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Abstract

In this chapter, an exergy analysis applied to a solid oxide fuel cell (SOFC)/vapor adsorp-
tion refrigeration (VAR) system is presented. The influences of four significant parameters
(current density, inlet fuel temperature, fuel utilization and steam-to-carbon ratio) on the
exergy efficiency of both the SOFC stack and the SOFC-VAR system are investigated. In
order to do so, a mathematical model is constructed in Engineering Equation Solver (EES)
software to generate the simulations. The analysis shows that the calculated exergy effi-
ciency is around 8% lower than the energy efficiency for both cases. Moreover, it is found
that most of the causes of irreversibilities in the system are due to electronic and ionic
conduction in the components. It is also shown that the exergy efficiency is substantially
sensitive to fuel inlet temperature, which is evidenced by a bending-over behavior. Finally,
in accordance with the calculated efficiency defects, the main exergy destructions are
present in the heat exchangers, the SOFC, the afterburner and the generator.

Keywords: SOFC, adsorption, exergy, efficiency defect, current density

1. Introduction

Recent research developments on alternatives to generate electricity are being directed to

leading-edge technologies such as solid oxide fuel cells (SOFC). A fuel cell is considered as

a highly efficient, environmentally friendly device to generate affordable energy [1, 2]. It is
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Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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well-known that a solid oxide fuel cell converts the chemical energy of a fuel into electrical

energy by means of an electrochemical reaction at high operating temperatures (600–1000�C).

It is this type of reaction which makes it a more efficient way to produce electricity than a

conventional steam engine that depends on a quite irreversible combustion reaction. Hence

solid oxide fuel cells are attracting considerable attention from worldwide researchers.

At present, most of the studies are focusing on the development of multiproduct power

generation systems to enhance significantly the overall efficiency of the system [3–7]. Further-

more, developments of hybrid systems are being expanded to run other power generation

systems as trigeneration systems [8, 9], steam turbines [10, 11] and gasification [12]. In this

context, a comparative energy and exergy analysis of an SOFC/GT waste heat to power

conversion employing Kalina and Organic Rankine cycles is reported [13]. The study reports

an exergy efficiency of 62.35% for the combined SOFC/GT-ORC system and 59.53% for the

combined SOFC/GT-KC system. In another study, a new solar-based multi-generation system

integrated with ammonia fuel cell and solid oxide fuel-cell-gas turbine combined cycle reports

an energy and exergy efficiency increase of up to 19.3 and 17.8%, respectively, in comparison to

single generation systems [14]. It is also an interesting study performed to determine the effect

that the anode and cathode SOFC-stack recycling gas has on both the thermodynamic and

thermoeconomic performance of a proposed cooling, heating and power (CCHP) system.

Therein, the results show that the total energy efficiency of the trigeneration system with

anode gas recycle (Tri-SOFC-AR) is 6% larger than that of a simple case [15].

Furthermore, the energy and exergy analysis is also applied to hybrid combined cooling,

heating and power (CCHP) plant coupled with a molten carbonate fuel cell (MCFC) and

Stirling engine [16]. In this system, the modeling and simulation show overall energy and

electrical efficiencies of 71.7 and 42.28%, respectively. Micro combined power systems are also

drawing particular attention from researchers. For example, a study of a micro combined

cooling heating and power (CCHP) system based on high-temperature proton exchange fuel

cell (PEMFC) reports an overall efficiency of 47% under winter and normal operating condi-

tions [17].

Some researchers are also making many studies concerning the use of alcohol fuels in SOFC

integrated systems. Alcohol fuels such as methanol and ethanol are being considered as promis-

ing alternative fuels since they are fluid and some of their chemical and physical properties are

similar to gasoline [3, 18]. Tippawan et al. [19] investigated the influence of changing the current

density, SOFC temperature, fuel utilization and SOFC anode recirculation on the efficiency of

heating cogeneration, cooling cogeneration and trigeneration for an ethanol-fueled integrated

SOFC system. Therein, the trigeneration exergy efficiency increased 32% in comparison to

conventional power cycles.

