �exible architecture. The

hybrid architecture is a non-centralized architecture; this means that it does not

have a centralized authority thus the information is passing through the vehicles in

a distributed way. Furthermore cars could act as nodes or mobile nodes.

• Pure cellular/WLAN: To be connected to the internet, vehicles could choose one of

two paths, or by cellular gateways or either by access points (APs) through WLAN

interface. Thus, during their journey, internet connection and services are ensured

by a link to cellular tower or APs.
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Figure 2.2: VANETs Architecture [9]

• Pure ad hoc: In this case the connections are established peer-to-peer between ve-

hicles. Basically this means that whether the vehicles have more than one option to

have connection to the internet, such as cellular tower, APs or even vehicles, their

priority is the communication between vehicles.

2.5 Network Access Technology

There are multiple technology communication ways to access the network. In this

section some of them will be described. Thus, depending on the type of the application,

scenario or other e�ects, there are di�erent advantages and disadvantages between them.

2.5.1 Dedicated Short-Range Communications (DSRC) allocated

spectrum

DSRC based on [30] is a type of short wireless communication that allows data trans-

mission between vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) ir order to

provide safety to them. It is a reliable type of access network technology for crash preven-
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tions and safety applications; a usage case is presented in �gure 2.3.

Regarding the spectrum, the Federal Communications Commission (FCC) allocated 75

MHz of spectrum in the 5.9 GHz band used for mobility applications and for vehicle safety.

Further the DSRC spectrum is divided into 7 channels, each one with 10 MHz, high data

rate, short range radio and half-duplex. The DSRC channel allocation is illustrated in

�gure 2.4.

Figure 2.3: Obstacle Detection using DSRC [32]

There are many advantages using DSRC in V2V and V2I communications presented as

follows:

• Crash prevention with real time advertisements alerting drivers.

• Obstacle Detection and Avoidance.

• Real-time connectivity to all user services.

• Enable mobility between vehicles and infrastructures.

• Enable fast communication and low latency.

2.5.2 IEEE 802.11p / WAVE

The standard IEEE 802.11p (WAVE) is the most appropriate access wireless technology

for the vehicular network.

The vehicles are in constantly position change in a short period of time, establishing

several V2V or V2I connections during their way. Thus, it was required to create a standard

capable of supporting these fast transitions, providing easy and fast wireless short-range

communication between them. Given this fact, it was speci�ed in 2004 Wireless Access in
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Figure 2.4: DSRC - Channel Allocation[18]

Vehicular Environments (WAVE) the norm IEEE 802.11p created by the task force group,

modifying the standard IEEE 802.11a and becoming capable to operate in DSRC band. It

is possible to observe in �gure 2.5 the use of WAVE applied on vehicular environment.

It is important to refer that WAVE is an evolution of DSRC. DSRC focuses on low

overhead operation based on the Wireless Fidelity (WI-FI) architecture [12].

According to [27] the IEEE 802.11p standard is meant to:

• Avoid joining to the Basic Service Set (BSS), as it happens in IEEE 802.11, a set of

functions and services required for the WAVE stations in order to answer quickly to

the vehicle changing without any drop message.

• In order to control IEEE 802.11 MAC, it was performed an amendment in WAVE

interface functions and signalling techniques.

Some changes on MAC for WAVE operations are described below according also to

[27]:

• Any wave station is able to send and receive data frames with the destination and

source �eld set to 0, independent if it is or not a member of WAVE BSS (WBSS).

• There are many WBSS which are familiar to WAVE mode operation and with their

identi�cation �eld set to 0. A WBSS is able to communicate, thus start its initial-

ization after receiving the necessary informations from a radio in WAVE mode.
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Figure 2.5: WAVE applied in vehicular communication [5]

• The radio is con�gured to send and receive data frames with the identi�cation �eld

(BSSID) from one WBSS. The node leaves the WBSS when stopping sending or

receiving data frames without identi�cation �eld set from the WBSS.

• One station can just join one WBBS at each time and also, whether it is in WAVE

operations mode, it can just join the WBSS and not BSS.

• In case of no member still present on the WBSS, it ceases to exist.

There are also some changes to the level of the PHY layer such as:

• Wave PHY layer is based on the OFDM PHY de�ned for IEEE 802.11a. The channel

wide become 10 MHz instead of 20 MHz presented on IEEE.11a.

• Improved receiver performance requirements.

• Improved transmission mask.

Thus, in �gure 2.6 it is presented the WAVE protocol stack. It is possible to observe

a division in two standards [18], so WAVE not only contains the standard IEEE 802.11p
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Figure 2.6: WAVE Protocol Stack [18]

but also IEEE 1609 which is the upper-layer standard. IEEE 1609 completes WAVE in

some details, and it is also divided in some slices. Firstly, IEEE 1609.2 standard focuses on

resource manager de�ning data �ows, key components and command messages of WAVE.

IEEE 1609.2 standard covers the security communication. IEEE 1609.3 standard is respon-

sible for the WAVE connection setup and management. Lastly, IEEE 1609.4 is liable to

Multi-Channels Operations based on the IEEE 802.11p Physical layer and Medium Access

Control layer supplies.

2.5.3 Multi-Technology approach

To accelerate vehicular communications, it is needed to use multi-technology systems.

Besides the WAVE technology, vehicles should also be able to connect to the already

existent WI-FI APs along the road as well as to cellular infrastructures. The decision for

one instead of another should take into account the cost for the user and the quality of the

connection.

There are some cities which provide free WI-FI APs in order to allow people to connect

to the internet. APs spread all over the city, which allows their subscribers to have free

internet connection when are in the presence of one of these private routers. However,

external users are also able to connect those APs, although they may have some inherent

costs per hour.
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Nevertheless, there are some issues regarding WI-FI connections, such as, their small

range, their slow authentication connection and their location, because mostly of them

are located in main area of the cities. Thus, they are not a good solution in vehicular

communications unless the vehicle is stopped or in low movement.

Nowadays, the countries are covered by cellular networks, such as UMTS as known by

3G, LTE, known as 4G. In this case all vehicles have the possibility to connect to cellular

networks along the road when the RSUs are not in range. However, such networks have a

high cost to the user, so the idea is to reduce their use in vehicular communications.

In all due fairness, for the best of the vehicles and their passengers, they must use the

WAVE technology. With the increase of RSUs along the road and consequently OBUs

inside the vehicle, the vehicles are available to communicate through WAVE. Thus, to the

ideal scenario, the vehicles along the road should connect �rstly to the RSUs in case they

are in range, then to the APs and lastly, just in case there is no other alternative, to the

cellular stations.

During this master dissertation, the WAVE technology has been the core technology due

the fact that it brings gains in terms of costs and speed to the vehicular communications.

2.6 Mobility Protocols

During the journey the cars are changing their connection to di�erent attachment

points, the addresses are being changed and the routing is done through another attach-

ment point. Due to the high vehicle velocity, it is hard to maintain a seamless handover

and a stable connectivity to the Internet. Furthermore, several times during the move-

ment, vehicles will gain a new IP address, their appropriate network mask and either the

default router; otherwise the packets will be lost and the connection is broken. In order

to maintain the connection alive while the vehicle is moving, it is necessary a mobility

protocol capable to ensure the session continuity.

There are several mobility protocols, each one with their advantages and disadvantages.

To be ideal, the chosen mobility protocol should include the features depicted as following

according to Zhu et al. [48]:

• Mobility without packet loss: VANETs should be an extension of the Internet

and the vehicle mobility should, regardless of the technology used by the car to

connect to the Internet, it should be able to maintain its Internet Gateway available

in order to not lose any packet.
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• IPv6 support: IPv6 was developed taking mobility into account, by supporting

auto-con�guration and routing extension headers.

• Smooth and fast handover: in order to support seamless handover between APs

of the same or di�erent technology, horizontal or vertical handover, respectively, it is

needed a mobility protocol to do the handover fast and smooth without being noticed

by the users and its sessions.

• Efficiency and scalability: as vehicular networks can have thousands of con-

nections at the same time, a mobility protocol with a highly scalability and e�ciency

is mandatory.

The next sub-sections describe some of the main approaches for mobility.

2.6.1 Terminology

The following terminology is used according to [28]:

• Mobile Node (MN): is a node capable to roam into di�erent networks changing its

location to another point of attachment.

• Correspondent Node (CN): is any node that communicates with the MN; a MN

can be a CN and a CN can also be a MN depending on the scenario.

• Home address (HoA): is a permanent address assigned to the MN and is used by the

CN to reach MNs because is the only address which is maintained regardless of the

point of attachment. Further, as it happens in all IPv6 addresses, this home address

has a 64 bit pre�x which represents his Home Network and the su�x represents his

node identi�er. When a packet is sent to the home address, the routing is done

through his home network pre�x.

• Home agent (HA): a router on the Home Network that enables the MN to roam;

this means that this router knows the information about the MN while he is in the

visit network.

• Home Network (HN): is a network where the MN belongs when it is not roaming.

• Foreign Network: is any network visited by the MN without to be the HN.
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• Care-of address (CoA): is an address that corresponds to the location of MNs,

representing at which point of attachment it is connected. Further, this address is

formed by the pre�x of the Home Network or the Foreign Network, depending where

they are, combined with the MNs interface identi�er.

• Binding: is the association of the MNs HoA with a CoA for a certain period of time,

between the MNs current location and the stable home address.

• Binding cache (BC): is a volatile memory who stores all the bindings for one or

more mobile nodes. It is maintained by the informations provided from the corre-

spondent node and the home agent. Each entry in the BC contains the MNs home

address, the corresponding CoA and the lifetime that indicates the validity of that

entry.

• Binding Update (BU): is a message with the purpose to inform the HA of the MN's

current address (i.e., CoA) [28].

• Binding Acknowledgement (BA): the HA, after receiving the BU and make an as-

sociation between the home address to the MN and the CoA it received, answers

with a binding acknowledgement (BA).

• Router Solicitation (RS): this type of message is used by a host to query infor-

mation to the local routers which they will answered with a Router Advertisement

(RA) containing the current routing location or perform stateless auto-con�guration

[36].

• Router Advertisement (RA): a Router Advertisement message is used by the routers

in order to answer to the RS messages required from the hosts [36].

2.6.2 MIPv6

Firstly, before addressing Mobile Internet Protocol version 6 (MIPv6) it is important to

note that Mobile Internet Protocol version 4 (MIPv4) [10], one previous protocol proposed

by IETF had some problems, such as short IP addresses, poor security and Quality of

Service (QoS); thus the IETF created the MIPv6 [28] to deal with these problems.

MIPv6 is a protocol created as a subset of Internet Protocol version 6 (IPv6) to support

mobile connection. MIPv6 is di�erent from the IETFMobile IP standard [7] and is designed

to allow the MN to change its network while keeping the same IP address. Each MN is

identi�ed by its home address and its care-of address. The home address (HoA) is a �xed
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IP address that identi�es the MN independent of its location; otherwise the care-of address

(CoA) changes at each new point of attachment and provides information about the Mn's

current location and situation.

When the MN is away from its home network, it must acquire a CoA which presents

the current location; this is performed through IPv6 Neighbourhood Discovery [36].

MIPv6 uses IPv6 routing header rather than IP encapsulation, and speci�es how the

MN registers in the home agent, and how the home agent sends the packets through the

tunnel to the MN. There is at least one home agent who receives the HoA and the CoA of

each MN.

2.6.2.1 Operation method

When a mobile node is away from the HN, it sends a CoA informing his home agent

about its current location. A node that wants to communicate with a MN uses the home

address of the MN to send packets. The HA intercepts these packets, checks its cache table

and tunnels the packets to the MNs CoA. In order to explain deeply, it is �rst presented

the MIPv6 support services:

• Discovery: the MN, every time it changes his network, it triggers an ICMP RS

message in order to receive the advertisement with the CoA information and then

initiate the registration.

• Registration: when a MN is away from home, it registers its CoA in its HA. This

procedure is done by sending a BU to its HA with the CoA information obtained

on Discovery services. The HA stores this information in the BC, in order to always

know where this MN is located to forward the packets towards the MN. Finally, the

HA sends a BA to the MN in order to validate the association between the home

address and the CoA of his MN.

• Tunneling: when the HA sends a BA to the MN, it creates a tunnel to the respec-

tive CoA. Thus, it can forward, by this tunnel, all packets which have this MN as

destination.

In this context, it is illustrated the architecture of MIPv6 in �gure 2.7 and the Mobile

IPv6 operation is presented the following steps:

• MN performs address auto-con�guration to get its care-of address.

• Upon receiving the care-of address, the MN registers it with HA on HN using BU.
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Figure 2.7: MIPv6 Architecture [25]

• The HA, using Neighbour Discovery, answers with RA to the RS required by MN.

• The BA is also sent by the HA to the MN in order to validate his registration and

create a tunnel.

• The HA intercepts all packets destined for MN and sends them through the tunnel

previous created on the registration.

• When the MN moves, it has to perform again all these steps, to advise his HA and

the CN in order to update his new location.

2.6.3 PMIPv6

The Proxy Mobile IPv6 (PMIPv6) [20] is a network-based localized mobility manage-

ment (NetLMM) protocol standardized by IETF. In order to make a solution that relocates

mobility procedures from the mobile device to network components, the NetLMM working

group [29] of the IETF allows vehicles with conventional IP's roaming into di�erent APs

and belonging to the same local domain.

