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Abstract

The production of reactive oxygen species (ROS) is a normal physiological event in the 
male germ line. ROS are a double-edged sword, despite its role as key signaling molecules 
in physiological processes such as capacitation and hyperactivation, its overproduction 
which overwhelms the body’s antioxidant defenses is thought to affect male fertility and 
normal embryonic development. The excess generation of ROS in semen by exogenous 
and endogenous factors has been recognized as detrimental etiologies for male infertilities. 
Spermatozoa are vulnerable to ROS attack because they are rich in mitochondria, have 
abundance of substrates for free radical attack and their capacity to protect themselves 
from oxidative stress is limited. The cytotoxic aldehydes generated as a result of lipid per-
oxidation are known to form adduct with the mitochondrial protein involved in electron 
transport chain and stimulate generation of ROS in mitochondria. ROS and their metabo-
lites can lead to oxidative DNA damage in mitochondria and nucleus that eventually cul-
minates in DNA fragmentation. The presence for large amount of damaged DNA is a major 
characteristic of defective human spermatozoa, which affect the fertility and pregnancy 
outcome. Thus, as a comprehensive approach, treatment of oxidative stress should involve 
strategies to reduce stress-provoking conditions to help reverse sperm dysfunction.

Keywords: ROS, oxidative stress, male infertility, DNA damage

1. Introduction

Infertility is a disorder affecting 10–15% couples of reproductive age worldwide [1, 2]. It is 

defined as the inability of a couple to achieve spontaneous pregnancy after 1 year of regular, 
unprotected sexual intercourse [3]. The inability to have children affects the infertile couples 
psychologically and it may lead to depression, suicidal tendencies and other pathological 

and psychological conditions [4, 5]. Although, fertility may decrease with increase in age, but 

often occurs as a result of anatomic defects, endocrinopathies, immunologic problems, gene 
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mutation, ejaculatory failures or radiation, chemotherapy and environmental exposures [6–9]. 

In approximately half of all the cases of infertility, male factor is the sole or major contributing 

factor with no identifiable cause found in over 25% of infertile males [10, 11]. In approxi-

mately 40–50% of the male infertility cases, oxidative stress-related mechanisms are found to 
be responsible for the impairment of the sperm function and fertilization [12]. Oxidative stress 

is a disturbance in the balance between the systemic manifestation of reactive oxygen spe-

cies (ROS) and the ability of the body to counteract their harmful effects through neutraliza-

tion by antioxidant defense mechanism [13]. ROS such as superoxide anion (O
2
−), hydrogen 

peroxide (H
2
O

2
), and hydroxyl radical (HO•) are highly reactive oxidizing agents produced 

continuously during metabolic processes [14]. Oxidative processes related to spermatozoa are 

particularly of interest as they exhibit a double-edged sword role in these cells (Figure 1). The 

physiological level of ROS is necessary to regulate a critical redox-sensitive processes such as 

capacitation and hyperactivation without which fertilization is impossible [15]. While its sup-

raphysiological level affects normal spermatogenesis and sperm functions such as motility, 
capacitation, acrosome reaction, egg penetration and decondensation of sperm head, which 

is essential to achieve fertilization. Spermatogenesis is a metabolically active biological pro-

cess during which haploid spermatozoa are produced in the seminiferous tubules. During 

this process O
2
− are generated as a natural by-product of cellular respiration. The germ cells 

undergoing differentiation to spermatids in testes are protected from oxidative stress by its 
nurse cells called sertoli cells which possess high level of antioxidant enzymes such as super-

oxide dismutase (SOD) as well as the reductase, transferase, and peroxidase activities of the 

glutathione cycle [16]. Once the spermatozoa are released from the germinal epithelium, they 

become vulnerable to oxidative attack as they are no longer protected by defense mechanism 
of sertoli cells [13, 17]. Excess ROS can lead to cellular injury by damaging DNA, lipids, and 

Figure 1. Physiological and pathological role of ROS in male reproduction.
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proteins in the cells [18]. Thus, the ROS must be maintained at physiological levels for optimal 

sperm function, the maintenance of cellular homeostasis, and redox-sensitive signal transduc-

tion mechanisms affecting fertility.