On the other hand, other investigations are focusing particularly on the optimization of inte-

grated SOFC systems. Hosseinpour et al. [20] performed an exergy optimization of a cogene-

ration system based on a methane-fed solid oxide fuel cell (SOFC) integrated with a Stirling

engine. Therein, the objective function is the exergy efficiency. In accordance with the study,

the optimum value for the exergy efficiency is 56.44%. In a more complex study, a multi-

objective optimization of a SOFC-GT power plant is performed [21]. In this particular case,
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the cost function value and the exergy efficiency are the objective functions. Through applica-

tion of a fuzzy multi-objective method, the optimum point for the cost function value is 0.043

(US$/s) and for the exergy efficiency is 57.7%, approximately.

In this context, the present work aims to contribute to the analysis of possible affordable

hybrid systems, so an exergy analysis of a solid oxide fuel cell/vapor adsorption refrigeration

system is presented herein. The objective of this chapter is to investigate the influences of four

significant parameters (current density, inlet fuel temperature, fuel utilization and steam-to-

carbon ratio) on the exergy efficiency of both the SOFC stack and the SOFC-VAR system. In

order to do so, a detailed model is constructed with the fundamental equations that govern the

operation of the components. Special attention is paid to the components where most of the

input exergy is destroyed. It is important to comment that the simulation is performed using

engineering equation solver software. Furthermore, both SOFC and VARS models are based

on reliable data and parameters obtained from a literature review. So models are calibrated

and validated comparing results with data reported by, respectively, Tao et al. [22] and Herold

et al. [23]. The simulation model provides mass, energy and exergy balances for each compo-

nent of the system and calculates efficiency parameters such as the energy and exergy effi-

ciency as well as the efficiency defects.

2. Energy system description

The schematic flow diagram of the integrated SOFC-Adsorption system considered herein is

depicted in Figure 1. The energy system consists of an SOFC stack with internal reforming of

feed gas at the anode side, an afterburner, a mixer, three pre-heaters and a DC/AC inverter.

Anode and cathode exit streams are fed into the afterburner, the exhaust gas is then used to

preheat the supply of fuel and air. The high-grade heat yielded in the SOFC reaction is used to

perform the reforming process. In order to improve the overall efficiency of the SOFC, the

exhaust gas from the stack enters a LiBr-H2O-based vapor adsorption refrigeration system

(VARS) coupled to it. Table 1 presents the physical characteristics of an intermediate temper-

ature, anode-supported planar SOFC as reported in [24].

For the sake of simplicity, several assumptions have been considered in the present analysis. The

study is carried out under thermodynamic equilibrium and steady-state conditions (Table 2).

Kinetic and potential energy effects are negligible. The assumptions are:

A. For the solid oxide fuel cell:

1. Air consists of 79% N2 and 21% O2.

2. All gases are considered as ideal gases.

3. Gas mixture at the fuel channel exit is at chemical equilibrium.

4. Fuel cell is completely insulated, so there is no heat interaction with the environment.

5. Contact resistances are negligible.
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6. Temperature at the channel inlets is the same. Also, temperature at the channel exit is

the same.

7. Radiation heat transfer between gas channels and solid structure is negligible.

B. For the vapor adsorption refrigeration system [23]:

1. Water is considered as refrigerant (at states g-j).

2. States a and h are considered as saturated liquid.

Figure 1. Schematic diagram of the integrated SOFC-VARS system.
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3. Water is considered as saturated vapor at state j.

4. Pressure in generator and condenser are equivalent.

5. Pressure in the evaporator and absorber are equivalent.

3. SOFC mathematical modeling

3.1. Electrochemical model

Modeling of the electrochemical part can be as complicate as the study requires it, and most

of the current literature provides basic models developed under the zero-dimensional assump-

tion [6, 8, 25]. The main idea of such modeling is to have mathematical equations that mimic

the connection between the chemical energy of the fuel and the electrical power. So, the mech-

anisms of reaction involved are:

Input data

Temperature difference between SOFC inlet and outlet 100 K

Fuel cell inlet temperature 1000 K

Fuel utilization factor 85%

Steam-to-carbon ratio 2.5

Fuel cell pressure drop 2%

Heat exchangers pressure drop 3%

Afterburner pressure drop 5%

Table 2. Operating conditions of the SOFC stack.

