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Abstract

Cancer is a mass of abnormal and detrimental cells in a given part of the body. The main 
elucidated cause is the uncontrolled growth and proliferation of those cells after the cor-
ruption of the physiological processes responsible for normal development and func-
tioning. The advantage of adjuvant therapy, therapy done after surgery, is to prevent 
the occurring of symptoms and not necessarily to make sure of the integrity of mecha-
nisms that are crucial in preventing abnormal cell proliferation such cell cycle regula-
tion, cell death, which include autophagy, necrosis, and apoptosis. The understanding 
of dysregulated cell death mechanisms combined with suitable alternative cancer thera-
pies could lead to novel treatment modalities for cancer. Currently, breast cancer is the 
leading occurring cancer in sub-Saharan women after that of the cervix. This potentially 
curable condition kills more than half of the diagnosed group, which consists mainly 
of females aged between 35 and 49 years and with 77% being in stages III and IV. The 
social economic status of populations coupled with the limited access to proper control 
strategies and infrastructures in sub-Saharan regions accentuate the burden of the dis-
ease. Photodynamic therapy (PDT) has shown great potential in treating breast cancer 
and even greater therapeutic outcomes can be obtained when combining PDT with other 
therapies such as immunotherapy or nanomedicine.

Keywords: cancer, breast cancer, current treatment, photodynamic therapy, 
photosensitizers, photochemical reactions, cell death immunotherapy, nanomedicine

1. Introduction

The unregulated growth and proliferation of abnormal cells to form solid or liquid tumor in 

a given part of the body is referred as cancer. Currently, the condition denotes a collection 
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of related diseases with more than 100 types of cancer have been identified and named after 
the organs or tissues of origin [1]. Carcinoma is a common category that affects the inner and 
outer surfaces of the body and the subcategories include basal cell, squamous cell, transitional 

cell and adenocarcinoma. Sarcoma affects the cells in bones and smooth tissues, leukemia 
and lymphoma that of the blood and lymphocytes, respectively [1]. Due to the nature of the 

condition, the detection has to be as early as possible, followed by appropriate managerial 

approach based on the type of cancer to insure the survival of cancer patients. Early detection 

and treatment have increased the lifespan of patients diagnosed with cancers, and the sur-

vival rate is thrice higher than that observed in postponed intervention scenarios [2, 3]. Cancer 

has become a major health problem and foremost cause of death, claiming more than 8.8 mil-

lion deaths in 2015, and 8.2 million deaths with 14 million new cases been diagnosed in 2012 

[4–6]. The lifestyle plays a decisive role in determining cancer incidence and mortality rates, 

for example, the consumption of tobacco alone is one of the deadliest causes and accounts for 

22% of the global cancer related deaths [5]. In developing countries, about a quarter of the 

incidence rate is infection-dependent, such as Hepatitis and Human Papilloma Virus (HPV) 

are known to facilitate carcinogenesis. While more than 90% of proper facilities and services 

for cancer management are reportedly available in the developed parts of the globe, less than 

30% of those are in the low and middle countries. It has been established that the cancer mor-

tality rate is proportionate to the regional dietary behavior and a third of the global cancer 

related deaths could be avoided as it is associated with obesity, high both tobacco and alcohol 

consumption, both low vegetable and fruit consumption, and physical inactivity [7, 8].

When a cancer develops and originates from the lobular or ductal tissues in the breast, it is 

commonly known as breast cancer, one of the most deadly cancers and the most common 

womanlike cancers globally [9, 10]. This carcinoma can be either recurrent, metastatic, inva-

sive (or not) and seldom originates in the connective tissues of muscles, fat and blood vessels. 

A well developed breast is a tear-shaped milk producing gland and breast cancer is classified 
according to level of differentiation, from well differentiated in normal breast to moderately 
and poorly differentiated glands in breast cancer. Additionally, the size of the tumor, the pos-

sible invasion to lymph nodes in the armpits and metastatic ability help oncologists to stage 

breast cancer from the small ductal/lobular precancerous stage (stage 0) to medium sized in 

breast and lymph nodal regions (stage 1–3) and large metastatic phase (stage 4), the latter is 
usually associated with worse prognosis [10, 11]. Better prediction of prognosis is facilitated 
by the presence or not of certain receptors and the human epidermal growth factor receptor-2 

(HER2) together with hormone receptors (HR, estrogen and progesterone) are usually consid-

ered. The luminal A type (HR+/HER2-) of breast cancer has the best prognosis, the luminal B 

type (HR+/HER2+) and the HER2-enriched type (HR−/HER2+) have moderate prognosis and 
the worst scenario is observed with the triple negative type (HR−/HER2+) [12–15].