2. ROS and sperm physiology

During their transit through the epididymis, spermatozoa progressively acquire the ability to 

move but lack fertilizing capacity [19]. They acquire the ability to fertilize in the female tract 

through a series of physiological changes called ‘capacitation’ which involves hyperactiva-

tion, acrosomal reaction, and sperm-oocyte fusion. Mammalian sperm capacitation is a redox 

regulated process which requires the production of different types of ROS to promote the fer-

tilization of spermatozoa to the mature oocytes [20, 21]. The primary ROS generated in human 

spermatozoa is the O
2

− which appears to play a role in this process [22]. This one-electron 

reduction product of oxygen generated reacts with itself via dismutation reaction, which is 

greatly accelerated by SOD, to generate H
2
O

2
. It has been reported that the capacitating popu-

lations of mammalian spermatozoa generate ROS mainly by two mechanisms: the membrane 

nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, an enzyme complex that is 

contained in the plasma membrane; and the mitochondrial nicotinamide adenine dinucleo-

tide (NADH)-dependent oxido-reductase [23, 24]. The NADPH required by NADPH oxidase 

can be supplied by dehydrogenases located both in the plasma membrane and the cytosol. 

Studies have suggested the activation of sperm plasma membrane oxidase during capacita-

tion and acrosome reaction [25, 26]. In mammalian spermatozoa, NADPH oxidase 5 (NOX5) 
are actively involved in generating O

2
− [27]. The mitochondria located in the mid-piece region 

of the sperm generates a low level of ROS during steady-state respiration but have the poten-

tial to accelerate this activity when these gametes enter the intrinsic apoptotic pathway [28, 

29]. In addition to H
2
O

2
 and O

2
−, a variety of secondary cytotoxic radicals which are reported 

to stimulate sperm capitation includes nitric oxide (•NO) and peroxynitrite (ONOO−) [30, 31]. 

The O
2
− generated from these two sources is thought to combine with •NO produced by nitric 

oxide synthase (NOS) and result in the formation of powerful oxidant ONOO−, which medi-
ates the oxidation of cholesterol to oxysterols. The oxysterols then exit the plasma membrane 

dramatically to enhance membrane fluidity [31, 32]. Further, the combined action of ONOO− 
and H

2
O

2
 concomitantly lead to the inhibition of tyrosine phosphatase activity while the 

combination of O
2
−, bicarbonate (HCO

3
−), and calcium ions (Ca2+) activates soluble adenylyl 

cyclase, thereby stimulating cAMP production and the activation of protein kinase A (PKA) 

[33–35]. Activated PKA phosphorylates and inhibits protein phosphatase and activates tyro-

sine kinase that leads to an increase in actin polymerization, an essential process required for 

the development of hyperactivated motility [36, 37]. Only hyperactivated spermatozoa have 

increased motility to undergo acrosome reaction and acquire the characteristics required for 

successful fertilization. The role of low concentrations of OH− in the initiation of hyperactiva-

tion in vitro has been well documented [38]. The hyperactivated spermatozoon traverse the 

cumulus oophorus surrounding ovulated eggs, it then binds and penetrate to the zonapel-

lucida (ZP) of the oocyte and initiates an exocytotic release of proteolytic enzymes, creating a 
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pore in ZP’s extracellular matrix. For successful fertilization, the spermatozoa then penetrate 

this physical zona barrier and fuse with the oocyte [39, 40]. Thus, ROS during the capacitation 

and acrosome reaction has been shown to increase the membrane fluidity and rates of sperm-
oocyte fusion (Figure 1).

3. Human spermatozoa are vulnerable to oxidative stress

During spermatogenesis, germ cells produce high levels of reactive oxygen species, but fortu-

nately a complex of antioxidant defense system and DNA repair system exists in the testis that 

protects genome integrity in differentiating sperm [16]. In normal spermatogenesis, the devel-

oping spermatozoa extrude most of the cytoplasm by the action of sertoli cells to change to a 

condensed, elongated form [41]. The lack of cytoplasm results in decreased intrinsic antioxi-

dant defense due to the loss of most of antioxidant enzymes, rendering the cells less protected 

against ROS by the time they are discharged into the epididymis [42, 43]. Further, they also 

lack the necessary cytoplasmic-enzyme repair systems, thus they have very limited capacity 

for detection and repair of DNA damage [44]. Therefore, during their transit and storage into 

the epididymis or post-ejaculation they have no DNA repair mechanism, and thus cannot 