PMIPv6 enables the same functionalities as MIPv6, but the main di�erence is encoun-

tered in the IP address assignment. While in PMIPv6 the hosts can maintain their IP
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address when roaming into di�erent APs, in MIPv6 the network is responsible to imple-

ment this functionality, which tracks the movements of the host and begins the required

mobility signalling on its behalf; MIPv6 is a �host-based� approach while PMIPv6 is a

network-based approach.

Comparing MIPv6 with PMIPv6, according to [2] it is possible to observe that, being

a network-based approach, it has the following advantages:

• Deployment: MN does not require any modi�cation which allows service providers

to give the services to as many MNs as possible.

• Controllability: From the network service provider point of view, it allows them

to control the network in terms of tra�c and quality of service (QoS) such as di�er-

entiated services.

• Performance: As the network is doing the mobility management on behalf of the

MN, the MN does not need to participate. Thus, the number of exchanged messages

in the wireless network are reduced as well as the tunnelling overhead.

Thus, this supporting localized mobility management protocol for a MN [44] is detailed

below.

2.6.3.1 Terminology

The following terminology is important to better understand how the Proxy Mobile

IPv6 works. Below, it is included only the new terminology that was not present on the

MIPv6:

• Local Mobility Domain (LMD): Network that is PMIP-enabled. The LMD con-

tains one Local Mobility Anchor (LMA) and multiple Mobile Access Gateways (MAGs).

• Local Mobility Anchor (LMA): All tra�c from and to the MN is routed through

the LMA. The LMA maintains a set of routes for each MN connected to the LMD.

• Mobile Access Gateway (MAG): The MAG performs the mobility related signalling

on behalf of the MNs attached to its access links. The MAG usually is the access

router (�rst hop router) for the MN.

• Binding Cache Entry (BCE): Entry in the LMA's BC. Each entry has the �elds

MN-ID, MAG proxy-CoA and MN-pre�x.
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• Binding Update List (BUL): Cache maintained by the MAG which contains infor-

mation about the attached MNs.

• Proxy Binding Update (PBU): PMIP signalling packet sent by the MAG to the

LMA in order to indicate a new MN. The PBU has the �elds MN-ID (e.g. MN MAC),

MAG address (proxy-CoA) and hando� indicator to signal if the MN-attachment is

a new one or a hando� from another MAG.

• Proxy Binding Acknowledge (PBA): Answer to a PBU sent by the LMA to the

MAG. The PBA contains the MN-ID, the MAG address and the pre�x assigned to

the MN.

• Proxy care of address (proxy-CoA): IP address of public interface of MAG. The

proxy-CoA is the tunnel endpoint address on the MAG. The LMA encapsulates

packets destined to the MN into a tunnel packet with destination address equal to

Proxy-CoA.

• Mobile Node Identifier (MN-ID): The only identi�er of mobile node, e.g. one of

its MAC addresses.

• Home Network Prefix (MN-HNP): Pre�x assigned to the MN by the LMA.

2.6.3.2 Operation method

PMIPv6 operation method is represented in �gure 2.8. The network-based mobility

management support protocol to an MN has two main entities, the LMA and the MAG. The

LMA, acting as HA in PMIPv6, is usually the anchor point for the MN pre�x assignments

with the functionality of maintaining the informations and the state of the MN. MAG

is the attachment point between the MN and the network, and is responsible to send

informations to the LMA regarding MN movements and consequently registering him there.

The following steps show the operation method applied in PMIPv6 protocol according to

[42]:

• When the MN attaches to one MAG, the MAG detects the attachment and triggers

a Proxy Binding Update Message (PBU) to the LMA. The LMA processes the PBU

message, assigns the MN with the home network pre�x, stores this entry in the

internal cache table, and answers to MAG with a Proxy Binding Acknowledgement

(PBA) containing the home network pre�x. Moreover, with these two messages, PBU
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and PBA, a bidirectional tunnel is created by the LMA with the MAG, that can be

used for forwarding tra�c.

• As soon as the MAG receives the PBA, it sends a RA message to the MN with the

available pre�xes for the MN to create his IP address, combining the pre�x with his

own and permanent address at su�x. Once the MN IP address is formed, it becomes

ready to send and receive data packets.

• Thus, when any packet is sent to the MN, the LMA checks his internal cache to

know where is this MN. Once it is known, the packets are sent to the respective

MAG which removes the outer header, and forwards the packets to the MN. The

same can happen in reverse; the MN can send packets to the MAG which forwards

them to the LMA using the tunnel. Then, the LMA removes the outer header and

routes it to the CN.

• Once the MN leaves or changes the network, the MAG detects it and alerts the LMA

sending a deregistration message. Then when the MN attaches again to another

network, every step described here is repeated.

As explained in this subsection, PMIPv6 solves most of the issues of the MIPv6 protocol,

but it is still not ideal to VANETs due to the fact that it just provides mobility to the

MN and not to the entire network: this means that vehicles mobility is ensured, but

the passengers mobility is not addressed. Thus, N-PMIPv6 was proposed in [42], which

has been extended and developed in our group [34]. The next subsection will describe

N-PMIPv6.

2.6.4 N-PMIPv6

N-PMIPv6 extends PMIPv6, which has been previously submitted to real applications

evaluations on our group in a previous MSc Dissertation [34], to support network mobility.

It introduces the mobile MAG (mMAG) and maintains the two entities, LMA and MAG.

Figure 2.9 illustrates the operation of the N-PMIPv6 protocol.

2.6.4.1 Operation method

According to [42] and [26], the registration and handover procedures are executed as

follows:
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Figure 2.8: PMIPv6 Architecture [22]

• When a mMAG with a MN attaches to the MAG, the MAG sends the PBU message

containing the mMAG-ID to the LMA.

• Upon receiving the PBU, the LMA assigns the mMAG the HNP-1 and creates the

BCE. Next, the LMA returns the PBA to the MAG.

• Upon receiving the PBA, the MAG sends the RA message containing the HNP-1 to

the mMAG.

• Upon receiving the RA message, the mMAG sends the PBU message containing the

Mobile Network Node (MNN)-ID to the LMA.

• Upon receiving the PBU message, the LMA assigns the MNN the HNP-2 and creates

the BCE. N-PMIPv6 adds a new �eld, the M �ag, to the BCE. The M �ag of MNN

BCE is set to indicate that the MNN is connected to a mobile network.
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Figure 2.9: N-PMIPv6 Architecture [42]

• Next, the LMA returns the PBA to the mMAG. Upon receiving the PBA, the mMAG

sends the RA message containing HNP-2 to the MNN.

• The data packet destined to the MNN �rst reaches the LMA. The LMA �nds the

MNN BCE. Since the M �ag is �on� in the MNN BCE, the LMA searches for the

mMAG BCE. Next, the LMA encapsulates the packet for tunnelling to the mMAG

and encapsulates it again for tunnelling to the MAG. The LMA forwards the packet

to the �xed MAG. The �xed MAG removes the outer tunnelling header and forwards

it to the mMAG. The mMAG retrieves the original packet and forwards it to the

MNN.

• When the mMAG moves to the another MAG, the same procedures as in the initial

registration are performed. In this procedure, the AR �eld of the mMAG BCE is

updated from MAG to the another MAG. Other �elds of mMAG BCE and MNN

BCE remain unchanged. Thus, in N-PMIPv6, the signalling messages are not sent

on the wireless link when a handover occurs.

In PMIPv6 the MAGs are static entities directly connected to the LMA, and it does

not allow chaining MAGs, thus the mobility is not ensured in the whole network.
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The PMIPv6 protocol needs to be modi�ed to ensure network mobility, mobility to

the OBUs, which represents the vehicles, and to respectively users. For this purpose, it is

necessary that the mMAG be capable to con�gure itself according to the attachment point

which it is connected. In addition to these changes, the PMIPv6 MAG must be modi�ed

to acquire these features.

Given these facts and according to [34], the necessary changes made to ensure mobility

in entire network are:

• LMA must be able to recognize mMAGs and be able to create tunnels to these

mMAGs as if they were ordinary MAGs.

• The MAG must be able to identify whether it will intercede as a MAG or as a mMAG.

• In case it operates as mMAG, the mMAG has to be able to identify its IPv6 pre�x

assigned on the network where it is connected, in order to con�gure its own IPv6

address, so that it will be able to communicate with the LMA and consequently the

Internet.

• As a mMAG, it must also have a RS �ltering system.

Despite having guaranteed mobility in the whole network it is still not an ideal protocol

with scalability issues as well as issues of resources, since all tra�c goes through the LMA.

Furthermore, it is a protocol that does not support multihoming which further validates

the fact of overload of resources.

The last subsection of this chapter presents a distributed mobility protocol that avoids

and overcomes the issues described above.

2.6.5 DMIPA

In order to overcome the issues provided by centralized mobility protocols, such as non-

optimal routes, scalability, network bottlenecks, single point of failure and attack, it was

proposed Distributed Mobility IP Anchoring (DMIPA) protocol [41]. DMIPA is a protocol

for dynamic environment developed by our group, and it is in development and testing

phase.

According to [41], DMIPA is a new approach based on the host that aims to provide

distributed mobility management in heterogeneous and �at networks. The DMIPA's ar-

chitecture presented in �gure 2.10 is comprised mainly by two entities, the Data Mobility
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Access Router (DMAR) and the MN. The DMAR is an access router (AR) with IP mo-

bility management functions, and together with the MN, it is responsible for maintaining

the continuity session. The MN can move through the heterogeneous network changing its

attachment point while still reachable.

In order to explain the DMIPA protocol, it is needed to add the following messages

that were not presented in the previous protocols:

• Mobility Support Flag (MSF): this �ag is introduced in the Reserved �eld of

DMIPA'S RA message in order to provide useful information to know if it is a DMAR

or an AR. If the MSF is set to zero, then it is a legacy AR; otherwise MSF is equal

to one which representing a DMAR.

• Anchor Set Update (ASU): this message, as well as the next one, are exchanged

when MN and the current DMAR communicates with each other. ASU message is

sent by MN providing its attached DMAR with the IPv6 addresses of the current set

of DMARs.

• Anchor Set Acknowledgement (ASA): this is a message from the DMAR to MN in

order to answer to the ASU message, which indicates the success of the process.

Figure 2.10: DMIPA Architecture [8]
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Taking into account [41], DMIPA protocol has the following features:

• MNs and ARs have the IP mobility functionalities with mobility support known as

DMARs.

• IP mobility is performed for ongoing sessions while the handovers occurrence.

• A new session is always anchored to the new DMARs while the ongoing session is

maintain anchored to the previous DMAR.

• When the MN connects to a DMAR, it is guaranteed the forwarding of the ongoing

sessions from the previous DMAR; otherwise these functions are supplied by the MN.

• There are no centralized databases, and MNs keep their mobility context.

Moreover, according to [41], the protocol operation method considers the movement of

the MN from DMAR1 to AR, and then to DMAR2 presented in �gure 2.11 and described

below:

• MN is attached to DMAR1.

• MN requests the network pre�x by sending a RS message. Then, DMAR1 replies

with a RA message which contains the network pre�x P1::/64 and a true MSF value.

• Upon receiving the RA, the MN con�gures the IPv6 address P1::MN/64 as a preferred

address.

• MN adds the IPv6 address of DMAR1 to the database which contains the available

DMARs set.

• MN starts data session 1 using P1::MN/64 as IPv6 source address.

• MN attaches to a legacy AR.

• MN sends RS message and receives RA with the network pre�x P2::/64 and negative

value of MSF.

• MN con�gures the P2::MN/64 address; however the P1::MN/64IPv6 address is re-

mained as the preferred address.

• DMAR1 receives BU from MN to establish a tunnel (Tun1), and then DMAR1 sends

BA to con�rm the success.
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• It remains active the data session 1, and the tra�c �ow from/to P1:MN/64 is tun-

nelled from/to P2::MN/64.

• It is started a new session, the data session 2, using the P1::MN/64 IPv6 address in

order to provide session continuity if the MN changes its attachment point. Therefore,

data session 2 is tunnelled from the beginning.

• MN attaches to DMAR2.

• To obtain the network pre�x, the MN sends a RS to DMAR2 which replies with a

RA message containing the IPv6 pre�x P3::/64 and a true MSF value.

• MN performs the con�guration of the IPv6 address P3::MN/64 as the preferred IPv6

address.

• MN adds the IPv6 Address of DMAR2 to the set of available DMARs IPv6 address

list.

• MN sends an ASU message to DMAR2 containing DMAR1 IPv6 address informa-

tion (P1:DMAR1/64) and with the respective MN IPv6 address (P1::MN/64) which

DMAR2 answered with an ASA message to the MN to con�rm the success.

• DMAR2 sends BU message to DMAR1 to establish a tunnel which DMAR1 replies

with BA message, and then it is created a tunnel (Tun2) between those DMARs.

• Both sessions, data session 1 and data session 2 are maintained through a tunnel

between DMAR1 and DMAR2.

In sum, according to [41], this distributed mobility protocol has better results to vehic-

ular networks than MIPv6.

