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Abstract

Motor drive systems are indispensable for applications in the industrial field. High-speed
and high-accuracy control is required for motor drive systems. However, solutions to
meet these requirements can cause mechanical resonance vibrations to occur in the system
as a result of miniaturization and system weight reduction. It is therefore necessary to
model these systems as multi-mass resonance systems with multiple masses and finite
rigid shafts, gears, and loads. In addition, vibration suppression control should be applied
to these systems. This chapter provides two off-line tuning methods for a digital
proportional-integral-derivative (PID)-type controller for a two-mass resonance system to
suppress its mechanical resonance vibrations. These methods include a coefficient dia-
grammethod and a fictitious reference iterative tuning method. The former method uses a
nominal mathematical model of the object while the latter method uses only the initial
experimental data without use of the mathematical model. In this chapter, the two
methods are compared. A controller is proposed that consists of a modified integral-
proportional derivative (I-PD) speed controller and a proportional-integral (PI) current
controller, and requires no information about the load side state variables. Finally, the
effectiveness of the proposed method is confirmed through computer simulations and
experimental results.

Keywords: two-mass resonance system, vibration suppression control, modified I-PD
controller, coefficient diagram method, fictitious reference iterative tuning

1. Introduction

Motor drive systems are used in a wide range of applications, including industrial robots, home

electrical appliances, automobiles, steel rolling mills, computers, and space work surfaces. In

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



general, motor drive systems consist of electric motors, gears, belts, flexible shafts, and mechan-

ical load equipment. Recently, the overall stiffness of these systems has been decreasing because

of demands for high-speed and high-accuracy system responses, miniaturization, system weight

reduction, and low system costs. Additionally, the system constructions have become more

complex and the central processing unit (CPU) processing speeds that are required to perform

the system calculations have increased exponentially. Consequently, torsional resonance vibra-

tions occur between the motor and the load side. It is therefore necessary to model the system

as a multi-mass resonance system, which is composed of several masses with finite rigid shafts,

gears, and loads. In addition, a vibration suppression control method should be applied to

the system.

The first-order approximation model of the multi-mass resonance system has the form of a

two-mass resonance model. Several control methods are effective for control of a two-mass

resonance system [1–5]. PID-type controllers are the most commonly used controllers for

industrial applications because of their simplicity and their practicality for use with multi-

mass systems. Various PID controller design methods have been proposed; examples of these

methods include the limit sensitivity method, the Ziegler and Nichols tuning method, and

methods that use the system polynomial. These controller design methods, which are called

model-based design methods, may be able to produce the required results in cases where both

the system equation and the real system’s parameters are unknown.

In the industrial fields in which many typical motor drive systems are used, experienced

technicians often adjust the control system on site to suit the needs of the manufacturing

equipment. However, engineer shortages in these fields are becoming a serious problem. It is

therefore essential to develop a simple controller design method for industrial applications.

Under these circumstances, and to save both the time required and the cost of tuning the

controllers for the motor drive systems, some direct controller tuning methods have been

proposed based on the transient response data from closed-loop systems, without modeling

of the plant. The fictitious reference iterative tuning (FRIT) method is one of the most promis-

ing candidate methods for practical direct parameter tuning [6, 7]. Using the FRIT method, the

controller gains can be designed using only single-shot experimental input-output data with-

out knowledge of the model parameters of the object to be controlled.

This chapter introduces two types of approaches to PID-type controller design for suppression

of the two-mass resonance system. The first method is based on the assumption that the

mathematical model of the object to be controlled is known. This design method is called the

coefficient diagram method (CDM) [8–10]. The CDM is an algebraic approach designed to

produce the characteristic polynomial directly in the parameter space. The design of the

coefficient diagram of the control system is performed using a differential evolution (DE)

procedure to obtain the optimal controller gains in a short time [11–13]. The second design

method is a FRIT method, which is a PID controller design approach based on one-shot

experimental data only and does not use the mathematical model of the object to be controlled

[14–16]. The effectiveness of the two proposed design methods is confirmed using a combina-

tion of computer simulations and experiments.
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2. Two-mass speed control system applying PID-type control

2.1. Description of two-mass resonance model

The model consists of two rigid masses and a torsional shaft. The multiple masses on the load

side of the actual system are approximated as one inertial element. Similarly, several shafts and

gears are approximated as a single torsional shaft. The typical two-mass model is depicted

schematically in Figure 1 below [14–17].