Anode exchange current density (ioa) 0.65 A/cm2

Cathode exchange current density (ioc) 0.25 A/cm2

Effective gaseous diffusivity through the anode (Daeff) 0.2 cm2/s

Effective gaseous diffusivity through cathode (Dceff) 0.05 cm2/s

Anode thickness (La) 500 μm

Cathode thickness (Lc) 50 μm

Electrolyte thickness (Le) 10 μm

Number of cells 11,000

Active surface area 0.01 m2

Table 1. Characteristics of the SOFC as reported in [24].
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For the steam reforming reaction:

CH4 þH2O ! 3H2 þ CO (1)

For the shifting reaction:

COþH2O ! H2 þ CO2 (2)

Thus the net electrochemical reaction of the fuel cell is given as:

H2 þ
1

2
O2 ! H20 (3)

Reforming and shifting reactions are carried out within the fuel cell stack, so the energy

required for the reaction is directly supplied by the fuel cell as heat. The real velocity at which

both chemical and electrochemical reactions are carried out are based on the following equi-

librium reactions:

For the real reforming reaction:

Xr CH4 þH2O ! 3H2 þ CO½ � (4)

For the real shifting reaction:

Yr COþH2O ! H2 þ CO2½ � (5)

For the real net electrochemical reaction:

Zr H2 þ
1

2
O2 ! H20

� �

(6)

where Xr, Yr and Zr represent the conversion ratios during the reactions.

The equilibrium constants for the reforming and shifting reactions can be formulated as a

function of the operating temperature as follows:

Log10Kr, s ¼ Ar,sT
4 þ Br,sT

3 þ Cr, sT
2 þDr, sT þ Er, s (7)

The values of the constants are given in Table 3 as suggested in [26].

Reforming Shifting

A �2.63121 ✕ 10�11 5.4730 1 ✕ 10�12

B 1.24065 ✕ 10�7 �2.57479 ✕ 10�8

C �2.25322 ✕ 10�4 4.63742 ✕ 10�5

D 1.95028 ✕ 10�1 �3.91500 ✕ 10�2

E �66.1396 13.2097

Table 3. Constant values for the equilibrium constant equation.
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The equilibrium constants can also be determined as a function of the molar fraction of each

species as now described.

For the reforming reaction:

Ln Krð Þ ¼
yCO

11

� �

yH2

11

3
� �

yH2O
11

� �

yCH4

11

� � ∗

P

P0

� �2

(8)

For the shifting reaction:

Ln Ksð Þ ¼
yH2

11

� �

yCO2

11

� �

yCO
11

� �

yH2O
11

� � (9)

Here, each equilibrium molar fraction of species i is represented by yieq, and it can be written as

a ratio between the equilibrium number of moles of species i and the total number of moles at

equilibrium.

yieq ¼
_ni
eq

_neq
(10)

On the other hand, the equations used in the modeling for calculating the maximum voltage

achievable by the solid oxide fuel cell are:

VSOFC ¼ VN � VLoss (11)

where VN represent the Nerts voltage and VLoss stands for the voltage losses. It is important to

recall that after a SOFC delivers electrical current, its components exhibit a resistance which

results in voltage losses. These voltage losses are generally classified as ohmic, activation and

concentration polarization losses. Accordingly,

VN ¼ �
∆gorxn
2F

þ
RTo,SOFC

2F
ln

aH2

11 a
O

1=2
2

14

aH2O
11

0

@

1

A (12)

VLoss ¼ ΔVohm þ ΔVact þ ΔVconc (13)