2.6.6 LISP

Nowadays, the Internet architecture is starting to present some problems which could

not be foreseen in the past and which are strictly related to its nature. One of the biggest

one is regarding to routing scalability.

Further, IPv6 cannot solve this issue, because IPv6 did not change anything regarding

the usage of IP addresses; it remains representing the location and the identi�cation of the

host at the same time, with no logical division, and so it still su�ers the same problems as

IPv4.
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Figure 2.11: DMIPA Operation Method [41]

The Locator/ID Separation Protocol (LISP) is a Cisco protocol which is being devel-

oped as a potential solution to the routing scalability problem in the current internet. It

splits the traditional IP into two new di�erent name spaces, syntactically indistinguish-

able from the current internet addresses and compatible to their architecture, which are

the Endpoint Identi�ers (EIDs) to name hosts in edge networks, and Routing Locators

(RLOCs) for the nodes in the transit networks. Further a distributed database, the map-

ping system, is responsible for maintaining the associations between the RLOCs and EIDs.

Thus, compared to all protocols mentioned above, LISP-MN designed to provide scal-

able mobility for LISP mobile nodes has a set of advantages according to [3]:

• LISP splits host identity from its location, so it allows LISP multihoming. With

multihoming every node can be attached to one more access point; each EID can be

mapped and reachable through many RLOCs.

• LISP divides the control plane from the data plane, which enables each part to

scale independently. Since LISP-MN does not require Foreign Agent or Home Agent

network components in the data plane, it avoids triangle routing at the data plane

level for IPv4 and IPv6 addresses. Moreover, the data packets are usually forwarded

for the shortest path, and thereof LISP-MN incorporates natively route optimization
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support.

• The MIPv4 and MIPv6 protocols supply basic and advanced functionality to MNs

with advanced features, such as [31] and [19].

• With the separation of control plane from data plane in LISP-MN, the decoupling

of end-point identity from the mobility service provider becomes easier. The only

functionality of the control plane is to locate a mobile node. Identical to DNS,

LISP control plane has a distributed and federated mapping system nature. This

distributed nature, when compared to already existent alternatives, renders LISP-

MN as a more transparent and open solution. LISP communication at the data plane

level does not depend on a speci�c mobility service provider.

• No changes are required to the host protocol stacks or to the internet infrastructure.

Since LISP is the protocol being developed in this dissertation, it will be detailed in

chapter 3.

2.7 Chapter Considerations

This introductory chapter described several topics concerning the work already done

up to date focusing on the subject of this dissertation, in mobility and vehicular networks.

In this context, it presented several features about VANETs, the equipment was de-

tailed as well as their network architecture. Then, the network access technologies were

mentioned, emphasizing a new access technology, the IEEE 802.11p (WAVE) which has

been specially developed to support the unique features of these networks. However, there

are just a few real studies containing this standard, so it is imperative that the current

existing protocols are evaluated and adapted to that new access technology in order to

accelerate VANETs deployment. It is also necessary to test the existent mobility proto-

cols with WAVE access technology on the vehicular scenarios to �nd the most suitable for

these networks, to ensure mobility for the vehicles and their passengers as well as to obtain

reduced handover times. Hereupon, it was summarized and compared several mobility

protocols, which the main details are presented in the table 2.1. Note that in chapter 5,

LISP is evaluated in the vehicular networks with multi-technology handover according to

this MSc Dissertation.

The next chapter focuses on the description of the mobility protocol chosen to adapt

to vehicular networks, known as LISP.
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Table 2.1: Comparison between mobility protocols

Protocol Criteria MIPv6 PMIPv6 N-PMIPv6 LISP

Location management Yes Yes Yes Yes

Mobility Scope Global Local Local Global

Required elements Home Agent LMA,MAG LMA,MAG,mMAG MS,MR,xTR,MN

MN modi�cation Yes No Yes Yes

Localized Routing Yes No No Yes

Handover latency Bad Good Good Good
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Chapter 3

Locator/Identi�er Separation Protocol

In this chapter it will be described the LISP mobility protocol.

Section 3.1 brie�y introduces the LISP mobility protocol, and section 3.2 describes the

LISP components and their functionalities.

Section 3.3 illustrates how the protocol mainly works, showing which messages are

presented and how LISP works.

Section 3.4 describes how mobility is guaranteed, showing how it is processed as well

as the possible scenarios that can exist.

Finally section 3.5 summarizes the topics described.

3.1 Overview

This section presents an overview of LISP protocol.

The main drivers of this proposal are the scalability issues of the current Internet's

routing infrastructure, as well as the possibility to perform multihoming.

In addition, the idea of using a single IP address for both identifying a device and where

this device is located in the whole network topology began to fail, because it required topo-

logical address assignment and a limited margin for topology changes. Here is when LISP

appeared, solving this necessity of separating the device identi�ers and its location in the

network.

LISP, according to the authors [13], is based on the idea of splitting the current routing

and addressing architecture into non-routable EIDs, which de�ne the endpoint network

devices, and routable RLOCs, which describe how a device is attached to the network.

As we noticed, RLOCs are addresses used by network elements and de�ne where in the

routing topology a destination node is to be found; otherwise EIDs represent the identity
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of the node, regardless of its location, and are used as addresses in the endpoint devices.

In order to be incrementally deployable and with no changes or problems to end systems,

RLOCs and EIDs are both using the IP address space, either IPv4 or IPv6.

In order to reach a host, identi�ed by its EID, one must �rst �nd the current loca-

tion (RLOC) of the host. LISP provides a publicly accessible Mapping System that is

responsible to serve the EID-to-RLOC mapping information. Basically, that happens be-

cause it is a mapping and encapsulation protocol (map-and-encap). In the map-and-encap

scheme, when a source sends a packet to the EID of a destination not found in the source

cache, the packet traverses the mapping system infrastructure which has the RLOC of the

corresponded EID. Once RLOC associated to an EID is discovered, packets with headers

from the EID namespace are encapsulated in a second header from the RLOC space, and

are routed to the destination, where the LISP header is removed before delivering packets

to the destination device. LISP introduces gateway routers, called Tunnel Routers, that

perform the LISP encapsulation, and decapsulation at each site's ingress and egress points.

These gateways either act as ingress tunnel router (ITR) or as egress tunnel router (ETR).

ITRs tunnel packets to others LISP gateways which then act as ETRs; this means that

ITRs make the encapsulation from EID to routing network, unlike ETRs make the decap-

sulation from routing network to EIDs.

On an ongoing connection, the location of the host can change many times, so split-

ting the host identity (EID) from its locator (RLOC) enables seamless endpoint mobility

by allowing the applications to bind to a permanent address, the host's EID. In case of

location changes, the LISP tunnel routers will encapsulate the packets to the new RLOC,

preserving the connection session alive.

The basic LISP architecture by itself does not support mobility. Recently, the mobil-

ity extension LISP Mobile Node (LISP-MN) [14] was presented in LISPmob group [3]. It

describes a mechanism that enables LISP mobile nodes to roam into LISP and non-LISP

networks while being reachable under the same identi�er address. Indeed, LISP architec-

ture, as described in �gure 3.1, allows not only LISP-to-LISP communication, but also

LISP-to-non-LISP, as we will following observe.

3.2 LISP Network Elements

The LISP speci�cation bases itself on a few fundamental network elements, described

below based on [13]. They are:

• Ingress Tunnel Router (ITR): is a router that accepts IP packets from site end-
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Figure 3.1: LISP Architecture [3]

systems on one side, and sends LISP-encapsulated IP packets towards the routable

network to the other side. The ITR treats this "inner" IP destination address as an

EID, and performs an EID-to-RLOC mapping lookup if does not have already an

EID-to-RLOC mapping for the EID in its cache. After this EID-to-RLOC search, a

LISP routing cache introduces a new binding entry; this cache contains the EID-to-

RLOC mappings for destination EIDs which have already communicated with it. In

case the LISP Cache does not have the mapping for the destination EID, it will be

the LISP Mapping System who takes charge of obtaining it on behalf of the ITR.

• Egress Tunnel Router (ETR): is a router that receives LISP-encapsulated IP pack-

ets from an ITR, decapsulates and sends the decapsulated IP packets to EID desti-

nation.

• Proxy Ingress Tunnel Router (PITR): this is a LISP ITR that allows non-LISP

sites to send packets to LISP sites without any changes to protocols or equipment

at the non-LISP site. It acts as the ITR for tra�c received from the public Internet

(non-LISP sites).

• Proxy Ingress Tunnel Router (PETR): this is a LISP ETR that allows LISP sites

to send packets to non-LISP sites. It acts as the ETR for the tra�c received from

the LISP sites.
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• X Tunnel Router(xTR): router that can perform ITR or ETR functionalities; this

happens when direction of data �ow is unknown.

• LISP Map Cache: is a virtual table in an ITR that stores and is responsible for

EID-to-RLOC mappings entries and their time-out. This cache is di�erent from the

database on the mapping system, it is dynamic, local to the ITRs, and relatively

small while the other is distributed, relatively static, and much more global in scope.

• LISP Site: is a set of routers and devices in an edge network that are under a single

technical administration. Furthermore, LISP architecture is separated into LISP sites

in the edge network which EIDs are inserted, core network which is responsible to

routing, and RLOCs and the mapping system, and �nally the non-LISP sites where

public internet devices are encompassed.

• EID-to-RLOC Database: is a global distributed database in the mapping system that

contains all known EID-pre�x to RLOC mappings. Each potential ETR typically

contains a small part of the database: the EID-to-RLOC mappings for the EID

pre�xes "behind" the router.

• Map-Server: is a network infrastructure component which learns EID-to-RLOCmap-

ping entries from an ETR. Further, the Map-Server publishes these mappings in the

distributed mapping database.

• Map-Resolver: is a network infrastructure component that receive LISP Encap-

sulated Map-Requests, usually from an ITR, and determines whether or not the

destination IP address is part of the database; if it is not the case, a Negative Map-

Reply is returned. Otherwise, the Map-Resolver �nds the appropriate EID-to-RLOC

mapping by consulting a mapping database system.

3.3 LISP Encapsulation Messages Details

When a host in a LISP capable domain emits a packet, it inserts its EID in the packets

source address, and the EID of the correspondent host in its destination address. Then,

the ITR maps the destination EID to a RLOC which corresponds to an ETR which is

either in the destination domain or proxy's for the destination domain. It is also possible

that the MN does the encapsulation and decapsulation instead of ITR and ETR, but this

mostly happen in one hop mobility, not precluding the possibility to making into more

than one hop. When the packet arrives at the destination ETR, it is decapsulated and
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sent to the EID destination. Figure 3.2 shows the packet format when an IPv4 packet is

LISP-encapsulated in another IPv4 packet. There are some LISP packet messages to take

into account, which are:

• Map-Request: when an EID tries to reach another one in another LISP site, the ITR

may query the mapping system by sending a Map-Request message into the mapping

system to request a particular EID-to-RLOC mapping. To make this happen ITR is

responsible to encapsulate the Map-Request message before being sent to the Map-

Server: the outer IP header contains the RLOC of the requesting ITR and of the

Map-Server, in order to route the packet correctly to the destination. As soon as the

Map-Request is received by the Map-Server, it is decapsulated and read. The Map-

Server will look for the EID pre�x requested in the database. If the Map-Server does

not contain the EID requested, the Map-Request will be forwarded into the Mapping

System until it is found; in case it is not found, a negative Map-Reply message is

received.

• Map-Reply: this message is used to "answer" to the requesting ITR, sending back the

EID-to-RLOC mapping requested, in case that this binding is found in the mapping

system as mentioned before. This message is sent straight to the ITR and therefore

to EID-pre�x without encapsulation. Further, it is important to mention that, to

�nd the EID-to-RLOC mapping in the mapping system, the EID through ETR must

be registered on that previously, as soon as it starts the connection.

• Map-Register: this message is sent by an ETR to a Map-Server to register its

associated EID-Pre�xes. In addition this message brings the RLOC available to reach

any EID behind the corresponding EID-pre�x forming the EID-to-RLOC binding.

This RLOC is needed to be used by the Map-Server in order to answer forwarding

Map-Requests received through the database mapping system. An ETR may request

that the Map-Server respond Map-Requests on its behalf by setting the proxy Map-

Reply �ag bit in the message.

• Map-Notify: this message is a Map-Register answer sent by a Map-Server to an ETR

to con�rm that a registration has been received and processed.

In the User Data Protocol (UDP) packet formats, used by the LISP control plane, inside

of LISP Message �eld we can �nd LISP control message formats which are represented in

�gure 3.3.

The main �eld in the �gure 3.3 is the Type �eld which can be:
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Figure 3.2: LISP IPv4-in-IPv4 Header Format [13]

• 1 - LISP Map-Request

• 2 - LISP Map-Reply

• 3 - LISP Map-Register

• 4 - LISP Map-Notify

• 8 - LISP Encapsulated Control Message

In addition, each letter also triggers a bit, for instance the type �eld with number 1

and letter S is the Solicit-Map-Request (SMR), which is an important bit in the handover

testbed process. Further, in the LISP implementation section, it will deeply described.

3.4 LISP-MN

The basic LISP architecture does not support mobility of end hosts as it was previous

mentioned. Nowadays, it is possible to support mobility because the extension LISP Mobile

Node (LISP-MN) has already been done by LISPmob organization.