synthesize DNA, RNA, or translate proteins (such as repair enzymes) [45, 46]. The mam-

malian spermatozoa are vulnerable to oxidative stress not only because of their inherent free 

radical generating activity and lack of endogenous antioxidant protection, but also due to the 

abundant substrates that these cells possess for free radical attack. In mature spermatozoa, the 
small cytoplasm with limited defense remains confined to the mid-piece region in the vicinity 
of the mitochondria. As a result, the plasma membrane richly endowed with high concen-

trations of polyunsaturated fatty acids (PUFAs), particularly docosahexaenoic acid (DHA) 
(22:6) and arachidonic acids (20:4) containing six and four carbon-carbon double bonds per 
molecule, surrounding the acrosome and the tail are not protected by the intracellular anti-

oxidants [47–49]. In human spermatozoa, approximately 50% of the fatty acids are composed 
of DHA which is thought to play a major role in regulating spermatogenesis and membrane 

fluidity [18]. The presence of double bond in PUFAs adjacent to a methylene group weakens 
the methyl carbon-hydrogen bonds and makes hydrogen more susceptible to abstraction and 

thus vulnerable to oxidation [44, 50].

Sperm mitochondrial DNA has long been postulated as a sources and often likely target of 

ROS oxidation as they are not protected by histones and has a very limited capacity for DNA 

repair with complete lack of nucleotide-excision repair pathways [51]. It is estimated that the 

mitochondrial DNA exhibits the mutation rate two orders of magnitude higher than that of 

nuclear DNA. Thus any quantitative or qualitative aberrations in mitochondrial DNA will 

result in the increased ROS generation which will affect the cellular functioning of the cell [52].

Despite its vulnerability to oxidative stress, maturing sperms spontaneously generate ROS 

during their progress through the epididymis, as its normal metabolite that aids it to acquire 

full fertility competence [53]. The lack of intrinsic antioxidant protection forces these cells to 

dependent on defense provided by seminal and epididymal enzymatic and non-enzymatic 
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antioxidant mechanisms. These mechanisms compensate for the deficiency in cytoplasmic 
enzymes in sperm [54, 55]. Thus the sperms which spend long period as an isolated cells both 

in male and female genital tracts (approximately 3 weeks), these limited defenses can be eas-

ily overwhelmed with an increased generation of ROS [56].

4. ROS scavenging capacity of semen

Spermatozoa like other aerobic cells are dependent on cellular respiration process which sup-

ports its life. But excessive generation of its metabolites, such as ROS, can modify cell func-

tions. Hence, under normal condition male reproductive system must continuously inactivate 

ROS to maintain a balance between ROS production and its scavenging mechanism in order 

to keep only the small amount necessary to maintain normal cell function. Thus, in order to 

maintain the redox homeostasis, the mature spermatozoa with limited antioxidant defense 

capacity are mainly dependent on seminal plasma which is well endowed with an array of 

effective enzymatic and non-enzymatic antioxidant defense mechanisms [57, 58].

The main enzymatic antioxidants in the semen include superoxide dismutase (SOD), catalase, 

and glutathione peroxidase/glutathione reductase (GPX/GRD) system [59]. SOD is metallo-

enzymes which is present in both intracellular and extracellular forms [60]. SOD spontane-

ously dismutase O
2
− to form H

2
O

2
 and catalase catalyzes the decomposition of H

2
O

2
 to O

2
 and 

water (H
2
O) thus preventing the lipid peroxidation of the sperm plasma membrane. Another 

enzyme of the antioxidant system in the semen is glutathione peroxidase (GPX), which cata-

lyzes the reduction of hydrogen peroxide and organic peroxides, including the peroxides of 

phospholipids [61]. Spermatozoa have limited supply of catalase and GPX, while SOD is the 
main enzymatic antioxidant which protects it from oxidative stress [62]. Beside the enzymes 

antioxidant protective mechanism, seminal plasma is also employed by the low molecular 

weight, non-enzymatic antioxidants that assist enzyme activity. These include ascorbic acid 

(vitamin C), tocopherol (vitamin E), vitamin A, pantothenic acid, coenzyme Q10, carnitine, 
amino acids (taurine, hypotaurine) zinc, selenium albumin, and urate. These agents princi-

pally act by directly neutralizing free radical activity chemically and some of these antioxi-

dants are reported to enhance sperm viability/motility as well as normal sperm morphology 

and required for spermatogenesis, development of spermatozoa [63, 64]. The seminal plasma 

antioxidants concentrations have been shown to be significantly higher in fertile men than 
those in infertile men [65, 66].