The management approach of any kind of breast cancer mainly depends on the stage and the 

predicted prognosis; with the more hostile treatments administrated to patients, whose condi-

tions have predicted poor prognosis and elevated probability of recurrence after intervention. 

Although the occasional and circumscribed effectiveness, surgery remains the main treatment 
modality for breast cancer, including entire (mastectomy), partial (quadrantectomy) or minute 

(lumpectomy) removal of the breast. The multidisciplinary approach is often preferred and 
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necessitates the accompaniment of chemotherapy or radiation therapy, or both for improved 

results [16]. Generally, hormone-blocking agents act as effectors for treatment of luminal 
(HR+) types and immune-modulators are favored for certain metastatic and late-staged breast 

cancer [17–19].

Photodynamic therapy is an unconventional treatment modality for neoplastic conditions 

and a promising treatment for recurrent cancers, depending on photochemical reactions 

and subsequent damage, and leading to cancer cell death [20, 21]. Experimental data from a 

diverse pool of research reports proved Photodynamic therapy to be a good treatment option 

for numerous cancers, offering reduced long-term mobility, very limited side-effects, better 
cancer-specificity over surgery, chemotherapy or radiotherapy [20, 22–23]. The radiotherapy 

causes loss of oxygen while oxygen is required during the Photodynamic therapy, therefore 

the two approaches should not be considered for a combined therapy. Furthermore, combi-

nation with conventional chemotherapeutic agents should be avoided as it would forfeit the 

cancer control and selectivity benefits of Photodynamic therapy. A superior targeting and 
eradication of breast cancer cells was achieved with photodynamic therapy, which is appeal-

ing and leaving normal-like cells such as breast epithelium and fibroblast unaffected, thus 
satisfying a safe usage norms. This emphasizes the edge of photodynamic therapy over other 

therapeutic methods; limited to none side-effects to patients. Photosensitivity is the usually 
side-effect observed and involves skin redness, tingling or burning sensation up to 24 hours 
post Photodynamic therapy, which can only treat tumors where light can reach and [21–25].

2. Fundamentals of photodynamic therapy

Photodynamic therapy was discovered more than a century ago and now is a minimally 

invasive and clinically approved therapeutic modality for neoplastic conditions. It involves 

the administration of photochemotherapeutic agents, known as photosensitizers, followed 

by the irradiation of the agents at a wavelength that matches their absorption properties. 

When this occurs in the presence of molecular oxygen, a sequence of reactions that lead to 

the tumor microvasculature damage, cytotoxicity and subsequent tumor cell death (Figure 1)  

[21, 26, 27]. Photosensitizers have evolved over time and are nontoxic, light absorbing dyes, 

able to undergo photochemical changes and transitions between the ground state and first or 
higher excited states. The deactivation can happen by heat-release (nonradioactive decay), 

emission as fluorescence or undergoing intersystem crossing (ISC). Ideal photosensitizers are 
readily able to be excited by appropriate photons, available in simple chemical formulation, 

easily synthesized from their precursors, stable and soluble in physiological environments, 

easily delivered into the body (injection or other means), and excreted from the body upon 

completion of therapy. They have high singlet oxygen quantum yield with strong absorption 

in the red region of the visible spectrum (680–800 nm) and high extinction coefficient, and 
effective accumulation in tumor tissues and low dark toxicity [28].