38



Figure 3.3: LISP Control Plane Messages Format [13]

3.4.1 Introduction

LISP-MN [14] enables MNs to have a permanent EID while roaming into LISP and

non-LISP sites; this means that the MN can be always reachable, even whether it changes

the network and consequently its point of attachment because the EID address remains

the same independent of the network and the attachment point which is connected.

EID is used for identi�cation but not for forwarding. Forwarding is provided by the

RLOCs which represent the location of EIDs and are used for routing. Thus, LISP provides

support for location/identity separation making it a suitable mobility protocol.

LISP-MN assumes that a MN forms a separate LISP domain and implements the

ITR/ETR functionality for incoming and outgoing tra�c. For example, to send tra�c, a

MN must encapsulate outgoing tra�c to some ETR or PETR, and it must be con�gured

with the RLOC of ETR or PETR. Besides, for receiving tra�c, the tra�c must be tun-

nelled to the MN from some ITR, PITR or even from another MN.

The current point of attachment to the network de�nes the current RLOC for the MN.

The location of the host can change several times during an ongoing connection without

breaking the connection. When the hosts location (RLOC) changes, the LISP-MN will

encapsulate the packets towards the new RLOC. This is done through the LISP Mapping

System, a distributed database that contains EID-to-RLOC bindings, which has always

the latest RLOC for the MN's EID. Moreover, this also happens because the MNs register
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their currently valid locator at their con�gured Map-Server and refresh this information

by sending Map-Register messages as soon as they are connected to one or more new

attachment points.

3.4.2 LISP Mapping System

The LISP Mapping System [45] is a central part of the LISP-MN architecture, and it

is an accessible service that stores and gives location information associated with EIDs

(EID-to-RLOC mappings). In the LISP mapping system, the included elements are Map-

Servers and Map-Resolvers. The EID-to-RLOC mappings are stored in Map-Servers, and

in the case of existing more than one Map-Server, each one is associated with a portion of

the EID name space, and stores the location information for those EID pre�xes, forming

a partition EID-to-RLOC bindings. Thus, with a distributed mapping system (with more

than one Map-Server), the scalability issues could be avoided. Further, each LISP MN is

associated with a speci�c Map-Server where it registers its EID-to-RLOC mapping, and

updates it according to its movement. In order to do that, Map-Servers have assigned a

set of pre�xes (EIDs) and delegate them to LISP tunnel routers or to MNs.

Map-Resolvers are used as an interface to the mapping system for looking up the EID

location information. This function has similar functionality as DNS resolvers have in

today's Internet. For instance, the LISP MN sends EID Map-Request to the mapping

system through Map-Resolver; therefore, this EID lookup is going across the mapping

system to the respective Map-Server which will reply with the respective RLOC for the

requested EID.

3.4.3 Registering EID and obtaining an RLOC

Each time that a MN roams across providers, it remains with the same EID, but other-

wise it gets a di�erent RLOC in each location it is attached. In that context, it is required

a previous registration by all MNs in the Mapping System. This registration is a LISP

message called Map-Register, which includes a EID-to-RLOC binding; this means that the

carried message is �lled with a permanent EID and its respectively location, where it is

connected (RLOC).

When the MN is moving, it is constantly changing its position, so it is mandatory to

register the new location, the new EID-to-RLOC binding into the Map-Server every times

this occurs. Thus, in every new RLOC a LISP Map-Register message is triggered by the

MN in order to Register it and the new location to be reachable by others MN when they
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require their EID for further communications. In the multihoming case, the MN is con-

nected to several attachment points at the same time, thus it may include multiple RLOCs

in the Map-Register message.

However, it is important to know that LISP-MN and the Map-Server share a pre-

con�gured key in the previous settings, which is made to ensure the authentication. There-

fore, if the key does not have a match validation, the Map-Register is not recorded in the

Map-Server database.

Further, the LISP Map-Notify message is triggered by the Map-Server to answer to the

Map-Register. Upon receiving this message, the MN is aware if the registration is valid or

invalid.

To be familiar with the register process described above, the �gure 3.4 illustrates this

process.

Figure 3.4: Registering an EID-to-RLOC bindings [3]

3.4.4 Signalling EID-to-RLOC bindings and transmitting data-

packets

We are already familiar with LISP messages described before, but here it will be ex-

plained the LISP procedure with some examples.

First of all, as it is described in picture 3.5 after retrieved the destination EID, it is

possible to transmit packets to this EID. The packet transmitted by the EID of the static

node (SN) to the EID of the MN is routed to the tunnel router (TR). Upon reception of
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this packet, TR checks if it has an EID-to-RLOC for this EID in its Map-Cache. If the

Map-Cache does not contain the mapping, a Map-Request message is triggered in order

to discover which is the location associated to the required EID of the MN. This message

will query the mapping system (Map-Resolver and Map-Server typically co-located) to

search and �nd a valid EID-to-RLOC binding for this EID. Once this binding is found, a

Map-Reply message, presented in �gure 3.6, is triggered from the Map-Server to the TR,

which contains the actual location of the required MN; further the TR stores the received

EID-to-RLOC binding in order to avoid a future Map-Request message while the MN does

not change his position.

Despite RLOC being the main element in the Map-Reply message, there are others

to take into account, such as Time-To-Live (TTL), the EID of the MN required and the

priorities and weights of each locator, if there are more than one (multihoming). TTL is

the time which the stored EID-to-RLOC binding is valid; afterwards a Map-Request mes-

sage is triggered again to update that. The priorities and weights are previous assigned to

each locator: usually they are equal for all of them, but they can be di�erent, for example

in multihoming case if it is required to chose a favourite point of attachment to establish

communications instead of another.

Once RLOC is discovered by the TR, the SN is able to route packets until the MN

through a created tunnel. Furthermore, if the SN is sending packets to the MN, �rst the

packets are going straight to the TR which has in Map-Cache the respective RLOC of the

required EID, and use that to encapsulate packets towards the MN until the TTL expires

or until the MN remains attached to the same location. Therefore, when the MN moves,

such as handover, another messages are exchanged to realize that. These messages are

described in the handover processes section.

3.4.5 Deployment Scenarios

This section will present several distinct connectivity scenarios considered by the LISP-

MN design [17].

There are many di�erent possible scenarios regarding LISP-MN mobility, such as:

• A MN in a non-LISP domain communicates with a SN in a LISP domain.

• A MN in a non-LISP domain communicates with a MN in a LISP domain.

• A MN in a non-LISP domain communicates with a non-LISP node.

• A MN in a LISP domain communicates with a non-LISP node.
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Figure 3.5: Map-Request example [3]

Figure 3.6: Map-Reply example [3]

• A MN in a LISP domain communicates with a SN in another LISP domain.

• A MN in a LISP domain communicates with a MN in another LISP domain.

• A MN in a LISP domain communicates with a SN in the same LISP domain.
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• A MN in a LISP domain communicates with a MN in the same LISP domain.

Here it will be described two of them. These are chosen specially because they cover

mostly all the LISP messages exchanged to ensure mobility for the several cases. A case

that a MN in a LISP domain communicates with a SN in another LISP domain is present

in �gure 3.7.

It is important to note that the MN is roaming while the SN is stopped. In that case,

the MN tries to communicate with the SN. If it does not have the corresponding RLOC

of the SN in its Map-Cache, it must query the Map-Server with a Map-Request message

requesting the RLOC of EID2. Upon receiving the Map-Reply message, the Map-Cache is

updated and a tunnel between them is created in order to send tra�c directly through the

tunnel. Thus, through that tunnel, the MN encapsulates and sends data packets straight

to the SN. Once the MN moves and changes its location, it must update the location to

the Map-Server sending a new Map-Register message. After the MN updates the EID-

to-RLOC binding, the SN can retrieve the new mapping data and further it is able to

decapsulate data again straight from the MN.

Figure 3.7: A MN in a LISP domain communicates with a SN in another LISP domain

[17]

Another case, the second one, happens when a MN in a LISP domain communicates

with a non-LISP node in �gure 3.8. The procedure is the same way as the one mentioned

above, with some di�erences as described below.

The MN in the LISP domain addresses a packet towards the IP address of a non-LISP

node. As there is no RLOC corresponding for that, it encapsulates the packet towards the

PETR which corresponds to this node; in that case RLOC F is assumed as the PETR of

the corresponding node. First, when the packet is sent by the MN towards the PETR, it

is received and encapsulated by ITR, and further, it is sent towards RLOC F. When it is

received, the PETR decapsulats the packet and, the non encapsulated packet is carried to

the non-LISP node.

In the reverse direction, the non-LISP node addresses a packet towards the EID of the

MN. The packet is forwarded to a PITR (RLOC-I), which is responsible to encapsulate
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the packet and then forward to an ETR. Upon receiving the packet, ETR decapsulates it

and �nally sends it to the MN.

Figure 3.8: A MN in a LISP domain communicates with with a non-LISP node [17]

3.5 Chapter Considerations

This chapter focused on the LISP protocol description.

At the beginning an overview of LISP protocol has been done. In this introduction, it

has been described what it is the protocol, how it works and what are the main features.

Then, a detailed description regarding LISP components was made, as well as it was

depicted their functionalities. Further, as there are many LISP messages, they were deeply

explained in order to understand how the protocol works.

As the central subject of this work is mobility, the existing extension mobility for LISP

is presented. Thus, the extent of mobility LISP-MN was presented, divided into various

topics and explained in detail in order to understand its mode of operation for future use.

Last, it was described the set of possible communication scenarios using LISP mobility

protocol.

After describing deeply the LISP, the next chapter focuses on the speci�cation and

implementation of the mobility protocol in vehicular OBUs and RSUs.
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Chapter 4

Implementation of the LISP mobility

protocol

In order to analyse the performance of LISP in vehicular environments, it has been

developed a prototype capable to support mobility in vehicles. The proposed prototype,

LISP-CAR, comprises a virtual management server acting as MS and MR, an extended

LISP-MN and all elements required to allow cars and users to connect to several networks.

During this chapter, it is described the implementations done in order to guarantee mobil-

ity to the entire network regardless of the access technology.

Section 4.1 shows the LISP architecture and the modi�cations or adaptations performed

in order to build the LISP-CAR architecture.

Section 4.2 presents the components used to build the architecture for the future eval-

uation of the protocol.

Section 4.3 describes the implementation of the LISP-CAR architecture. The Mapping

System implementation is detailed as well as all the con�gurations performed. Then, the

software tools used in LISP-CAR architecture are explained.

Section 4.4 explains how the radvd and rdisc6 are used, implemented and why they are

so useful to the LISP mobility. It is also present the problem and the solution of the radvd

and rdisc6 using WAVE technology.

Section 4.5 describes the importance of DHCP and where it is used on this architecture.

Section 4.6 details the handover process and all the LISP messages exchange.

Section 4.7 describes the connection manager implementation as well as its operation.

Finally, section 4.8 summarizes the previous sections described above.
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4.1 LISP Architecture

In this section, its made a brief overview according to the LISP architecture and its

adaptation to a vehicular architecture.

The LISP architecture presented in �gure 4.1 is used as the base to build the LISP-CAR

architecture. The �gure highlights three fundamental parts, which are:

• Destination Space (EIDs)

• Transit Space (RLOCs)

• Mapping System

Those mainly parts will be kept in the LISP-CAR architecture, but with the appropriate

elements, which will be described in the components section.

Every subsection goes deep in the details on how to con�gure or reprogram the speci�ed

network component.

Figure 4.1: LISP Architecture [35]

4.2 Components

In this section the fundamental components to the LISP-CAR architecture are referred

below.
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So, the components used to build the new architecture are:

• LISP Map-Server and LISP Map-Resolver co-located.

• RSUs

• OBUs

• Laptops as MNs

In the following section these components will be described in order to detail their

functionality and their implementation.

4.3 LISP adaptation to Vehicular Network

Taking into account the architecture presented in �gure 4.1 and the fundamental com-

ponents detailed previously, the LISP-CAR architecture presented in �gure 4.2 is capable

of supporting vehicular mobility to the vehicles and their passengers using LISP.

As can be seen according to the �gure, there is a Map-Server co-located with the Map-

Resolver, two LISP sites, RSUs and OBUs. In this context, there is the possibility to

extract several scenarios from the architecture to further evaluate the vehicular mobility

using LISP communications. The addresses assigned in the �gure above are just shown as

possible example.

4.3.1 Mapping System Implementation

A distributed database, the mapping system, is one of the most important part; it is

responsible for maintaining the associations between EIDs and RLOCs and it is comprised

of LISP Map-Servers and Map-Resolvers.

In the course of this thesis, it has been mentioned that the LISP Protocol is a Cisco

developed protocol. Furthermore, LISPmob [23] is an organization that provides an open-

source LISP and LISP Mobile Node (LISP-MN) implementation for several operating sys-

tems. In a �rst approach, it was decided to use Map-Server (MS) and Map-Resolver (MR)

provided from LISPmob, more precisely for LISP Beta network. LISP Beta network [46]

is a multi-company, multi-vendor e�ort to research real-world behaviour of the LISP pro-

tocol.