For simplicity, the total ohmic losses can be evaluated through the equation

ΔVohm ¼ i∙r (14)

r ¼ δ∙r (15)

r ¼ ξeα=T (16)

where r is the area-specific resistance which depends on material thickness, δ, and on the SOFC

operating temperature because of the resistivity exponential dependence. For further details of

the model see [1, 7, 26].
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As for the concentration losses, they are worked out using the Fick’s Law of diffusion and the

definition of the limiting current density iL (corresponding to a surface concentration value of

zero) [27]:

i ¼
nFD CB � CAð Þ

3:6δ
(17)

iL ¼
nFDCB

3:6δ
(18)

hereafter

∆Vconc ¼
RT

nF
ln

Cs

CB

� 	

¼
RT

nF
ln 1�

i

iL

� 	

(19)

Finally, the activation losses can be described by the Butler-Volmer equation [1]:

i ¼ io Exp α
nF

RT
Vact

� 	

� Exp � 1� αð Þ
nF

RT
Vact

� 	� �

(20)

where io is referred to as the exchange current density. So applying Eq. (20) to both anode and

cathode half reactions, it becomes

io,anode ¼ γanode

PH2

Pref

� 	

PH2O

Pref

� 	

Exp �
Vact,anode

RT

� 	

(21)

io,anode ¼ γCathode

PO2

Pref

� 	0:25

Exp �
Vact,cathode

RT

� 	

(22)

Accordingly, the activation losses can be calculated as follows

∆Vact ¼ Aln
i

io

� 	

(23)

A ¼
RT

nαF
(24)

However, Eq. (23) is only valid as long as the current density is higher than the exchange

current density, see [2, 3].

Accordingly, the current density can be worked out as:

j ¼
neFz

Ac
(25)

where Ac is referred to as the cell activation area. Then, the total electrical power generated

directly from the SOFC stack is given by
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_W SOFC, stack ¼ NVcjAc (26)

whereas the net electrical power results from subtracting the power consumed by other

components, that is,

_W SOFC,net ¼ _W SOFCηinv �
_W comp, i (27)

where ηinv is the inverter efficiency.

3.2. Thermodynamic model

In order to model the distribution of energy and exergy in the SOFC-VARS system, it is

important to set both the boundary of the entire system and control volumes for each compo-

nent as depicted in Figure 1. Both energy and exergy analyses are performed at steady-state

condition. Kinetic and potential energy changes are negligible.

3.2.1. General energy balance

In accordance with the first law of thermodynamics, the energy balance for any system can be

written as:

dECV

dt
¼

X

j

_Q j �
X

j

_W j þ
X

i

_me �
X

o

_me (28)

Based on Eq. (28) and Figure 1, the energy balance for the SOFC and VARS system is provided,

respectively, in Tables 4 and 5. And, Table 6 provides the energy performance parameters to

be evaluated.

Component Energy balance Eq.

Pump 1 _W ¼ _m1 h2 � h1ð Þ (29)

Fuel compressor _W ¼ _m2 h5 � h4ð Þ (30)

Air compressor _W ¼ _m3 h8 � 7ð Þ (31)

Heat exchanger 1 _m2h2 þ _m15h15 ¼ _m3h3 þ _m16h16 (32)

Heat exchanger 2 _m5h5 þ _m16h16 ¼ _m6h6 þ _m17h17 (33)

Heat exchanger 3 _m8h8 þ _m17h17 ¼ _m9h9 þ _m18h18 (34)

Mixing chamber _m3h3 þ _m6h6 þ _m12bh12b ¼ _m11h11 (35)

SOFC _m3h3 þ _m6h6 þ _m10h10 ¼ _m13h13 þ _m14h14 þ _W SOFC (36)

After burner _m13h13 þ _m14h14 ¼ _m15h15 (37)

Table 4. Energy balance for the SOFC`s components.
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3.2.2. General exergy balance

Provided that the SOFC presents both chemical and electrochemical reactions, it is required to

consider two exergy contributions, namely, physical and chemical exergy. Hence the general

exergy balance for a given control volume is:

_I ¼
X

j

1�
To

Tj

� 	

_Q j � _WCV þ
X

inlet

_Exinlet �
X

outlet

_Exoutlet (52)

where _I is referred to as the exergy destruction ratio, see [28].