The third generation of photosensitizers are currently being developed from conjugating pre-

vious ones with organic and inorganic polymers, immunologic agents and nanoparticles. The 

first generation of photosensitizers include the members of Photofrin and hematoporphyrin 
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derivatives. They are complex mixtures of simple macrostructured hematoporphyrin and 

absorb light weakly at 630 nm, which resulted in their limited photodynamic effects. They 
were mostly used for surface tumors as at this wavelength of 630 nm the tissue penetration 

of light cannot exceed 4 mm and the major inconvenient was the extended light sensitivity 

period after the treatment. However, members of the first generation were efficient in genera-

tion of singlet oxygen per photon absorbed and met the standard for approval usage for clini-

cal trials [28–31]. The development of second generation photosensitizers aimed to overcome 

the shortcomings of their predecessors naming low absorption in the near infrared region of 

the visible spectrum, prolonged light sensitivity and skin photo toxicity, and synthesizing 

method. From the porphyrin, many second generations were developed and included meta-

tetra (hydroxyphenyl) porphyrin (m-THPP), 5,10,15,20-tetrakis(4-sulfanatophenyl)-21H,23H-

porphyrn (TTPS4), 1,5-aminolevulinic acid (ALA) and numerous derivatives, the chlorin 

family derivatives, pheophorbides, bacteriopheophorides, texaphyrins, phthalocyanines. The 

members of the phthalocyanine family have great photodynamic actions and intersystem 

crossing capabilities due to the incorporation and formation of metal complexes in their core 

areas [32–36]. Some non-porphyrinoid photosensitizers exhibit photodynamic activity and 

include the anthraquinones, phenothizanies, xanthenes, cyanines and curcuminoids [37–39]. 

The development of third generation of photosensitizers is motivated by the fact that solu-

bility remains poor with second generation photosensitizers, especially in aqueous environ-

ments at physiological condition, thus preventing intravenous delivery into the bloodstream. 

Currently, the research endeavors focus on developing delivery systems to facilitate the trans-

portation to the target areas and to achieve greater selectivity and specificity of the third gen-

eration photosensitizers in order to increase their cellular uptake [40].

Light plays pivotal role for the successful activation of photosensitizers and subsequent 

outcomes of photodynamic cancer therapy. In ancient Egyptian, Indian, Greek and Chinese 

civilizations, light had a long track record in medical applications and the most usage being 

the remarkable efficacy in treat skin conditions [41]. Current applications use specific light 

Figure 1. Elementary chronological events during photodynamic therapy. (A) Intravenous administration of photo-

sensitizer(PS) to cancer patient. (B) Irradiation and activation of photosensitizer, which is localized in the cancer site.  

(C) Induction of cancer destruction mechanisms. (D)cancer-free patient after successful photodynamic therapy.
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sources to irradiate targeted tumor tissues. The optical power, wavelength matching the 

absorption spectrum of used photosensitizers and the depth of tissue penetration are among 

the priorities to be considered. The best tissue penetration of light is achieved in the thera-

peutic window, and most currently used photosensitizers absorb light maximally around that 

region of the spectrum, which is also known as the near infrared region (Figure 2) [42, 43]. 

Various types of light sources exist and the most commonly used in Photodynamic therapy 

applications are lasers, filtered lamps and light emitting diodes (LEDs). Lasers were the first 
to be utilized and offer high power coherent light in a narrow wavelength bandwidth but 
high manufactured skills and high cost are associated with them. Filtered lamps are the sec-

ond and also the most flexible as they can be adapted, allowing their filters to be changed 
according to the properties of photosensitizers used but require an endoscope, which limits 

the efficiency, especially when using optical fibers. The most recent, LEDs are commonly used 
in Photodynamic applications and offer enhanced optical power [44, 45].

Figure 2. Light wave length and tissue penetration. Light penetration is proportional to the length of the wavelength 

used, the longer the wavelength, the deeper light penetrates into tissues.
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The final objective of a photosensitizer is to successful transfer energy to molecular oxygen 
(3O

2
) or direct transfer of energy and production of reactive oxygen species. In photodynamic 

reactions, one of the most cytotoxic agent is the singlet oxygen (1O
2
), produced after the active 

interaction with a triplet state photosensitizer, and can be determined by measuring the weak 

near infrared luminescence of 1O
2
, possible in both cells in vitro and tissues in vivo. In all of 

the cases, the treatment efficacy and cell eradication correlate strongly with the cumulative 
1O

2
 luminescence [46]. The amount of different forms of oxygen present in targeted tissues 

appear as an important factor to be considered for prognosis. The efficacy of Photodynamic 
therapy depends on the interaction of light, photosensitizers and oxygen, all in appropriate 

dose, and three dosimetry methods have emerged including explicit dosimetry to measure 

different treatment parameters and predict the outcomes, implicit dosimetry to measure bio-

logical intermediates and damage (photo bleaching) and adjust to effective dosage, and direct 
dosimetry to measure the critical photobiological toxins and avoid limitations seen with the 

previous two [46, 47].