5. Sources of ROS in seminal plasma

Oxidants in seminal plasma originate from numerous extrinsic and intrinsic sources. The 

human ejaculate is composed of various types of cells, which include mature and immature 

cells, round cells from extraordinary degrees of spermatogenesis, leukocytes, and epithelial 

cells [67, 68]. Of those, leukocytes, specially neutrophils and macrophages and immature 
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spermatozoa are taken into consideration as the primary endogenous assets of ROS [69], 

while numerous life style elements including immoderate smoking and alcohol intake, and 

environmental elements inclusive of radiation and pollution can contribute as exogenous 

sources of ROS (Figure 2) [70, 71]. Exposure to radiation and toxins induces ROS produc-

tion which impairs spermatogenesis and leads to DNA damage in human spermatozoa, 

which further decreases the motility and vitality of sperm cells as well as their concentration 

depending on the duration of exposure [72]. Cigarette smoking is found to be correlated with 
leukocytospermia. It has been reported that smoking can elevate the leukocyte concentration 

by 48% and ROS by 107% in seminal plasma [73].

5.1. Immature/abnormal spermatozoa

One of the major cellular sources of ROS in the semen is sperm cells [74]. When spermato-

genesis is impaired, the cytoplasmic extrusion mechanisms are defective, and spermatozoa 

are released from the germinal epithelium carrying surplus cytoplasmic residues in the mid-

piece [75]. These residues are rich in the cytoplasmic enzymes such as superoxide dismutase, 

lactic acid dehydrogenase, glucose-6-phosphate dehydrogenase (G6PDH), and creatine 

kinase [69, 76]. However among these enzymes, the key enzyme was thought to be G6PDH, 

which would be expected to enhance the intracellular availability of NADPH via the hexose 

monophosphate shunt. NADPH is used to fuel the generation of ROS via NADPH oxidase 

activity [27, 77]

5.2. Leukocytes

The main source of ROS inside semen is leukocytes. Infection or chronic inflammation may 
activate the leukocytes to release 1000-times more ROS than spermatozoa [78]. This high 

production of ROS by leukocytes plays an important role in the cellular defense system 

Figure 2. Extrinsic and intrinsic factors of ROS generation in seminal plasma.
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against infections as well as inflammation [78]. However, the high concentrations of ROS 

may overwhelm seminal antioxidant defenses and damage the sperm cell [79]. Essentially, 

the cellular mechanisms for the generation of ROS within leukocytes and spermatozoa are 

same, in leukocytes, the release of the large amounts of superoxide into phagocytic vesicles 

for killing the pathogens [80, 81].

6. Impact of oxidative stress on spermatozoa

The exact mechanism of oxidative stress-induced decline in sperm function remains unknown 

but is mainly attributed to peroxidative damage to axoneme and depletion of intracellular 
ATP levels, followed by generation of 4-hydroxynonenal (4-HNE) and malondialdehyde 

(MDA) owing to the oxidation of lipid membrane components and oxidation of DNA fol-

lowed by fragmentation of both nuclear and mitochondrial DNA [82].

6.1. Lipid peroxidation

In PUFAs, the hydroxyl radicals attack lipids containing carbon-carbon double bond and 
promote the hydrogen abstraction from carbon to generate a carbon-centered lipid radi-

cal (2CH−•) that then combines with oxygen to generate lipid peroxyl radicals (ROO•) [83]. 

The ROO• radicals subsequently attacks another lipid molecule, abstract a hydrogen atom 
in order to stabilize itself as the lipid hydroperoxide but in the process generates another 

carbon-centered lipid radical that perpetuates the cascade of chemical reactions called lipid 

peroxidation. The process results in the generation of small molecular mass electrophilic lipid 

aldehydes such as 4-hydroxynonenal (4HNE), acrolein, and malondialdehyde [84]. Lipid per-

oxidation (LPO) is extremely harmful to spermatozoa, having a dramatic effect on both sperm 
movement and the competence of these cells for fertilization (Figure 3). Immature human 

sperm cells contain high levels of DHA in the cytoplasmatic droplet and showed more sus-

ceptibility to LPO than normal matured sperm with lower DHA levels [85].