The physical and chemical exergy are evaluated, respectively, using the following equations [7]:

_Exph ¼
X

i

_ni hi � ho
� �

� To si � soð Þ

 �

(53)

_Exch ¼ _n
X

i
yie

ch,o

x, i
þ RTo

X

i
yiln yi

� �

h i

(54)

Component Energy balance Eq.

Solution pump _W pump ¼ _m14 hb � hað Þ (38)

Solution heat exchanger _QHX ¼ _m15 hc � hbð Þ ¼ _md hd � heð Þ (39)

Steam generator _QSG ¼ _mdhd þ _mghg � _mchc ¼ _m18 h18 � h19ð Þ (40)

Solution valve he ¼ hf he ¼ hf (41)

Condenser _QCond ¼ _mg hg � hh
� �

¼ _m l hl � hkð Þ (42)

Refrigerant valve hh ¼ hi (43)

Evaporator _Qevap ¼ _m i hj � hi
� �

¼ _mm hm � hnð Þ (44)

Absorber _Qabs ¼ _m f hf þ _m jhj � _maha ¼ _mo hp � h0
� �

(45)

Table 5. Energy balance for the VARS`s components.

Parameter Definition Eq.

SOFC stack AC electrical power _W AC ¼ _W SOFC=ηinv (46)

SOFC net electrical power _W net ¼ _W AC � _W P1 � _W P2 � _W C1 � _W C2

P = pump; C = compressor

(47)

Fuel cell efficiency ηFC ¼
_W AC

_m fuelLHV
(48)

SOFC stack net efficiency ηSOFC ¼
_W net

_m fuelLHV
(49)

Cogeneration efficiency
ηFC ¼

_W ACþ _Q evap

_m fuelLHV
(50)

Coefficient of performance
COP ¼

_Q evap

_Qgen

(51)

Table 6. General parameters of performance.
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where ech,ox, i is the standard chemical exergy as proposed by Szargut et al. [29]; yi refers to the

molar fraction of each species.

For the particular case of the VARS subsystem, the exergy of the Li-Br solution can be calcu-

lated using the model proposed by Palacios-Berech [30]. The model calculates the chemical

exergy of the dissolution as a function of the H2O and LiBr activities, the molality and the

osmotic coefficient as described in Table 7.

where ai and bi are constants whose values are provided in Table 8 [31].

The exergy balances for SOFC and VARS subsystems are given respectively in Tables 9 and 10.

In this work, the exergy analysis of the system is simplified using the general definition of exergy

efficiency which is referred to as the ratio between the exergy rate of the product and the exergy

rate of the fuel. Consequently, it is possible to write the exergy efficiency of the SOFC stack as:

ηSOFC ¼
_W SOFC

_Exfuel
(61)

Parameter Exergy analysis Eq.

Molality in saturated state msat ¼
xLiBr, sat

1�xLiBr,satð ÞMLiBr

(55)

Molality at any state msat ¼
xi

1�xið ÞMLiBr

(56)

H2O activity ln aH2Oð Þ ¼ �∅∙υ∙m∙MH2O
(57)

Osmotic coefficient
ϕ ¼ 1þ

P

6

i¼1

ai∙m
i
2 þ P

2ν

P

2

i¼1

i∙bi∙m
i=2

(58)

LiBr activity
aLiBr ¼ �ν ln mð Þ þ

P

6

i¼1

iþ2
i ai þ i

pbi
2ν

� �

∙mi=2

� �msat

m

(59)

Chemical exergy _Ech ¼
RTo

Msol
yH2O

ln aH2Oð Þ þ yLiBrln aLiBrð Þ
� �

(60)

Table 7. Parameters to calculate the chemical exergy of the Li-Br solution.