2.1. Mechanisms of photodynamic therapy

Photodynamic therapy involves the use of light exposures to excite a photosensitizer from 

the ground state (PS) to the singlet excited state (1PS*). The stability of the photosensitizer 

in the excited state determines the occurrence of the intersystem crossing to the triplet and 

long-lived excited state (3PS*). Many physical pathways may be involved during intersys-

tem crossing, converting the excited singlet state to the long-lived and excited triplet state 

photosensitizer. The triplet state has the ability to undergo photochemical processes and 

interact with triplet state molecules such as molecular oxygen. At this point, two possi-

ble photoreactions are envisaged, type I or type II reactions, involving molecular oxygen 

(Figure 3). In a type I reaction, electrons are transferred from the excited triplet state pho-

tosensitizer to molecular oxygen, when in the presence of a suitable reducing agent, to 

produce reactive oxygen species such as superoxide anion, hydrogen peroxide, hydroxyl 

radical and hydroxide ions [9].

The second reaction, Type II, energy or electrons from the excited triplet state photosen-

sitizer are directly transferred to molecular oxygen (3O
2
), promoting it to an excited state 

singlet oxygen (1O
2
). Energy transfer to 3O

2
 can occur only if both photosensitizer and oxygen 

(Triplet ground state) are in the same triplet state. Both type I and type II reactions gen-

erate reactive oxygen species, which are responsible for the cytodamage observed during 

Photodynamic therapy and type II reactions occur more frequently in photodynamic reac-

tions (Figure 4) [9].

2.2. Photodynamic therapy, a localized therapy

Photosensitizers are tumor-localizing nontoxic agent, they selectively accumulate in neo-

plastic tissues, making Photodynamic therapy a restricted therapy. The irradiation of tumor 

tissues with visible light in the presence of oxygen, activates photosensitizers to generation 

reactive oxygen species into the tumor cells and thus induces tumor death and tissue destruc-

tion, preventing side-effects to health tissues [47]. Although the photosensitizers will effec-

tively localize in all tumors, Photodynamic therapy is more suitable for localized diseases as 
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the irradiation is more feasible and efficient than in metastatic diseases. Most photosensitiz-

ers interconnect with tumor cells though their numerous low density lipoprotein receptors, 

facilitating the uptake of photosensitizers. Once inside the cells, the photosensitizers tend to 

Figure 3. Schematic representation of type I and type II photoreactions following photo dynamic therapy (Jablonski 

Diagram). When the photosensitizer(PS) absorb a photon of light, it is elevated from the ground to the singlet excited 

state, it can either return back to the initial ground state by fluorescence or undergo intersystem crossing into the long 
triplet excited state. The photosensitizer in the triplet excitable state can transfer energy to an oxygen molecule forming 

reactive oxygen species (type I) or to the highly reactive triplet state (type II). There active oxygen species are responsible 

for the subsequent damage to biomolecules(nucleic acids, lipids and proteins) and the resulting cell death events.

Figure 4. Possible photochemical reactions of photosensitizer (PS) in the triple excited state.
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 selective accumulate in some organelles, include in the mitochondria, lysosomes and those 

near the nuclear areas. Mitochondria are consistent and preferential sites of accumulation of 

photosensitizers and the efficiency of Photodynamic therapy is not always affect by differen-

tial localization patterns between various cells. However, all Photodynamic therapy-treated 
cells exhibit significant mitochondrial disruption, leading to decreased mitochondrial activity 
and adenosine triphosphate production. Most cationic photosensitizers have stronger water 

solubility properties and localize in mitochondria, yielding enhanced photodynamic activities 

[48, 49]. Most of the photosensitizers that localize in mitochondria of certain kind of cancer 

cells, including breast cancer cells, show relatively high co-localization level in near nuclear 

areas such as endoplasmic reticulum, and are believed to be good candidates for photodi-

agnosis and photodynamic therapy [50, 51]. Reduced mitochondrial oxygen consumption, 

decreased mitochondrial membrane potential and inhibited activity of complexes (I to IV) are 

all often seen after photodynamic therapy-mediated by mitochondrial localizing photosen-

sitizers, which have apoptosis-inducing capabilities [52, 49–51]. Some lysosomal-localizing 

photosensitizers are hydrophilic and show excellent tumor destruction, they are usually asso-

ciated with the induction of both apoptotic and necrotic responses following photodynamic 

therapy [53–55].