The �rst approach has become unused as soon as we discovered that it contained sev-

eral problems. It was necessary to had a publicly routable, non-�rewall IP address on the
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Figure 4.2: Prototype of LISP-CAR Architecture

device to connect to the LISP Beta network, because Beta network does not have support

for Network Address Translation (NAT) traversal. A set of private IPs had to be made

available as well as opening several ports such as control port and data port. Beyond

these problems, the Map-Server provided from LISP Beta network is located in London,

which would bring another delay to the handover times. The total handover time would

su�er an increase: this increase corresponds to the sum of the round trip time of all LISP

messages which come from or to the Map-server. Despite being a small time increase, it

has a negative impact in the vehicular mobility which should be avoided.

Given those facts, and seen that it is the �rst work to address the LISP protocol in

vehicular networks, the public idea was abandoned, in other words, the Map-Server pro-

vided from LISP Beta network was not used, and it emerged the idea of creating one in

the private environment.

In order to create that it was implemented Cisco Cloud Services Router (CSR) 1000V
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Series, a virtual router provided by Cisco with several bene�ts and uses-cases. Cisco allows

the costumers to download and use for free for 60 days with full access to all features and

a throughput of 50 Mbps. Thus, the CSR 1000v was emulated on a laptop, and several

commands were executed in order to make CSR 1000v to become operational.

The CSR 1000v was chosen due to the fact that it supports LISP mobility and routing.

With these conditions, the virtual router can be used as MS and MR, both co-located for

IPv4 or IPv6 communications. Therefore, as the router �ts perfectly, it was used as MS

and MR in a private environment.

In this context various con�gurations were made to use CSR 1000v as MS/MR, and

others settings were performed according to LISP-CAR architecture. So these settings are:

• MR/MS con�guration.

• LISP sites con�guration.

• Interfaces con�guration.

• Routes con�guration.

In order to allow CSR 1000v to act as MS and MR, it is necessary to activate them as

presented in table 4.1. From that, the router is able to work as a database maintaining the

associations between the vehicle and its position, acting as an anchor point, which provides

control-plane scalability.

Regarding LISP protocol operation, all connectivity cases involve communications with

LISP sites or non-LISP sites. EIDs are used within sites while RLOCs are used by the

transit network. Consequently these sites have to be created in the MR/MS in order to

recognize the future EID-to-RLOC bindings during the evaluation of the protocol with

whole elements implemented. So, two LISP sites are created and the settings are presented

in table 4.2. According to these settings, there are two LISP sites, each one with IPv4

and IPv6 EID-pre�x available and one authentication key. EID-pre�x represents a set of

EIDs available to the nodes within the LISP site, under a single technical administration.

Both EID-pre�x support accept-more-speci�cs, which is the condition necessary to support

mobility. However, the authentication key is essential to validate all EID-to-RLOC bindings

from any EID behind the respective EID-pre�x. The reasoning behind the importance of

the key will be clari�ed in detail in the following section.

In order to reach the MR/MS, it is necessary con�gure at least one interface. The

interfaces con�guration is presented on table 4.3 and it shows two addresses in one interface,

one for IPv4 and another for IPv6; thus MS/MR becomes reachable independent of the IP
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type.

Finally, to allow communication, both input and output information, several routes

must be con�gured presented in table 4.4. In the table it is presented mainly the destination

network as well as the gateway to achieve the network. It is important to clarify that the

LL shown there means Link-Local, a permanent IPv6 address, and the number inside it

represents which is the RSU, so for instance the LL[554] is the Link-Local of RSU with

number 554 and the corresponding interface depending on the access technology. In sum,

regardless of the access technology, WI-FI or WAVE, which handover has been performed,

the MS/MR is prepared according to the routes de�ned.

Table 4.1: MR/MS Con�guration

IPv4 IPv6

Map-Server Enable Enable

Map-Resolver Enable Enable

Table 4.2: CSR 1000V Sites Con�guration

Site name Authentication-key Eid-pre�x IPv4 Eid-pre�x IPv6

Site1 mob 172.16.1.0/24 2001:db8:a::/48

Site2 mob1 172.16.2.0/24 2001:db8:b::/48

Table 4.3: CSR 1000V interfaces Con�guration

Interfaces Name IPv4 address IPv6 address

GigabitEthernet1 192.168.5.101/24 20:a:a:a::101/64

GigabitEthernet2 - -

GigabitEthernet3 - -

To make sure that the MS/MR is properly working, a debug level feature is very

important as well as the LISP Site registration information.

The MS/MR on a debug level can intercept all LISP messages, such as Map-Register,

Map-Notify, Map-Request and Map-reply. In �gure 4.3 it is presented an example of the

received Map-Register message in MS/MR. It is also possible to view the EID-to-RLOC

bindings stored on it: into the database it is possible to observe the location of each
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Table 4.4: Routes Con�guration

Routes technology IPv4-addr IPv4-gw IPv6-addr IPv6-gw

WI-FI 40.5.54.0/24 192.168.5.54 40:A:B:554::/64 LL[554]

40.5.55.0/24 192.168.5.55 40:A:B:555::/64 LL[555]

WAVE 20.5.54.0/24 192.168.5.54 20:A:B:554::/64 LL[554]

20.5.55.0/24 192.168.5.55 20:A:B:555::/64 LL[555]

MN, and where each permanent EID is located at that moment. The table 4.5 represents

an example of the information that the MS/MR can store when LISP is running on the

network. Taking a look at this example table, it is possible to verify that site1 is o�

while site2 is on. This means that LISP is only running in part of the network, the part

of network with the site2 informations. According to site2, all MNs with their permanent

EIDs belonging to these EID-pre�x have been registered in MS/MR at 1 second ago through

the RLOC address mentioned on the last registration. As the EIDs of all MNs remain the

same, every time that each MN behind this EID-pre�x change its attachment point, it has

to update the MS/MR database and in this table the RLOC last registered will be replaced

to the new one.

Figure 4.3: MS/MR debug level
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Table 4.5: LISP Site Registration Information

Site name Last Register up Last Registered(RLOC) Eid-pre�x IPv4/IPv6

Site1 never no � 172.16.1.0/24;2001:db8:a::/48

Site2 00:00:01 yes 20:a:b:555::201 172.16.2.0/24;2001:db8:b::/48

4.3.2 Network Implementation

Regarding network implementation it is taken into account all the necessary implemen-

tation performed in RSUs and OBUs.

The RSUs act as a simple static station, which provide several types of wireless connec-

tions, and every packets that go through them are routed normally as an ordinary router.

In this case all RSUs are connected via Ethernet to the MS/MR.

Regarding OBUs, they are able to function as a node as well as a router. This means

that, on one hand, it can connect via WI-FI or WAVE to RSUs and, on the other hand,

they can di�use WI-FI or WAVE to other nodes that will bind to it. Moreover, OBUs may

act as MN or SN depending on the condition being tested.

Furthermore, in order to communicate with MS/MR and to ensure vehicular mobility,

to keep the connection or communication alive between MN or SN during the handover

procedures, it is necessary to apply LISP mobility protocol in the OBUs.

The LISP-MN open-source code for openWRT provided by LISPmob [23] was used and

changed to work for vehicular networks. Through the LISP-MN mobility is guaranteed;

however the time of handover is very large. As the goal is to ensure mobility between

vehicles which are in constant and fast movement, changes were made in the LISP-MN

accordingly. In the lispd_iface_mgnt.c, the function responsible for the LISP manage-

ment, it has been changed in order to that and the di�erences are present in the software

tools subsection. Thus, these functions were extended in order to work as fast as possible

according to the handover technology used.

Further, once LISP-MN is compiled, the binary is running together with a con�guration

�le in order to ensure mobility for the vehicles and their passengers. Each con�guration

�le is di�erent for each OBU. This �le comprises important information presented and

detailed in several tables below, which their information consists primarily of:

• Daemon con�guration.

• RLOC-probing con�guration.

• MR con�guration.
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• MS con�guration.

• Database-Mapping Con�guration.

According to the daemon con�guration presented in table 4.6, it is enabled a debug

level, which may be within the range [0,3]. As higher is the level, more verbose is the

information essential to see if everything is working correctly. If there is no issue, the 0

debug level is the most appropriate. Router mode is o�, so LISP is working on MN mode;

thus the OBU is considered a MN, as well as their users connected to the OBU. The Map-

Request retries represent the number of times that Map-Request message could be sent.

It is presented a value of 2 to avoid any mistake, but 1 is enough.

The RLOC-probing con�guration in table 4.7 exposes if there are or not RLOC probes.

This means that, if enable, the MN will be probing all RLOCs of all MNs present in its

cache in order to know whether they remain valid or not. The number of times that this

happens and the interval between them is described by RLOC retries and RLOC retries

intervals. These settings were made to be truly reliable, because without that everything

works.

Regarding table 4.8, it represents both address, IPv4 and IPv6 to reach the MR.

Further, table 4.9 portrays two Map-Server con�gurations, each one corresponding

to each OBU. The di�erence between them lies in a key important to know whether a

Map-Register is valid or not, comparing this key with the already existent on Map-Server

informations at CSR 1000V, which is presented in table 4.2. The Map-Server IPv4 and

IPv6 addresses are the same as previously mentioned for the MR, due to the fact that they

are co-located.

To sum up, in the table 4.12 it is demonstrated two di�erent database-mapping for

each OBU, due to the fact that each OBU represents di�erent LISP sites: two di�erent

technical administration with di�erent IPv4 and IPv6 EID-pre�x that should correspond

with the already con�gured at CSR 1000v MR/MS. Consequently, the con�gured RLOC

interface depends on the technology to connect to the RSUS: if it is WAVE it corresponds

to wlan1 interface, while for WI-FI it is wlan0 interface. Thus, the RLOC assigned to each

OBU is the address presented at the mentioned interface, allowing communication to the

OBU and to all users binding to it from other MN, or even from THE MS/MR, in the

same way it will route packets to other MNs and also to reach the MS/MR.

After explaining the main LISP con�gurations in the OBUs as well as the LISP-MN and

all network implementations, in �gure 4.4 presents the �ow diagram of the LISP mobility

operator when LISP is starting in OBUs, together with the con�gurations required in order

to ensure the vehicular mobility.
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Figure 4.4: LISP Mobility operation �ow diagram

According to �gure 4.4, imagine that an OBU and its users are moving and receiving

packets from another OBU through a tunnel already created. Thus, while the OBU is

moving, it changes its point of attachment (RSU), it has to register its new RLOC to

the MS/MR, and it must send the SMR for the other OBU which it has a connection

established and is receiving its packets. So, the other OBU, upon receiving a SMR, is able

to update its cache, querying again the MS/MR with Map-Request message in order to

obtain the new RLOC. The new RLOC will be used to create the new tunnel, whereas

the other is no longer valid because the OBU is no longer there. So, the packets are sent
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Table 4.6: Daemon Con�guration

con�g Daemon

router mode o�

debug level 3

map request retries 2

Table 4.7: RLOC-Probing Con�guration

RLOC-probing

RLOC probe intervals 0

RLOC probe retries 2

RLOC probe retries interval 5

through the new tunnel to the OBU which had the established connection.

Thus, as described above, the SMR is sent by who makes the handover to all those

who have an established communication, whose function is driving the LISP Map-Request

message to �nd the new location and keeping the connection alive.

4.3.3 Software Tools

In this work, several software tools have been used in order to implement a vehicular

mobility using LISP. Some of them are software platforms which have been taken as a

basis for development, and other are programs which main functionality is to carry out

the evaluation part of the implementation. In this section, a description of these tools is

reported:

• OpenWrt: All the RSUs and OBUs used on the testbeds run a version of the OpenWrt

operating system modi�ed by VeniamWorks company. The OpenWrt [37] is a Linux

distribution for embedded devices, with a strong integration of network components.

It provides a fully writeable �le system with packet management that allows the user

to customize the device through the use of packages to suit any application. Given

these facts it is concluded that OpenWrt is a suitable operative system for developers

and it is easily modi�able operating system for router.

• LISPmob: All OBUs run LISP-MN code in C and C++ languages provided by LISP-

mob [23]. LISPmob is an open-source LISP and LISP-MN implementation for several
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Table 4.8: Map-Resolver Con�guration

Map-Resolver

address 192.168.5.101

address 20:a:a:a::101

Table 4.9: Map-Server Con�guration

Table 4.10: OBU1

address 192.168.5.101

address 20:a:a:a::101

key-type 1

key mob

proxy-reply on

Table 4.11: OBU2

address 192.168.5.101

address 20:a:a:a::101

key-type 1

key mob1

proxy-reply on

Table 4.12: Database-Mapping Con�guration

Table 4.13: OBU1

EID-pre�x 172.16.1.0/24

EID-pre�x 2001:db8:a::/48

RLOC interface wlan1

priority-v4v6 1

weight-v4v6 100

Table 4.14: OBU2

EID-pre�x 172.16.2.0/24

EID-pre�x 2001:db8:b::/48

RLOC interface wlan1

priority-v4v6 1

weight-v4v6 100

operating systems. Some changes were made in LISP-MN in order to work for ve-

hicular networks. The LISP-MN has a very slow handover which is based on SMR

procedure presented in section 6.6.2 of [13]. This process could take a few seconds,

roughly between 4 and 7 seconds. As LISP-MN is used for the vehicles which moves

very fast performing quickly handover, then was changed that. Further, during the

mobility tests, when LISP-MN is running in OBUs, it was �gured that SMR is trig-

gered as soon as a new RLOC is felt on RLOC interface bringing some issues. The

problems happen when the SMR is triggered but the default route is not already

de�ned. Due to that, SMR is not sent and consequently the destination of SMR does

not update its cache resulting on a loss of connections and a wrong location sending

packets. This mainly happens in case of handover via WI-FI because it takes a long
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time to get the new RLOC and their default route, so as the SMR leaves before

that, the destination of the SMR does not update its caches unless it is changed the

process between losing the address and gateway, and the allocation of the new ones.