j = 0 j = 1 j = 2

a1j �2.19631551 � 101 4.9372316 � 103 �6.55484056 � 105

a2j �3.810475 � 103 2.611535 � 106 �3.6699691 � 108

a3j 1.228085 � 105 �7.718792 � 107 1.039856 � 1010

a4j �1.471674 � 106 9.195285 � 108 �1.189450 � 1011

a5j 7.765821 � 106 �4.937567 � 109 6.317555 � 1011

a6j �1.511892 � 107 9.839974 � 109 �1.2737 � 1012

b1j 3.07410 � 10�4 �1.86321 � 10�1 2.738714 � 101

b2j �4.080794 � 10�4 2.16081 � 10�1 �2.5175971 � 101

Table 8. Value of constants ai and bi as suggested in [8].
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whereas the exergy efficiency of cogeneration is defined in this work as:

ηSOFC ¼

_W net,SOFC þ _Ex
Q

evap

_Exfuel
(62)

4. Validation of SOFC and VARS models

Any mathematical model is not useful if this has not been previously validated with either

experimental data or previous works. Hence validation of both SOFC and VARS models is

carried out in this section. For the case of the SOFC model, this is validated with a previous

work introduced by Tao et al. [22]. As for the VARS model, it is validated with data taken from

Herold et al. [23].

From Figure 2, it can be deduced that the model developed here has a good fit along a broad

range of current density, but shows a slight deviation at the end of the curve (at higher current

densities) which can be considered to be negligible (error less than 3%). Likewise, the VARS

Component Exergy balance Eq.

Pump 1 _ED,P1 ¼
_W P,1 þ

_Ex1 �
_Ex2 (55)

Fuel compressor _ED,C1 ¼
_W comp1 þ

_Ex4 �
_Ex5 (56)

Air compressor _ED,C2 ¼
_W comp2 þ

_Ex8 �
_Ex9

(57)

Heat exchanger 1 _ED,HX1 ¼
_Ex2 þ

_Ex15 �
_Ex3 �

_Ex16
(58)

Heat exchanger 2 _ED,HX2 ¼
_Ex5 þ

_Ex16 �
_Ex6 �

_Ex17 (59)

Heat exchanger 3 _ED,HX3 ¼
_Ex9 þ

_Ex17 �
_Ex10 �

_Ex18 (60)

Mixing chamber _ED,MC ¼ _Ex3 þ
_Ex6 þ

_Ex12b �
_Ex11

(61)

SOFC stack _ED,sOFC ¼ _Ex10 þ
_Ex11 �

_Ex12 �
_Ex14 �

_W sOFC
(62)

Afterburner _ED,AB ¼ _Ex14 þ
_Ex13 �

_Ex15 (63)

Table 9. Exergy balance equations for the SOFC´s components.

Component Exergy balance Eq.

Solution pump _ED,Psol ¼
_W b, sol þ

_Exa �
_Exb

(55)

Solution heat exchanger _ED,HXsol ¼
_Exd þ

_Exb �
_Exc �

_Exe
(56)

Steam generator _ED,SG ¼ _Ex18 þ
_Exc �

_Ex19 �
_Exd �

_Exg (57)

Condenser _ED, cond ¼
_Exg þ

_Exk �
_Exh �

_Ex l
(58)

Evaporator _ED, evap ¼
_Ex i þ

_Exm � _Ex j �
_Exn

(59)

Absorber _ED,Abs ¼
_Ex j þ

_Ex f þ
_Exo �

_Exa �
_Exp

(60)

Table 10. Exergy balance equations for the VARS´ components.
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Figure 2. Characteristic polarization curve.

Figure 3. Characteristic curves of a vapor-adsorption refrigeration system.
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model used herein is seen to exhibit good agreement with previous works, Figure 3. In this

particular case, the validation is worked out by comparison of two important parameters used

to evaluate the performance of an adsorption refrigeration system, namely, the coefficient of

performance (COP) and the rate of heat transfer in the evaporator as a function of operation

temperature of the generator.

5. Results and discussion

For the actual analysis, the current density, operation temperature, fuel utilization factor and

steam-to-carbon ratio are considered as decision variables. The thermodynamic performance

of the SOFC and the cogeneration system, i.e. its exergy efficiency, is then obtained by varying

the decision variables over an acceptable operation range. So the variations of the exergetic

efficiencies with such decision variables are explained to understand their nature.