Added to this vulnerability, it has been shown that cytotoxic aldehydes generated as the result 

of oxidative stress has the ability to of triggering ROS generation by the sperm mitochondria 

in a self-perpetuating cycle; the greater the level of unsaturation, the greater the level of the 

stimulatory effect. The defective human spermatozoa contain abnormally high cellular con-

tents of free polyunsaturated fatty acids, the levels of which are positively correlated with 
mitochondrial superoxide generation. The lipid aldehydes, 4HNE or acrolein bind covalently 

to the nucleophilic centers of vulnerable proteins, such as succinic acid dehydrogenase and 

form a protein adducts in the mitochondrial electron transport chain (ETC) that results in the 

leakage of electrons which disturbs the normal flow of electrons and reduction of oxygen to 
water [86, 87]. The leakage of electrons from the ETC results in the reduction of oxygen to gen-

erate O
2
−, which then by mitochondrial superoxide dismutase rapidly dismutates to H

2
O

2
 [88]. 

The excess of cytoplasm in the immature or defective spermatozoa contain superabundance of 

cytoplasmic enzymes. The retention of excess of SOD can only be an asset for any cell seeking 

to protect itself from oxidative stress if it is accompanied by a corresponding increase in the 
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presence of enzymes such as glutathione peroxidase or catalase that can scavenge H
2
O

2
. But 

excess of SOD and limited supply of glutathione peroxidase or catalase in human spermato-

zoa simply turns a short-lived, membrane-impermeant, relatively inert free radical O
2
− into a 

long-lived, membrane-permeate reactive oxidant, H
2
O

2
 [89, 90]. The damage of protein and 

membrane lipids due to elevated levels of ROS in mitochondria might affect the process of 
oxidative phosphorylation causing depletion of intracellular ATP levels leading to axonemal 

damage, decreased sperm viability, and increased mid-piece sperm morphological defects 

with deleterious effects on sperm capacitation and acrosome reaction and decline of motility 
and fertility [91]. The mitochondrial function as a measure of inner mitochondrial membrane 

potential is found to be decreased in the spermatozoa of infertile men with elevated levels of 

ROS production and is positively correlated with the sperm concentration [92].

6.2. DNA damage in spermatozoa

Mitochondrial DNA is particularly vulnerable to free radical attack because it is essentially 
unprotected and has a very limited capacity for DNA repair [93]. Sperm nuclear DNA, on 

the other hand, is much resistant to damage because it is tightly compacted by replacing 

histones with small, positively charged molecules known as protamine [94, 95]. Sperm 

DNA maturation and appropriate packaging are vital steps in the proper development of 

spermatozoa.

During the late spermatogenesis in the mammalian germinal epithelium, the differentiating sper-

tamids are highly susceptible to DNA damage due to important changes in the cytoarchitecture 

Figure 3. (A) ROS-induced initiation and propagation of lipid peroxidation (LPO) generates lipid hydroperoxides plus 

a new carbon-centered radical that continues the chain reaction. (B) Mitochondrial ROS generation. The electrophilic 

aldehydes generated as a by-product of LPO process bind to protein of electron transport chain and further promote 

mitochondrial ROS generation. This process results in loss of mitochondrial membrane potential, low ATP generation, 

loss of sperm motility, oxidative DNA damage followed by DNA fragmentation.
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and dramatic remodeling of the chromatin during which most of the histones are removed from 

the DNA and are first replaced by transition proteins TP1 and TP2, and then by protamines P1 
and P2 which are approximately half the size of histones. P1 and P2 are normally expressed in 
a 1:1 ratio in human sperm, and provide a tight packaging of the sperm DNA. The chromatin 
remodeling is facilitated by the coordinated loosening of the chromatin by histone hyperacety-

lation and by the DNA topoisomerase II (topo II), which produce temporary stand breaks in 

the sperm DNA to relieve torsional stress that results from supercoiling [96, 97]. This forms the 

basic packaging unit of sperm chromatin, a toroid, which is further compacted by the intramo-

lecular and intermolecular disulfide cross-links between cysteine residues present in protamines. 
The tight packaging of the sperm DNA enables the entire haploid genome to be condensed and 