Only after that the SMR must be triggered.

• VMware Player: is a virtualization software package used to emulate CSR 1000v,

which is con�gured to work as MS/MR.

• Builder: is an ubuntu image running in the VirtualBox which has OpenWrt build-

root installed. OpenWrt builroot is explained in the next subsection.

• VirtualBox: is a full virtualizer for x86 hardware, targeted at desktop, server and

embedded use.

• Wireshark: it is used to listen on the physical interface(s) in order to see the en-

capsulated packets or listen on the lisp TUN interface (lispTun0) to see the packets

before or after being encapsulated. With "lisp" and "lisp-data" �lters it is possible

to look for LISP control or LISP data packets in order to know whether the packets

are reaching the destination.

4.3.4 OpenWrt buildroot

OpenWrt Buildroot, a greatly modi�ed version of buildroot, is a set of patches and

Make�les that allows users to easily generate both a root �lesystem (�lesystem in the same

partition as the root) and a cross-compilation toolchain for an embedded system. The

cross-compilation toolchain uses uClibc and a tiny C standard library in order to generate

the binary �les from a host system to the embedded device. Thus, in order to modify the

LISP-MN code, the OpenWrt buildroot was used.

A make�le LISP-MN was downloaded and inserted in the OpenWrt buildroot containing

the following information:

• Where to download the package.

• How to compile.

• Where to installed the compiled binaries.

Using kcon�g (Linux Kernel menucon�g), it was possilble to enable the LISPmob fea-

ture. Further, when something is modi�ed in the LISP-MN code, it is again compiled in

the OpenWrt buildroot generating a binary �le. Then, the binary �le is sent to the OBUs

allowing them to use the LISP protocol.
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4.4 RADVD/RDISC6 Con�guration

The Router Advertisement Daemon radvd [1] is essentially an open-source software

product that implements advertisements of IPv6 router pre�xes using the Neighbour Dis-

covery Protocol (NDP) [40]. To take better advantages from that, rdisc6 is also used to

lookup the list of IPv6 pre�xes: rdisc6 is an Unix program which implements the ICMPv6

Router Discovery.

There is a radvd process on OBUs which is responsible to send RAs with the mainly

following information:

• Advertisement interface.

• Advertisement pre�x.

On the other hand, there is a script rdis.py to run in MNs which is in charge of

automating the process of the EID allocation with the following steps:

• Router Solicitation.

• Extract the pre�x and add the su�x.

During the execution of this research, radvd is used in OBUs in order to answer requests

with router advertisement (RA) messages; rdisc6 is used in MNs to router solicit (RS) an

IPv6 pre�x.

The main purpose of radvd running on OBUs lies in the fact that it can distribute the

EID-pre�x for all those users that are connected to the OBUs. Thus, according to radvd

con�gurations, the RA messages mainly comprise: the interface used to send the RAs,

the routing pre�x as well as the address of the interface which provides those RAs. As

users connect to OBUs via WI-FI, the chosen interface is wlan0, corresponding to WI-FI

addresses, and the pre�x to be advertise is the EID-pre�x de�ned in each OBU.

Thus, when a passenger enters in a car represented by the OBU and wants to connect

to the car, it must acquire an EID. In this context, a rdisc6 is triggered in order to require

an IPv6 pre�x in which radvd will answer with the EID-pre�x. Upon receiving the EID-

pre�x of the respective OBU, it extracts the pre�x and adds a random number, to form

an IPv6 EID. If there are multiple MNs on the same vehicle, it is necessary to certify that

the random number provided for the construction of the EID is not repeated. A script is

included in all MNs to provide this function.
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4.4.1 RADVD/RDISC6 problem and solution using WAVE tech-

nology

The radvd is also used in RSUs in order to provide the IPv6 network pre�x when

required by the OBUs, which they will use to form their IPv6 address: it is comprised

by the received pre�x and its own interface LL. Thus, when an OBU wants to connect

to a network or a network provider from the RSUs, it has to send a rdisc6, which will be

answered through a RA. Further, the respective OBU has to read and extract the IPv6

pre�x provided by the requested RSU, and together with its su�x, which is its own LL, it

forms its IPv6 address.

In case of the connection between the RSU and the OBU be performed through the WI-

FI network, the su�x will be the LL in the wlan0 interface; while in the WAVE connection

case, the su�x will be the LL presented in the wlan1 interface. However, the RS is an

ICMP message sent to a speci�c multicast address, the �02::2 [6]. This is not a problem

in the WI-FI connection established between the OBU and the RSU, but it is indeed a

problem in the connection established through the WAVE technology.

When it is used the WI-FI connection, it is established a session, so it is guaranteed that

the packets sent by the OBU will only be received by the RSU with which it is connected,

even if there are other RSUs within range. Otherwise, with the WAVE technology a

problem arises, since there is no prior session establishment on the connection by the OBU

to the provider RSU. Thus, when the OBU sends the RS message to the multicast address

�02::2, all RSUs will answer containing di�erent pre�xes into each RA messages, while the

RS should only be sent to one RSU which the OBU required, and then only the RSU would

respond with the desired pre�x.

The RS and the RA performed by the OBUs and the RSUs, respectively, are used in

order to the respective OBU to connect to the RSU with the best connection available, in

which this subject is handled in the implementation of the connection manager. Further,

and deeply detailed in the connection manager implementation, with the command "uwme

getAvailable" performed by the OBUs, among many things, it is possible to know which is

the best RSU network available and its MAC address. This MAC address will be converted

in the respective LL address. Thus, with this LL, it emerges a solution in order to assign

the correct IPv6 pre�x address between all of them presented in the RA messages when

a RS from the OBU is triggered. So, upon receiving multiples RA messages, the correct

pre�x is obtained by �ltering the RA messages with the LL of the RSU with the best

quality obtained earlier as mentioned above. Thus, this eliminates the problem mentioned

above and makes it possible to obtain an IPv6 pre�x through the WAVE technology, even
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though the RS is sent to a multicast address.

With the radvd and rdisc6 described above, we can ensure automatically IPv6 EID to

the MNs as well as the IPv6 pre�x, in order for the OBU to connect to the required RSU.

4.5 DHCP Considerations

The radvd/rdisc6 takes care of IPv6 addresses while Dynamic Host Con�guration Pro-

tocol (DHCP) [38] is responsible for IPv4 addresses.

DHCP is a protocol that o�ers especially dynamic con�guration of terminals, with the

grant of IPv4 host addresses, subnet mask and default gateway.

So, DHCP is very important in the IPv4 networks being responsible for the following

characteristics:

• Range of addresses

• Interface that disseminates the network

In this work DHCP has been very important in all WI-FI connections using IPv4 ad-

dresses, such as between RSU and OBU and between OBU and MN.

In this case the network interface that disseminates the WI-FI network is respectively

the wlan0 and all users that connect to that network will get an address within that range

of addresses becoming connected to that.

For example, when a vehicle is roaming, it constantly changes its connection between

RSUs. In order to get the IPv4 addresses it is used DHCP.

On the other hand, between OBU and MN, DHCP is very important in order to es-

tablish passengers WI-FI connection inside the vehicle and get an EID for users from the

EID-pre�x available. Thus, DHCP ensures "automatic" IPv4 addresses to the OBU and

MN when required.

4.6 Handover Process

Regarding the handover process, when the MN receives a new RLOC, it has to update

its EID-to-RLOC mapping in the associated Map-Server to maintain reachability at its

new location. This �ow process is illustrated in �gure 4.5 with an OBU1 as an example.

In order to OBU1 and its MNs maintain the connection with other MNs (vehicles and

their users) who are already connected, it is necessary to send a SMR bit to those MN,

allowing those MNs to do a new search to �nd the new RLOC, which they will establish

62



Figure 4.5: Handover operation �ow diagram

a new tunnel to send packets. Going deeply in this subject, when the MNs receive the

SMR, they automatically trigger a Map-Request towards the MS in order to know the new

RLOC. Upon receiving the reply containing the updated RLOC, they establish the new

tunnel which becomes available to send the packets again.

Finally, if everything described above is fast, the users are unaware that they changed

the network provider, since they keep the connection alive. Thus, the handover has been

made successful.

4.7 Connection Manager Implementation

In order to make the handover process of the vehicles while they are moving automatic,

it is necessary a system capable of monitoring the available networks at their range and

trigger the handover to the strongest network, this means to the available network with

the best signal.

Regardless of the access technology, the connection manager does a search of possible

connections and chooses the one that has the strongest signal. Once chosen, if it is equal
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to the previous network selected, the handover is not made and all previously existing

settings are maintained; otherwise, the handover is done and it shall proceed with sending

a solicitation message to know which is the network with the best signal and extract its ID

which identifying the RSU to attach. In case of an IPv4 handover, upon receiving the ID

corresponding to the board which belongs to the network with better signal, it is added

to the pre�x and then with the su�x which representing itself forming the IPv4 address,

or it can also be required an address with DHCP in WI-FI technology. Further, a default

route to the respective interface of the RSU with the best signal is added, and �nally the

old address is deleted. In case of an IPv6 handover, it must trigger a RS to the LL of

the strongest network as explained in 4.4 section in order to receive the IPv6 pre�x and

with their LL forming his own IPv6 address; so when the handover is done, it is repeated

this process to obtain the new IPv6 address. Further, it must also change the route to

forward the tra�c accordingly, so it is added a new default route to the LL of the new RSU

connected. This LL is obtained by converting the MAC of the new RSU in LL, and this

MAC is in turn obtained from the response to the solicitation message done previously.

Afterwards, it is necessary to eliminate both the old address as well as their old route.

When the request is made to receive all available networks, then several parameters

are presented from each network and the metric that represents the strongest signal is

the Received signal strength indication (RSSI); therefore the network that has the highest

RSSI, it will be the chosen network.

A script handover.py was made in order to implement the operation method of the

connection manager.

The connection manager operation �ow diagram for WAVE handover can be observed

in �gure 4.6. The same procedure goes for WI-FI handover.

The script for WI-FI is done in the same way as for WAVE, so the following information

describes the script made for the IEEE 802.11p access technology:

• uwme getAvailable: This command acts as a solicitation and performs a scan to all

available networks. In each available service, the main information is the "Provider

Service Context", who let us to know who is the available provider indicated by the

ID, the "RSSI", which gave us the received signal strength indication and the "MAC

address", which indicate the valid MAC address of the WAVE interface (wlan1) of

the concerned provider. Then, the service with the strongest RSSI is chosen.

• Mac to Link-local: The MAC address of theWAVE interface of the chosen provider

is analysed and has made the e�ort to convert for Link-local (LL).
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Figure 4.6: Connection manager operation �ow diagram
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• Lookup IPv6 prefix through LL: Send a RS using the command: "rdisc6 wlan1"

and then extracts the IPv6 pre�x of the chosen provider, �ltering through the con-

verted LL all RA messages received in order to �nd the desired IPv6 pre�x.

• Add Addresses/Routes: Adds the new address with the new pre�x received from

the new strongest provider, and the su�x is the own Link-local presented at the

WAVE interface, which is always the same regarding IPv6 rules. Then, it con�gures

the default route via the new converted LL in the WAVE interface.

• Delete Addresses/Routes: Removes the default route through the Wave interface

to the converted Link-local, and it also removes the address existent at the moment

on the wlan1 interface.

To sum up, it is important to note that these actions described above ran in an in�nitive

loop, and every second (could be changed) it is triggered the top action: if the strongest

RSSI is the same than before, the handover does not occur and the other four actions do

not happen; if the handover occurs, these four actions are triggered seamlessly.

4.8 Chapter considerations

This chapter presented the LISP mobility implementation.

Once realized how this protocol works, the types of messaging exchanged, the commu-

nication between various elements and other mains features, the LISP-CAR architecture

(�gure 4.2) has been created in order to use the LISP protocol, but adapted to the vehicular

environment. The main topics of this chapter were the following:

• Described the fundamental components to the LISP-CAR architecture.

• Explained the Mapping System implementation, the central/top part in this private

architecture which comprises the Map-Server, and the Map-Resolver responsible of

the association between EID and RLOC of each MN.

• Depicted the network implementation which comprises all the implementation per-

formed on the RSUs and on OBUs highlighting the LISP-MN operation and the

parallel con�gurations.

• Described the tools used to implement the LISP protocol into vehicular networks, as

well as in the LISPmob tool it is presented the changes performed in LISP-MN in

order to ensure mobility to the vehicular networks.
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• Described the radvd and rdisc6 fundamental con�gurations in order to provide and

lookup the respective IPv6 pre�x to the OBU or MN to form its IPv6 address com-

prised by the IPv6 pre�x obtained by those tools and with the IPv6 su�x which

is the own LL, a permanent address of each interface. Further it was reported a

problem and detailed a solution in the radvd and rdisc6 using IEEE 802.11p.