2.3. Photodynamic therapy and the induction of cell death

Cellular uptake of the photosensitizers can assist in predicting the mode of cell death as reac-

tive oxygen species accumulated first in the organelles where photosensitizers are localized 
[56]. Photosensitizers that favorably localize in mitochondria seem to have the predisposi-

tion of inducing apoptosis. Damage to mitochondria following photodynamic actions, would 

lead to mitochondrial leakage and apoptotic response as mitochondria are well known to 

play critical roles in most apoptotic pathways [57, 58]. Apoptosis is a highly regulated and 

programmed cell death response that comprises interdependent and synchronized pathways 

[58, 59]. Photodamage-mediated permeabilized mitochondrial membranes induce leakage of 

apoptogenic proteins, such as cytochrome C. In return, the released apoptogenic proteins 

activate the caspase mediated apoptotic pathway [60, 61]. Photodamage may also lead to the 

induction of other apoptotic pathways [62, 63].

With high dose of photodynamic therapy, cellular components that are essential for the 

induction of an apoptotic response, become damaged in the process leading to a necrotic type 

of response [64]. Necrosis is a cell death response associated with the pathological processes 

and irreversible cellular injury [65]. Sometimes, necrosis is accompanied by an inflammatory 
reaction accompanies, which is caused by the direct release of intracellular components into 

the cell environment [66]. Successful induction of the necrotic cell death response after pho-

todynamic therapy had been reported, especially as a result of photosensitizers accumulating 

maximally in the plasma membranes [67]. Photosensitizers that localize in plasma mem-

branes showed co-localization in mitochondria and slightly in lysosomes, and the observed 

post treatment changes at different incubation intervals included cell membrane damage, ini-
tiated cell repair, irreversible damage, induction of apoptotic-like response, and cell cycle S 

phase arrest [68].
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Autophagy is a cytoprotective and recycling mechanism responsible to deal with cellular 

organelles and cytoplasmic components after damage. The main effector of this function is 
the autophagosome, a temporally doubled membrane structure, with the ability to engulf cell 

debris and fuse with lysosomes for complete degradation of its contents [69]. Photosensitizers 

that localize in mitochondria and endoplasmic reticulum stimulate a prosurvival autopha-

gic response while the lysosomal-localized photosensitizers trigger an inhibitory autophagy 

response [55, 70]. Furthermore, low doses of photodynamic therapy lead to the induction of 

a cytoprotective autophagic mechanism, and autophagic cell death mechanism is induced 

with the high doses [71]. When an apoptotic response is undergoing, the autophagic cell 

death complements it and when absent, autophagy stands as the main cell death mechanism 

induced after photodynamic therapy [72, 73]. Such observation indicates that photodynamic 

treatment gives a concurrent occurrence of various cellular responses, which all depend on 

the treatment parameters (types of photosensitizers, cellular localization, dose, light sources, 

dose, and incubation time).

2.4. Cancer recurrence and photodynamic therapy

After remaining undetected for a period following treatment, cancer can recur and accord-

ing to the localization; a local, regional or distant recurrence needs to be dealt with. Surgery 

and other conventional cancer treatments are not suitable for advanced stage and meta-

static tumors, and leaving room for development of drug-resistant cancer, which is often 

associated with cancer stem cells [74]. Cancer stem cells are normal stem cells, with special 

ability to give rise to all types of cells found in a particular cancer sample, so making them 

able to generate tumors through the stem cell processes of self-renewal and differentiation 
[75, 76]. The development of treatment modalities that target both primary and secondary 

and cancer stem cells becomes more than required, due to the selectivity of photosensi-

tizers, Photodynamic therapy appears as a promising therapy for drug-resistant cancer 

stem cells with the photosensitizer-targeted delivery to cancer and particularly cancer 