Here, J and ω denote the moment of inertia and the angular speed, respectively, and the

suffixes M and L indicate the motor side and the load side, respectively. Tin is the input torque,

Tdis is the torsional torque, TL is the load torque, and Ks is the shaft stiffness. The continuous

state equations of this two-mass resonance model are shown as Eqs. (1) to (3). Additionally, a

current loop is considered in this research for high-speed torque control. Eq. (4) is indicative of

the voltage equation when using a permanent magnet dc servo motor as the driving motor. In

the equations, Kt is the torque constant of the dc motor, La is the armature current, Ra is the

total resistance, uc is the control input, Ke is the back-electromotive force (back-EMF) constant,

and the viscous friction and nonlinear friction sources such as the Coulomb torque are

neglected. Therefore, the torque input is calculated using Tin = Ktia.

JM
dωM

dt
¼ Ktia � Tdis (1)

JL
dωL

dt
¼ Tdis � TL (2)

dTdis

dt
¼ Ks ωM � ωLð Þ (3)

La
dia
dt

þ Raia ¼ Euc � KeωM (4)

The research in this case deals with a normalized model to provide generality for the design of

the proposed control system. Eqs. (5)–(8) show the normalized state equations. The state

equation parameters are normalized as shown in Eq. (9), where the suffix pu indicates a

normalized parameter, K0 [V/pu] is the converter gain, Ka [pu/A] is the current feedback

coefficient, K
ω
[pu/(rad/s)] is the angular speed feedback gain, and τe [s] is an electrical time

constant.

Figure 1. Two-mass resonance model.
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JMpu

dωM

dt
¼ ia � Tdis (5)

JLpu
dωL

dt
¼ Tdis � TL (6)

dTdis

dt
¼ Kspu ωM � ωLð Þ (7)

τe
dia
dt

þ ia ¼ uc � KepuωM (8)

JMpu ¼
Ka

KtKω

JM, JLpu ¼
Ka

KtKω

JL, Kspu ¼
Ka

KtKω

Ks, Kepu ¼
1

K0Kω

Ke (9)

Therefore, the unit for all state variables is [pu]. Figure 2 shows a block diagram of the

normalized two-mass resonance model.

Eq. (10) gives the resonance angular frequency, the anti-resonance angular frequency, and the

inertia ratio, respectively.

ωr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Kspu

JMpu

þ
Kspu

JLpu

s

, ωa ¼

ffiffiffiffiffiffiffiffiffi

Kspu

JLpu

s

, R ¼
JLpu

JMpu

(10)

The next equation gives the simplified transfer function for the two-mass mechanical element,

in which the input and the output are ia and ωM, respectively.

ΩM sð Þ

Ia sð Þ
¼

s2 þ ω
2
a

JMpus s2 þ ω
2
r

� � (11)

Figure 2. Block diagram of normalized two-mass resonance model.

PID Control for Industrial Processes190



The nominal parameters for the two-mass resonance model in this chapter are given in Table 1

below. In this chapter, the proposed CDMmethod is evaluated through computer simulations,

while the proposed FRIT method is evaluated experimentally using the experimental setup

shown below.

Figure 3 shows a photograph of the experimental system that was constructed in this research.

The two-mass resonance system is simulated using the dc servo motor and a dc generator with

a finite rigid coupling. The controller is realized using a digital signal processor that calculates

the pulse-width modulation (PWM) signal to send to a four-quadrant dc chopper [17].

The digital signal processor (DSP) board (PE-PRO/F28335 Starter Kit, Myway Plus Corp.),

consists of the DSP (TMS320F28335PGFA), a digital input/output (I/O), ABZ counters for the

encoder signals, analogue-to-digital (A/D) converters and digital-to-analogue (D/A) converters

[18]. The motor and load angles and the angular speeds are detected using 5000 pulses-per-

revolution encoders. The dc servo motor current is measured using a current sensor and the A/D

converter.

The control period (Ts) and the detection period of the encoder are both 1 ms and the current

detection period is 10 μs. While we considered the application of the system to specific

apparatus, we then constructed a digital control system that contains a discrete controller.

In addition, we used MATLAB/Simulink software to perform the proposed off-line tuning

process based on simulations and constructed the PID-type control system as a continuous

system [19]. A disturbance is added to the dc generator as a torque using the electric load

device on constant current mode. Figure 4 shows the apparatus for the two-mass resonance

model that was used in the experimental setup. Figure 5 shows the experimental system

configuration [17].