• Depicted the necessary DHCP con�gurations in order to provide IPv4 addresses in all

WI-FI connections used. So, after establishing the session through WI-FI connection,

if DHCP is ran in the AP which is disseminating WI-FI network, an automate IPv4

address is obtained in the client as soon as it connects to that AP.

• Explained what and how it is the operation of the handover process.

• Described the connection manager implementation, which is done in order to au-

tomate the handover process, and it is shown its operation to perform seamless

handover.

To conclude, in order to validate this protocol in the VANETs, it is necessary to make

tests, both in laboratory and real environments. This will be the subject of the next

chapter.
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Chapter 5

Evaluation

This chapter tests and evaluates the performance of the LISP protocol in vehicular

environments.

In section 5.1 an introduction about the evaluation is made, explaining brie�y what

will be done in order to test the mobility in vehicular networks using the splitting between

identi�cation and location of the MNs.

Section 5.2 details the used scenarios in order to evaluate the LISP mobility protocol

into vehicle environments. Further, the equipment and the access technology used in those

scenarios are depicted in this section.

In section 5.3 it is described which are the tools used in order to test LISP mobility

protocol, as well as the considered metrics which are considered in the handover process

to further extract the results according to those metric(s).

In section 5.4 it is presented the handover results obtained in laboratory environment

according to the testbed evaluated, and section 5.5 presents the handover results obtained

in the road environment according to the testbed evaluated.

Lastly, section 5.6 presents an overview regarding the topics described.

5.1 Introduction

The work carried out in this Dissertation requires tests to prove its truthfulness and

verify whether it is a protocol with future in vehicular networks. The tests and results

will assess the feasibility of the LISP protocol to provide seamless handover in vehicular

networks.

Thus, in this chapter it is evaluated the handover process between the RSUs in di�er-

ent networks which can transmit multi-technology, such as IEEE 802.11g or IEEE 802.11p,
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di�erent internet protocol versions, such as IPv4 or IPv6, as well as in di�erent environ-

ments such as laboratory and road. The OBUs will be changing constantly their point of

attachment (RSU) in order to establish the best connection available. This connection can

be done in IPv4 or IPv6, as well as in di�erent access technologies as mentioned above.

These handovers will be also evaluated with passengers acting as MNs inside the cars

connected through WI-FI to the OBUs in the cars. Thus, OBUs must be able to connect

to the RSUs and, at the same time, be able to disseminate WI-FI network allowing the

passengers, represented by laptops, establish their connection. Moreover, taking into ac-

count all implementations made in chapter 4, the communication between MN to MN, this

means, vehicle to vehicle, or passenger to passenger, or passenger to vehicle, will be tested

while one or both MNs are roaming into di�erent technologies, di�erent internet protocol

versions and di�erent environments.

5.2 Testbed

5.2.1 Equipment Used

The equipment used consists on the Map-Server collocated with the Map-Resolver,

the RSUs, the OBUs and the MNs. In a laboratory (lab) environment, a laptop with

UBUNTU 12.04 operating system (OS), 2.9 GB memory, 1 processor, 8 GB hard disk and

three virtual interfaces bridged is used as CSR 1000v router con�gured to behave as Map-

Server and Map-Resolver. Those entities communicate with �xed RSUs using the building

Ethernet network on lab tests and via WI-FI on road testes. Further, the RSUs displayed

in �gure 2.1 act as normal routers, enabling the OBUs to connect through WI-FI or WAVE

technology.

The OBUs also illustrated in �gure 2.1 represent vehicles in the lab and road, which

can be moving or stationary; on the other hand, the MNs represent car's passengers and

they are emulated through laptops with UBUNTU 12.04 OS.

For the real tests, in the road environment, it is also needed batteries to turn on OBUs

and RSUs, tripods to hold them and a vehicle to move along the road performing the

expected handover with an OBU inside.

5.2.2 Testbeds implemented

In order to test the LISP mobility protocol for vehicular networks, it is evaluated the

handover in IPv4 and IPv6, in the laboratory and the road environments with all possible
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combinations of intra and inter-technologies present in the table 5.1. Some scenarios were

extracted based on the LISP-CAR architecture shown in �gure 4.2. Thus, two possible

scenarios were drawn from there.

Table 5.1: Technology Handover Cases

Name Handover Case

P2P IEEE 802.11p to IEEE 802.11p

P2G IEEE 802.11p to IEEE 802.11g

G2P IEEE 802.11g to IEEE 802.11p

G2G IEEE 802.11g to IEEE 802.11g

The �rst testbed chosen is the communication between the SN and the MN into di�erent

LISP Sites. That testbed aims to test how the LISP mobility protocol behaves when a SN

is sending tra�c to a MN which is constantly roaming, changing his network attachment

point (RLOC) in order to connect to the best connection available. This can be compared

to a vehicle moving along the road performing handover between the available RSUs,

while passengers are communicating and sharing information with a stopped vehicle and

their passengers, or can be also compared with a connection or communication between

car's passengers (MN) to the internet (SN). Further, this can be tested in a more realistic

environment: imagine that in the future this SN may be a facebook server, any MN is

able to establish communication with him executing the same procedure described for this

testbed, but or the facebook server is covered by the LISP protocol (ideal case), or it is

necessary to use a PxTR in order to encapsulate the ingress packets and decapsulate the

egress packets, because this is no longer a LISP site to another LISP site communication.

Then, the communication would be made between a SN in the non-LISP site to any MN

in a LISP site.

The second testbed chosen is the communication between two MNs into di�erent LISP

Sites. Thus, this testbed is also done to understand how the LISP mobility protocol reacts

to this type of connections when two MNs into di�erent LISP sites are moving at the

same time as they establish and maintain their connection. This can be compared to the

communication between two passengers into di�erent vehicles when they are moving along

the road.

For the �rst testbed in the lab environment, illustrated in �gure 5.1, the MS/MR is

connected to the RSU1 and the RSU2 by the wired network of the building. The MS/MR

con�gurations were described in section 4.3, and regarding both RSUs, their addresses
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Figure 5.1: LISP testbed 1

were set up in order to automatically acquire addresses. For IPv6, the pre�x is presented

on that �gure in order to create and indicate the network, and the su�x which can be its

own link-local or the one described in that �gure. For IPv4, the address is comprised of a

portion that indicates the network, and the other by the ID of each board which represents

itself. The important, so far, is that both RSUs and the MS/MR are in the same network

connected by the wire.

RSUs are able to broadcast WI-FI network or to be a WAVE provider. The OBUs

must run the adapted LISP-MN protocol with the correspondent con�guration �le with

each corresponding site, in which the OBU will register its EID-to-RLOC binding into

the MS/MR (this was better explained in section 4.3). OBUs are con�gured with the IP

addresses presented in the �gure, and they disseminate WI-FI network for the MNs, and

at the same time they are WI-FI or WAVE clients. In this last option, the OBU creates

a channel in order to connect with the RSUs, and then, it starts the connection manager
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Figure 5.2: LISP testbed 2

program allowing an automatic handover. On the other hand, the MN and the SN connect

to the respective OBU as in a regular WI-FI connection, and get an EID address from the

EID-pre�x of the corresponding OBU. Each EID-pre�x of each LISP site was previously

de�ned in the OBU con�guration �le. In order to obtain the EID address, which remains

unique and independent of the connected RSU, it is used the rdisc6 and radvd for IPv6 as

well as DHCP for IPv4 as described in section 4.4 and section 4.5, respectively.

The second testbed lab environment is illustrated in �gure 5.2. It is necessary to clarify

that the MN1 as well as the MN2 are in constant movement while they are changing the

connection between RSUs, in order to connect to the best connection available. On this

testbed, the characteristics are the same as the �rst one, except for the SN that is now

replaced by the MN1; thus, both the OBU2 and the MN1 are also in movement, and it is

needed to run also a connection manager as in the OBU1 in order to connect to the best

network available.
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Figure 5.3: RSU 1 Figure 5.4: RSU 2

The real testbed is performed in the real vehicular environment the same way as in the

laboratory. However, the main di�erence is the connection type used between the RSUs

and the MS/MR: previously it was cable and now it is WI-FI. This test is made in the

public road with the RSUs placed alongside the road, as it can be observed in �gures 5.3

and 5.4. The Map-Server is placed in a middle of both RSUs, allowing them to connect

through WI-FI. Furthermore, the OBU2 as well as the SN that is attached to it and is

represented by a laptop, they are also placed alongside the road and connected to the

RSU2. The OBU2 and the MN attached are presented in �gure 5.5 and are placed inside

the vehicle with the necessary antennas as depicted in �gure 5.6. Then, the OBU2 performs

the handover between RSUs in order to connect to the best network, while the MN is in

communication with the SN.

In order to clarify certain doubts, the �gure 5.7 is shown. In this �gure it is presented

three important parts to execute both testbeds. With the MS/MR database debug, it is

possible to view all arriving messages on the virtual machine, which runs CSR 1000v router

acting as MS and MR. The two red arrows point to two LISP messages previously detailed

in section 3.3, which are captured in MS/MR. With this feature enabled, it is perceptible
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if all the processes are carried out properly and, in the negative case, the problem is

reported. Further, the debug of LISP-MN is shown on the OBU when a communication

between two OBUs is performed. Pointing with red arrow is detailed the packet header,

with visible RLOC source, RLOC destination as well as the EID source and destination.

Finally, the connection manager is presented upon working. For example, when one OBU

has a better connection through the RSU 555 instead of 554, the handover is triggered to

that network, so the OBU changes its default route as well as the RLOC, and consequently,

in the MS/MR database debug it will be observed the exchange of several LISP messages,

such as Map-Register, Map-Notify, Map-Request and Map-Reply.

Figure 5.5: OBU1 and MN inside the vehicle

5.3 Tools and metrics

In order to get a good characterization of the handover process, the most import metric,

handover latency, is taken into account.

The handover latency de�nes precisely the time interval when there is no connection

while the OBU and the corresponding MN moves from one network to another. Thus, based

on this metric, it may be possible to know which are the suitable access technologies, the

WAVE or WI-FI, and if LISP mobility protocol is a suitable mobility protocol to use in

VANETs.
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Figure 5.6: Vehicle and 802.11p antenna

Figure 5.7: Process Debug

In this context, to obtain the handover latency results, it is necessary in both testbeds

to setup tools capable to send tra�c from one MN or SN to another. Thus, as it is

common knowledge, a ping tool is used, simulating the transmission of the packets to test

that metric and at the same time, the Iperf tool [43] is used, in order to generate tra�c
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using the transport protocols Transmission Control Protocol (TCP) or UDP. For these

tests, only the UDP tra�c is generated because with LISP, there are no retransmissions,

which allows obtaining the results of this metric with greater reliability.

To analyse the output of the ping tool with sending tra�c simultaneously through iperf,

one python program is used in order to calculate the di�erence between the time the OBU

is not receiving any packet any more, and when it is again receiving from another network.

In addition, for each handover occurrence, the handover latency is always calculated this

way. Then, the results are processed in a MATLAB [24] script in order to create the graphs.

These results are obtained from 50 repetitions of each of test in the lab environment and

3 in the road, and the con�dence intervals shown are of 95%.

Another tool was strongly useful in the evaluation of this protocol. VLC media player

(VLC) is a free open-source written by VideoLan project [11], which has a streaming video

server platform. With that, a video can be provided by a node and received by another, in

other words, the video can be constantly received by and presented to a node while being

delivered by a node provider. Those nodes can be static or in movement, and thanks to

this tool, it is possible to test the handover in other way as is presented in the lab and the

road experimental results section.

Besides VLC, in order to stream a video, it is also necessary to use an Hypertext

Transfer Protocol (HTTP) session. So, according to [39], HTTP Live Streaming is a way

to transmit audio and video over HTTP from a server to a client. The server is responsible

for sending video and encode it digitally, while the client is responsible for determining the

convenient media to request, downloading those resources, and then reassembling them so

that the media can be shown to the user in a continuous stream.

5.4 Lab Experiments Results

In this section it is presented the results of the testbeds in the laboratory environment.

The tests were made using the ping tool as well as using the iperf to provide 3 di�erent

tra�c rates while handover occurs, 256Kbit/s, 512Kbit/s and 1Mbit/s, and all the bar

graphics are in that order for each handover technology case.
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5.4.1 Handover Latency

5.4.1.1 First Testbed

Regarding the �rst testbed, the handover is tested with intra and inter-technology as

shown in �gure 5.1 and di�erent internet protocol versions, such as IPv4 and IPv6.

With LISP-MN running in both OBUs and with the OBU1 handover procedure man-

aged by connection manager, the test is made with a communication between one MN and

a SN, both connected to OBU1 and OBU2 respectively, with the help of PING tool.

The SN through the OBU2 is pinging MN, while this one is moving among both RSUs

in order to establish the best connection available. Further, the WI-FI network is broad-

casted by the OBUs to enable SN and MN to be attached to them.

Every time that the handover occurs, there is a period of time without connection,

known as handover latency, which is measured enough times to achieve precise results.

The handover process is performed several times, using di�erent internet protocol versions

in all elements and di�erent access technologies.