5.1. Current density

One of the important parameters used to characterize the performance of a fuel cell stack is the

current density when plotted versus the cell voltage, known as the polarization curve as

shown in Figure 4. Hence it is important to study its effect on both the SOFC and the global

exergy efficiencies.

The calculated variations of both energy (η) and exergy (ψ) efficiencies of the SOFC stack with

current density under a constant Uf = 0.85 and T = 1000 K are depicted in Figure 4. It clearly

shows the dependence of efficiency on current density.

Figure 4. Variation of the SOFC energy and exergy efficiencies with respect to current density.
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As expected, the calculated values for the exergy efficiency are slightly lower than those

worked out for the energy efficiency. The reason is because the energy analysis does not take

into account irreversibilities generated into the SOFC stack, so it assumes that more useful

energy is available. Another important implication of Figure 4 is that lowering current density

increases both efficiencies as reported in literature [8], which is due largely to the reduction of

voltage losses at lower current densities in accordance with literature [1].

The effect of current density on both efficiencies is further expanded to the whole system

(cogeneration system) as evidenced in Figure 5. Moreover, it is observed that the first law

efficiency of the cogeneration system is 15% higher than the first law efficiency of the SOFC

attack alone. Likewise, the exergy efficiency maintains such a percentage difference. This is

expected because the sensible heat of the stack gas is captured and converted into useful

thermal energy to drive the adsorption refrigeration system. So cooling is available as second

product. Furthermore, it is noteworthy to mention that the overall exergy efficiency is similar

to other previous works [8, 32].

Figure 6 shows the results of the calculated exergy efficiencies for both SOFC stack and

cogeneration system as a function of the fuel utilization factor. It is very clear that lowering

the operating temperature at a given UF, the exergy efficiency increases. This applies to both

the SOFC stack and the cogeneration system. For the particular case of the cogeneration

system, lowering temperature from 1000 to 900 K at UF = 0.85, the exergy efficiency increases

by roughly 15%. Whereas, for the SOFC stack, its exergy efficiency increases by only 10%. This

behavior stems from the fact that at lower temperatures the effect of leakage current is less

significant, which causes the exergy efficiency to rise. It is, however, possible that at lower

temperatures the polarization losses increase too. To some extent, it is desirable to operate at

Figure 5. Variation of the cogeneration energy and exergy efficiencies with respect to current density.
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UF values lower than 0.85 and low temperatures as efficiently as possible. Consistent with

Figure 6, the effect of temperature on exergy efficiency can be better studied when the temper-

ature is expanded to a wider range as depicted in Figure 7.

In reference to the cogeneration system, it strongly suggests that the SOFC has to operate

within a range between 850 and 950 K as to boost the global exergy efficiency. A notice-

able trend is that lowering UF at a given temperature, the exergy efficiency of the SOFC

increases in contrast to Figure 6. The reason is because in spite of increasing UF, which is

assumed to increase the useful external current, there are other types of irreversibilities

caused mainly by electronic and ionic conduction throughout the SOFC components (i.e.

leakage currents [1]) that determine these atypical bending-over exergy efficiency curves.

For the sake of comparison, a previous work [8] reports lower exergy efficiencies, for the

cogeneration system, at different inlet temperature. The reason is because of the different

Uf values used in this work.

On the other hand, the steam-to-carbon ratio (SC) is one of the key parameters in the operation

of a SOFC that is worth analyzing. In particular, the SC defines whether carbon deposition at

cell anode is built up, which causes that more heat is generated and less H2 is consumed in the

electrochemical reaction. In this respect, Figure 8 shows that at higher SC ratios, the exergy

efficiency of the SOFC stack and of the cogeneration system slightly decreases as a result of the

less chemical energy converted into electrical energy as previously explained.

Figure 6. Variation of exergy efficiency with UF at three different inlet fuel temperatures.
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Figure 7. Variation of exergy efficiency with inlet fuel temperature at three different levels of UF.