stem cells [77]. For this reason, the capabilities of photosensitizers are being upgraded 

with prospective approaches based on nanoscience and nanotechnology for conjugating 

nanoparticles to photosensitizers to achieve nano-photosensitzers targeted delivery in the 
photodynamic treatment of cancer and cancer stem cells [78]. The use of nanoparticles 

makes it able to explore the poor lymphatic drainage and ensure that the photosensitizers 

is much more easily retained in cancer-like tissues than in normal tissues, a phenomena 

known as enhanced permeability and retention effect [79]. The conjugation of antican-

cer photosensitizers and water-dispersible nanoparticles with specific affinity for cancer 
stem cells yields a systemic self-deliverable photodynamic therapy, which maintains the 

pharmacological efficacy while improving the safety and delivery profiles [78, 80]. The 

nanocarriers are known to achieve both passive and active targeting delivery, which is 

an additional benefit to increase the therapeutic effects and reduce the side-effects [81]. 

With such development, the burden of enduring several drugs as currently accomplished 

in clinical treatment will be alleviated with the development of multifunctional nano-

carriers. Another potential active targeting delivery approach will be conjugation with 

monoclonal antibodies specific to cancer and cancer stem cells. Multifunctional carriers of 
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antibodies targeted against HER2 or estrogen or any other steroid hormone receptors that 

are overexpressed in breast cancer and cancer stem cells could be exploited to achieve bet-

ter targeting, uptake and  therapeutic outcomes both in vivo and in vitro. Multifunctional 

drug delivery carriers containing antibodies tend to show enhanced eradication of cancer 

and cancer stem cells, prospect targeting drug delivery systems depend on the discovery 

of cancer stem cell interacting mediators [81–83].

Novel types of targeted cancer therapy like the multifunctional complexes-mediated pho-

todynamic therapy are currently being considered along with other treatments including 

cancer vaccines, oncolytic virotherapy and immunotherapy [84–85]. The transcription fac-

tors that regulate cell mobility, invasion and migration during metastatic tumor stages of 

breast cancer are becoming attractive and constitute essential molecular targets for future 
treatment modalities [86, 87]. Hormone receptors remain the most currently used markers 

in clinical trials and the usage of breast cancer markers BRCA1 and BRCA2 is increasing as 

seen by numerous report studies [88, 89]. Most of the preclinical studies are performed with 

cell lines derived from breast cancers, and MCF-7, T-47D and MDA-MB-231 are among the 

most commonly used [90].

3. Conclusion

Cancer, an uncontrolled cell proliferation condition, has become a major health challenge 

and global killer. The incidence and related treatment facilities are unfortunately deter-

mined by the lifestyles and geographic locations of cancer patients. Breast cancer is a com-

mon carcinoma that affects the tear-shaped milk glands in women and its classification is 
been facilitated by the presence or not of certain receptors (HER-2 and HR), which are also 

to predict the prognosis. Photodynamic therapy is a promising cancer treatment and offers 
better specific targeting of cancer and limited side-effects, when compared to conventional 
therapy. Mitochondria, lysosomes and perinuclear areas are reported as the most frequent 

localization sites for third generations of photosensitizers. The treatment efficiency depends 
upon the successful light-activation and intersystem conversion into the excited triplet state, 

only then photosensitizers interact with molecular oxygen to produce reactive oxygen spe-

cies, toxins responsible for cytodestruction and cell death. If required, Photodynamic can be 

repeated but the contribution of nanoparticles in combination therapy for cancer and par-

ticularly breast cancer, has permitted the successful delivery of therapeutic agents to the tar-

geted tumor site and enhancement of therapeutic effects. When conjugated, they facilitate 
the delivery of hydrophobic drugs into biological environments, ensure the preservation of 

the pharmacologic properties of the drugs, and enhance selective targeting to cancer cells 

through their large surfaces, which can be functionalized with a various kind of components. 

The use of photodynamic therapy offers controlled conditions with high selectivity to cancer, 
hence reducing the undesired side-effects seen with conventional treatments. Whether used 
as main or adjuvant therapy, the aim of combination cancer therapy using photodynamic 

therapy is to selectively and completely eradicate cancer by targeting and killing both cancer 

and cancer stem cells.
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