Thus, the handover latency results using IPv6 addresses in all the elements are pre-

sented in �gure 5.8 and detailed in �gure 5.9, which illustrates the handover latency for

each handover technology case used in the handover process.

On the other hand, using IPv4 in all elements, the handover latency results are pre-

sented in �gure 5.10 and detailed in �gure 5.11, which also shows the handover latency for

each handover technology case used in the handover process. The reason for the handover

to be slower using IPv6 than in IPv4 lies in the fact that it takes approximately one more

second in a loop cycle which comprises the netLink messages used to communicate with

the kernel in order to obtain the new address and the new gateway; on the other hand,

this does not happen with IPv4 addresses.

In order to improve the evaluation of this testbed, a video streaming is performed.

With VLC tool, SN begins transmitting the data, this case a video, while MN is changing

the network connection to the best one provided by the RSUs, and at the same time it

requests the video.

It is Important to note that VLC runs on SN acting as server and also on the MN, act-

ing as a client. In addition, the HTTP session is applied, and with VLC a streaming video,

illustrated in �gure 5.12, is performed. Furthermore and taking into account the meaning

of HTTP streaming described in section 5.3 and according to the documents presented in

[11], there are three commands to take into account:

• "vlc -vvv name.mp4 �sout '#transcodevcodec=mp4v,acodec=mpga,vb=800,ab=128"
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• ":standardaccess=http,mux=ogg,dst=dstaddress:8080'"

• "vlc -vvv http://dstaddress:8080"

The �rst command runs together with the second one by the SN with all settings �lled,

while the MN runs the third one in order to require the desired video.

Taking into account the IPv4 and IPv6 results, the mobility was ensured; however, the

handover latency time results are signi�cantly worse in G2G handover than P2P, P2G and

G2P handovers. This is due to the fact that G2G handover is performed between WI-FI

networks, while the others are done across WAVE network or inter-technology networks,

such as G2P and P2G handover. In WI-FI networks, it is only possible to communicate af-

ter establishing one session at the same time with an AP; due this fact, when the handover

occurs, there is a period of time without connection. This time includes the breakdown of

previously established session while scanning for another network which is going to move,

the time until it is �nally connected, and the period of time to receive the netLink messages

in the LISP-MN in order to get the new address and the new route for the new network.

Further, as the MN shares, at the same time, the WI-FI interface for the connected network

and for the network that it broadcasts into the vehicle, it even makes this technology more

inappropriate for vehicular mobility.

Given those facts, and focusing in these results, the seamless handover happens be-

tween WAVE networks or through an IEEE 802.11g to an IEEE 802.11p network (inter-

technology). Disregarding G2G handover, all other handover cases presented in the table

5.1, allow the MNs to connect to another network without releasing the �rst one. For ex-

ample, the MN can connect to a WI-FI network and WAVE network at the same time, and

then leave one which results in a not signi�cant loss of time between breaking and estab-

lishing again the connection, which does not happen in G2G handover. In intra-technology

handovers using only IEEE 802.11p, there is no notion of association to a network, which

makes the process of handover much faster than with WI-FI.

Compared to the results obtained for di�erent tra�cs for each handover technology

case, the di�erence is not relevant, due to the fact that both, the WAVE channel and the

WI-FI network, well support these tra�c speeds not delaying the handover process.

Furthermore, in this testbed with the handovers technology cases described above, it is

mandatory to run LISP-MN in the OBUs and thus, the following messages are exchanged

in order to ensure vehicular mobility:

• The MN obtains an EID address of the EID-pre�x de�ned in the OBU1, as well as

the SN gets its EID address of the OBU2.
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• The OBU1 and the OBU2 trigger the Map-Register message to MS/MR in order to

register their EID-pre�x and the corresponding RLOC.

• The MS/MR answers with the Map-Notify message to both OBUs informing about

the validity of their register.

• When the ping or streams to a MN, it sends a Map-Request message to MS/MR in

order to know the location of the MN EID address.

• The MS/MR sends a Map-Reply message to the SN containing the RLOC address

of the MN, the same of OBU1.

• The SN achieves in its cache the RLOC of the MN and it establishes a directly tunnel

to the MN, sending tra�c through the tunnel.

• When the MN changes the RLOC, it sends a Map-Request message to the SN con-

taining the SMR bit enabled.

• Upon receiving the SMR, the SN triggers a Map-Request message to the MS/MR to

know the new location.

• Upon receiving the new RLOC, the SN establishes a new tunnel to the MN, commu-

nicating now through this tunnel, since the previous tunnels are no longer reachable.

Figure 5.8: Hand-latency - T1 IPV6 (LAB) Figure 5.9: Detail of �gure 5.8
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Figure 5.10: Hand-latency - T1 IPV4 (LAB) Figure 5.11: Detail of �gure 5.10

5.4.1.2 Second Testbed

Regarding the second testbed, the tests are done the same way as in the �rst one, with

the SN replaced by another MN, so it is tested the communication between two MNs into

di�erent LISP sites.

Thus, as expected, the results of this testbed presented in �gure 5.13 and better detailed

in �gure 5.14 with all the elements in IPv6, and in �gure 5.15, and detailed in �gure 5.16

with all the elements in IPv4, were similar to the ones of the �rst testbed.

The small di�erence between the results of this testbed comparing to the �rst one can be

explained by the fact that the communications were performed in a simultaneous roaming

with both MN in movement. In this case, there are more LISP messages exchanged, which

means that the caches are constantly updating, slightly delaying the process. Nevertheless,

this small di�erence is not relevant.

Finally, once again, taking into account these handover latency results, it is clear that

WI-FI technology is not an appropriate technology for the vehicular handovers, since it

takes a longer time to perform handover.

5.5 Road Experiments Results

In this section it is presented the results obtained in the road environment.

Two types of tests were carried out with a vehicle moving at a speed of approximately

40, 50 and 60 km/h, and the connection between the RSUs towards the MS/MR is now

81



Figure 5.12: Video Streaming Process

Figure 5.13: Hand-latency - T2 IPV6 (LAB) Figure 5.14: Detail of �gure 5.13

performed by a WI-FI connection. In the �rst one, the RSUs are separated about 80 meters

(m), while in the second one they are separated about 120 m. Since the WAVE is the most

appropriate technology for vehicular networks, and taking into account the results obtained

in the lab, it was just performed the P2P handover on the real environments using the ping

tool.
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Figure 5.15: Hand-latency - T2 IPV4 (LAB) Figure 5.16: Detail of �gure 5.15

5.5.1 Handover Latency

The handover latency results can be seen in �gures 5.17 and 5.18.

Comparing between each bar graph mentioned above, it is possible to show that with 80

m distance between RSUs the handover times are slightly lower than when spaced between

120 m. However, when the RSUs are separated by 120 m, although not signi�cant, the

transition is less abrupt than when separated by 80 m.

Comparing the road results with the lab tests of the testbed 1, it is possible to con�rm

that they are very similar with a slight increase in the handover latency times of the road

tests. Despite not being a signi�cant increase of handover latency times, this happens due

to the fact that the connection between the RSUs to the MS/MR is performed by WI-FI

technology instead of Ethernet cable, and due to the adverse conditions encountered in the

real environment.

Comparing the LISP results (handover times between 60 and 70 msec) with the ones

of N-PMIPv6 in [33] in the same scenario conditions (handover times between 40 and 50

msec), we observe that LISP times are slightly increased, due to the overhead of the MS

and all the signalling associated. However, the values are in the same order of magnitude,

and we can state that LISP is a suitable protocol for vehicular networks.
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Figure 5.17: Testbed 1 ROAD (80 m) Figure 5.18: Testbed 1 ROAD (120 m)

5.6 Chapter Considerations

In this chapter it has been shown and explained the overall results in both laboratory

and road testbeds applied in di�erent environment conditions, and it is assessed the feasi-

bility of the LISP protocol in vehicular environments.

Firstly, it was de�ned two possible scenarios in order to test LISP mobility protocol

in vehicular networks. According to the lab tests, they have shown the correct mobility

protocol operation, since the OBU can move through di�erent attachment points, and it

is still able to be reachable as well as to communicate with other MNs or SNs. It has

also been shown the capability not only to support horizontal handover, but also vertical

handover; in other words, the mobility is ensured between attachment points of the same

(horizontal) and di�erent (vertical) technologies. However, WI-FI technology is inappro-

priate for vehicular mobility, which re�ects in a higher handover latency comparing to the

other intra and inter-technology handovers cases performed.

Regarding the results obtained in a real vehicular environment, they have also shown

the correct mobility protocol operation, since the road results are very similar to the lab

ones with a slight increase of the handover times, due to the fact that the connection be-

tween RSU towards to the Map-Server is done via WI-FI, as well as due to the adverse

conditions present in the real environments.

Comparing these results with those obtained with N-PMIPv6 in our group [33], we con-

clude that the WAVE is the most suitable access technology in the communication between

vehicles providing handover latency times of around milliseconds (ms), in which it is quite
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favourable for handover with fast transitions that is the case of vehicle handover.

To sum up, with the implementations done and described in chapter 4, it was ensured

the mobility to the vehicles and to the to MNs connected in the vehicles, which the best

results happen when the handover is performed using WAVE technology.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Along this thesis, as a goal of this research, the LISP mobility protocol, a LISP Mapping

System and a connection manager have been adopted, implemented, setup and adapted to

vehicular networks in a multi-technology network approach.

In this Dissertation it was explored the LISP mobility protocol in vehicular environ-

ments which, to the best of our knowledge, it is the �rst work developed with this protocol

in VANETs.

Thus, during this work, a distributed database, known as Map-Server and Map-Resolver

was set up and implemented in a virtual machine, more speci�cally in CSR 1000v router

acting as an anchor in charge of storing the locations of the corresponding identi�ers, as

well as to provide the location of any looked up identi�er. Further, along this work, just

one Map-Server was implemented in a private environment, but it is possible to implement

as much as we want and spread that over the world, and therefore work perfectly as dis-

tributed database in order to solve the scalability issues.

With LISP and LISP-MN, the IP address is split into two name spaces, the location and

the identi�er which ensure natively mobility and also become able a natively multihoming,

allowing the MNs to connect to more than one RSU or AP at the same time, saving the

network resources and becoming more appealing.

A LISP-MN implementation provided by LISPmob has su�ered several changes de-

scribed previously, and together with the mentioned con�guration �les in the OBUs, it

worked in order to provide fast and seamless handovers to the vehicles and their passen-

gers.

A connection manager was developed in order to automatically perform handover to
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the best connection available; thus, when a vehicle is moving along the road within the

range of one stronger network, it triggers the handover to that network without losing the

connection to a SN or a MN previously established.

With radvd, rdisc6 and DHCP con�gurations, it was developed a mechanism for the

MNs to connect to the OBU through WI-FI technology to automatically obtain an IPv6

or IPv4 addresses respectively. This is done in order to enable every MN attached to the

OBUs via WI-FI to obtain an EID address from the correspondent EID-pre�x de�ned in

each OBU on the LISP con�guration �le. In addition, the radvd and rdisc6 were included

in the connection manager in order for the OBU to obtain the requested IPv6 pre�x ad-

dress from the RSU and form its IPv6 address.

Moreover, those developments were tested according to two di�erent testbeds, two

di�erent internet protocol versions and in two di�erent environments with intra and inter-

technology handovers. Therefore, taking into account the results observed in the evaluation

section, we can conclude that the mobility with LISP protocol was ensured to the vehicular

networks, as well as the fact that the WAVE access technology is the most appropriate to

the VANETs providing seamless handovers.

Although there is a believe that vehicular networks are the future in a society always

connected, it still contains a plenty of things to discover and develop to enhance the net-

work vehicular world. The LISP mobility protocol applied in vehicular networks is not an

exception; for this reason, there is still much to do, and some of the issues will be included

in the next section.

6.2 Future work

As was previously referred, there are several issues that still exist and need to be

overcome to make LISP a reality in vehicular networks. Some of them will be mentioned

below:

• Multihoming: Multihoming described deeply in [15] is an important feature that

must be implemented in LISP mobility protocol in order to enable all MNs to connect

to more than one RSU or AP at the same time through multiple access technologies.

Thus, the resources would be better used with lower network overhead.

• Extend MS/MR: In order to solve the scalability problem existent in internet and

in several mobility protocols, the LISP provides a distributed database known as

mapping system with the possibility to have more than one MS and MR. During this
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dissertation, just one MS and MR were implemented in a private environment, so

to the future, to solve the routing stability issues and to improve the LISP protocol

into vehicular environment, it shall be implemented more than one MS and MR in

di�erent locations in a public environment.

• Evaluation in different Scenarios: Regarding the evaluation chapter, two testbeds

were performed. According to the subsection 3.4.5 there are several scenarios that

could be implemented. In addition, unless LISP is running in the Internet, it must

be tested a communication between a MN and a SN with the MN in a LISP site

representing a vehicle, and the SN representing an internet server in a non-LISP site.

Thus, the users inside the vehicles can have an internet connection, which is nowa-

days fundamental. As the communication between a SN and a MN was performed

successfully on this dissertation, it can be a good starting point.

• Handover time improvements:Although the handover latency results are very good,

in IPv6 it may be possible to improve if some modi�cations are performed in the ker-

nel layer related with the messages exchange between the OBUs and the LISP-MN.
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