packed in a sperm head measuring 5 × 2.5 μm. This level of protect and ensures that the pater-

nal genome is delivered in a form that allows developing embryo to accurately express genetic 

information Normally, these temporary strand breaks are repaired by nuclear poly (ADP-ribose) 

polymersases (PARP) and topoisomerase II prior to completion of spermiogenesis and ejacula-

tion [98]. However in pathological cases, the error in chromatin remodeling and repair mecha-

nism leads to the generation of high level of nicked and poorly protaminated nuclear DNA with 

relatively high nucleohistone content or abnormally high and low P1/P2 ratios [99–101]. Thus, 

defect in the chromatin remodeling process causes DNA damage in spermatids during spermio-

genesis, this creates a state of vulnerability whereby spermatozoa become increasingly suscep-

tible to oxidative damage.

7. Causes of DNA damage in spermatozoa

When the protection of DNA in spermatozoa, which is dependent on its close association with 

cysteine rich protaminesis is lost, the cells become very susceptible to oxidative DNA damage 

induced by several extrinsic and intrinsic factors. Deoxygenated guanine (dG) is more suscep-

tible to oxidation than other nucleosides in DNA due to its low oxidation potential [102]. The 

enzyme 8-oxoguanine glycosylase 1 (OGG1) immediately clips the 8OHdG residues out of 
the DNA generating an abasic site, But due to the absence of base excision repair enzyme, the 

spermatozoa are ejaculated carrying a abasic sites in their DNA [103]. Studies have reported 

that the spermatozoa of subfertile patients contain particularly high levels of 8-hydroxy-2′-
deoxyguanosine (8OHdG), the major oxidized base adduct formed when DNA is subjected 
to attack by ROS [104].

DNA repair does occur during spermiogenesis but stops post-spermiogenesis because sperma-

tozoa are transcriptionally and translationally silent. They cannot undergo programmed cell 

death called apoptosis, due to their inherent physical architecture, the endonucleases released 

from the mitochondria have no access to the DNA. Thus, abortive apoptosis initiated post-mei-

otically, when the ability to drive the spermiogenesis process to completion is declined and the 

stand breaks are not repaired due to impairment in the repair process results in high levels of 

DNA fragmented sperm in the ejaculate [105]. Sperm with DNA fragmentation still has thepo-

tential to fertilize and some types of stand DNA breaks in sperm can be repaired by oocytes, 

before the initiation of the first cleavage division, and generate normal offspring, but that 
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depends on the type and level of chromatin damage and the capacity of the oocyte to repair it 

[106]. DNA-strand breaks are extremely harmful lesions if not repaired and can lead to genomic 

instability and cell death. In natural conception, percentage of DNA damage has been negatively 

correlated to the rate of fertilization. If post fertilization oocyte make mistake in the repair pro-

cess, deletions or sequence errors may be introduced, then it fabricates the possibility for de novo 

mutations, which could have a profound impact on the health and well-being of the offspring 
[107]. Sperm DNA damage in context to assisted reproductive technique (ART) has important 

clinical implications. Sperm selected for ART mostly originates from environment experiencing 

oxidative stress and high percentage of these sperms may have damaged DNA. If such sperms 

are used clinically in the form of therapy then can lead to substantial risk in pregnancy outcome. 

In case of intrauterine insemination (IUI) and in vitro fertilization (IVF), the use of these sperma-

tozoa may not be cause of concern. But in case of intracellular sperm injection (ICSI), this natural 

selection barrier is bypassed and the spermatozoa with damaged DNA are directly injected into 

oocytes. Studies have reported that DNA damaged spermatozoa used in ICSI have some capac-

ity for fertilization, but percentage of DNA damage has been negatively correlated to the rate of 

fertilization [108]. ROS-mediated DNA damage may be linked to an increase in early embryo 

death, infertility in the offspring, and high incidence of childhood cancer [109, 110]. We propose 

that extrinsic and intrinsic sources of ROS could make a significant contribution to the induction 
of OS and DNA damage in spermatozoa which can decrease pregnancy rate and affect the fertil-
ity outcome, further additional studies are clearly needed to validate this concept.