Figure 8. Effect of the steam-to-carbon ratio on exergy efficiency at three different inlet fuel temperatures.
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Furthermore, a noticeable trend is that lowering temperature at a given SC ratio, both exergy

efficiencies increases in agreement to Figure 7. In order to show the effect of UF on exergy

efficiency and at given values of SC ratio, Figure 9 is presented. It is worth observing that

exergy efficiency is slightly sensitive to SC ratio at UF lower than 0.85. In contrast, at higher UF

values than 0.85, the effect is considerably more noticeable. It is also interesting the bending-

over behavior appearing at UF = 0.9, which is the result of other voltage losses as explained

above. To be consistent, Figure 6 shows that at higher values of UF the exergy efficiency bends

over as occurs in Figure 7.

Finally, Figure 10 depicts the calculated efficiency defect, δ, for the most representative com-

ponents of the total system (i.e. SOFC-VARS system). It is worth mentioning that the efficiency

defect represents the portion of exergy or useful energy that is destroyed in each component

[28]. For any case, it is noticeable that the component where the most exergy is destroyed is the

heat exchanger 3 (coinciding with a previous work [8]), which is located at the end of the SOFC

stack, the reason is because this is the largest heat exchanger and controls the heat that is sent

to the generator of the adsorption refrigeration system.

Another noticeable observation is that increasing current density the efficiency defect of the

SOFC, afterburner and heat exchanger increases, respectively, 10, 30 and 35% roughly

(Figure 10). Moreover, it is observed from this figure that the other components are not

considerably affected with respect to the current density of the SOFC. This explains why the

exergy efficiency is lower than the energy efficiency discussed in Figure 4.

Figure 9. Effect of the steam-to-carbon ratio on exergy efficiency at three different levels of UF ratios.
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6. Conclusions

A solid oxide fuel cell/adsorption refrigeration system for electricity and cooling generation is

evaluated in terms of exergy. From a thermodynamic standpoint, a combined system is a

highly efficient way of making use of heat which would otherwise be lost during the produc-

tion of electricity and converts it into useful thermal energy so as to boot a vapor adsorption

refrigeration system as described herein. All the mathematical models are thoroughly

described in order to provide a robust and thorough exergy analysis of the system. Hence the

following conclusions are worked out:

1. It is interesting to mention that applying a first law analysis it is not sufficient to evaluate

the amount of usable energy that is destroyed throughout the system as evidenced in

Figure 4.

2. The first law efficiency and second law efficiency of the SOFC stack and of the cogenera-

tion system are affected with the SOFC current density.

3. The effect of the fuel utilization factor (UF) on the exergy efficiency of the cogeneration and

the SOFC is not substantial at UF lower than 0.85.

4. The analysis of the effect that fuel inlet temperature has on the exergy efficiency of both the

SOFC and the SOFC-VARS systemdemonstrates a bending-over behavior that becomesmore

pronounced at higher UF values. The significance of this behavior results from the irrevers-

ibilities caused by other mechanisms such as the electronic and ionic conduction in the SOFC.

5. The exergy efficiency of both the SOFC and SOFC-VARS system is slightly sensitive to

steam-to-carbon ratio, notwithstanding the temperature.

6. The effect of steam-to-carbon ratio on exergy efficiency at different values of UF is notice-

ably more pronounced at higher UF. This suggests that a more detailed analysis has to be

carried out to unveil the root causes.

Figure 10. Efficiency defect, δ, for the total system: a) UF = 0.85, T = 1000 K and i = 500 A/m2, b) UF = 0.85, T = 1000 K and

i = 800 A/m2.
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7. The components where most of the input exergy is destroyed are the heat exchangers, the

SOFC, the afterburner and the generator. This is an advantage of the exergy analysis since

it permits to pinpoint the main components where useful energy is destroyed. So efforts to

improve the total system efficiency have to be targeted at these components.

Finally, it only remains to say it would be interesting to know if this model is economical and

environmentally attractive and it is a project underway.
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