8. Management of infertility caused by oxidative stress

Oxidative stress plays an important role in the pathophysiology of male infertility, which is 

caused due to pathological level of ROS and the loss of antioxidant protection for the sper-

matozoa. There are many factors which can induce oxidative stress and can alter seminal 

parameters and rate of fertilization. Thorough examination and management of some of these 

factors may protect the ROS-induced DNA damage and improve a couple’s chances of con-

ception either naturally or via assisted reproduction.

8.1. Behavior and life style modification

Various behaviors and lifestyles factors such as alcohol consumption, cigarette smoking, obesity, 
excess exposure to environmental toxicants, and psychological stress are negatively correlated 

with spermatogenesis and may cause oxidative stress and reduction in sperm quality [111]. The 

increased consumption of simple sugars and high-fat food and physical inactivity are leading 

causes of the growing obesity. It is suggested that abnormal hormonal regulation, dysregula-

tion of adipocytokine, and ROS generation lead to suboptimal semen quality these patients 

[112]. Several systemic diseases, such as diabetes mellitus, infection, and cancer are known to 

cause oxidative stress-induced male infertility [113, 114]. There are studies which have shown 

positive correlation of exercise with improvements in semen parameters, sperm DNA integrity, 

and pregnancy rate [115]. Nevertheless, modification in behavior and unhealthy living, regular 
exercise, stress free jobs, and treatment of a patient’s underlying pathology should be the first 
steps to reduce or eliminate stress-provoking conditions to reverse sperm dysfunction.
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8.2. Dietary antioxidants

As many studies suggested that oxidative stress is a major cause of unexplained male infertil-

ity, antioxidant therapy would be expected to have a therapeutic effect in such cases. There 
are evidences which have suggested that oral antioxidants and herbal products can also boost 

male reproductive functions [116, 117]. But, despite of known effect of antioxidant on oxida-

tive stress, very few studies conducted have any validity due to small sample size, difference 
in dosage and duration of therapy, and lack controls [118]. In order to make the study valid, 

patient’s selection criteria for the trial should be based on the evidence indication oxidative 

stress as a key element in their pathology, a thorough diagnosis is required to determine 

patients that need to be supplemented. However, if this strategy is pursued, great care must 

be taken in selecting the most appropriate antioxidants for clinical use. Since ROS plays an 

important role in regulating the signal transduction cascades that drive sperm capacitation, 

we should ensure that any antioxidants employed in vitro do not compromise the fertilizing 

potential of these cells [119].

The study of in vitro antioxidants is highly relevant in the era of assisted reproduction because 

sperm preparation techniques in ART are potential generators of exogenous stresses that 

make human spermatozoa vulnerable to oxidative stress and DNA damage.

9. Conclusion

Oxidative stress has been recognized as a major contributory factor to male infertility. 

Spermatozoa are professional generator of ROS as physiological level of ROS is necessary 

to regulate critical redox-sensitive processes such as capacitation, hyperactivation, acrosome 

reactions, and signaling processes to ensure appropriate fertilization. On the other hand, 

many endogenous and exogenous factors can elevate ROS production which can overwhelm 

their antioxidant mechanism. This results in male infertility via mechanisms involving the 

induction of peroxidative damage to the sperm plasma membrane, DNA damage, which 

significantly impairs sperm function. Lack of repair mechanism and abortive apoptosis in 
mature spermatozoa results in high levels of DNA fragmented sperm in the ejaculate. In natu-

ral conception, oocytes can repair some of stand DNA breaks, but that depends on the type 

and level of chromatin damage and the capacity of the oocyte to repair it. If post fertilization 

oocyte make mistake in the repair process it may lead to failure in fertilization. But if fertiliza-

tion occurs, then it creates the possibility for de novo mutations, which could have a profound 

impact on the health and well-being of the offspring. When the natural balance between ROS 
and antioxidants is disturbed, the first restorative measure to be taken should be changes in 
lifestyle, maintaining a healthy and balanced diet, and antioxidant supplementation may then 

be taken together to improve the patient’s health outcomes.

9.1. Suggestion

The conventional seminological parameter in infertile cases reflects the functional compe-

tence of the spermatozoa and the fertilizing potential of the ejaculate, but the underlying 

mechanisms of male fertility is not known. Thus in order to enrich the diagnostic value of this 
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fundamental form of investigation, the detailed examination of sperm DNA damage may be 

incorporated as a potentially valuable tool to investigate the functional integrity of the sper-

matozoa at the molecular level.
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