Symbol Value Symbol Value

JM 2.744 � 10�4 (kgm2) JL 2.940 � 10�4 (kgm2)

Ks 18.5 (Nm/rad) Ra 2.884 (Ω)

La 6.676 (mH) E 25.0 (V)

Kt 0.2778 (Nm/A) Ke 0.2778 (V/(rad sec))

Table 1. Nominal parameters of the two-mass resonance model.

Figure 3. Overview of the experimental system.
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2.2. Modified-IPD speed controller and PI current controller

In this chapter, classical PID speed and current controllers are used to suppress the resonance

vibrations for the two-mass resonance model. In general, the PI controller, which consists of a

proportional controller and an integral controller that are placed in parallel to determine the

speed error, is used as the angular speed controller. However, because the resonance system has

a complex structure, it is difficult to suppress the vibrations using the classic PI controller alone.

Therefore, the I-PD controller is used in this chapter and a first-order lag element is also used to

increase the degrees of freedom for the controller design. Additionally, a simple PI controller is

Figure 4. Photograph of the experimental two-mass resonance model.

Figure 5. Configuration of the experimental system (for the two-mass resonance model).
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used to realize the high-speed torque response for the current minor loop. The continuous

control system proposed here is shown in Figure 6. In the figure, ωref is the reference angular

speed, Kp, Ki, Kd, and Td represent the m-IPD speed controller gains, and Kap and Kai are the PI

current controller gains. This chapter proposes two design methods for these six controller gains

(i.e., Kp, Ki, Kd, Td, Kap, and Kai). Then, during the simulations and experiments, a digital control

system is used, as shown in Figure 7. In this case, the D-control element of the speed controller

performs a z-transform in combination with the first lag element of the speed controller to

construct a difference equation and avoid the need for a complete differentiation procedure.

Figure 6. Proposed control system (continuous controller model).

Figure 7. Proposed control system (discrete controller model).
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3. Controller design using coefficient diagram method

3.1. Coefficient diagram method

First, this section explains the coefficient diagram method (CDM) for design of the proposed

controller, which is required to suppress the resonance vibrations for the two-mass resonance

model. The CDM is an algebraic approach that is used to design the characteristic polynomial

directly in the parameter space. In the CDM, a coefficient diagram (CD) is used to perform the

controller design. The CD provides the ability to analyze the time response, stability and

robustness qualities of the controller using a diagram. In the CD, the vertical axis shows the

coefficient of the characteristic polynomial (ai), the stability indices (γi), and the equivalent time

constant (τ) logarithmically, while the horizontal axis shows the order i values that correspond

to the coefficient. Here, the characteristic polynomial is as shown in Eq. (12).

P sð Þ ¼ ans
n þ an�1s

n�1 þ⋯þ a1sþ a0 ¼
Xn

i¼0

ais
i (12)

In the CDM, the stability indices (γi), which are defined in Eq. (13) below, are indicators of the

stability of the control system.

γ
i
¼

a2i

aiþ1ai�1
, i ¼ 1~n � 1 (13)

The equivalent time constant τ, which represents the transient response characteristic, is

expressed using the following equation:

τ ¼
a1

a0
(14)

The coefficient ai can then be calculated using τ and the stability indices γi as shown in Eq. (15).

aiþ1 ¼
a0τ

i

γ
i�1γ

2
i�2⋯γ

i�2
2 γ

i�1
1

(15)

In the CDM, use of the standard values of the stability indices is recommended, and these

values are listed as follows:

γ
n�1 ¼ ⋯ ¼ γ3 ¼ γ2 ¼ 2:0, γ1 ¼ 2:5 (16)

This form is called “the standard form of the stability indices.”

3.2. Design method for the controller gains using the CDM

The CDM is a very simple and effective method for controller design. However, in higher

order systems, it is difficult to complete the design by trial and error alone. In this work, the
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design of the CD for the control system is performed using the differential evolution (DE)

method. The DE method is an optimization search method [12, 13].

In the proposed design method, the reference value of the equivalent time constant τref is first

specified. Then, the coefficients of the characteristic polynomial are calculated using the six

controller gains with random initial settings. Each of the coefficients is determined using the

following equations:

a7 ¼ JMpuTτe (17)

a6 ¼ JMpuτe þ JMpuT þ JMpuKapT (18)

a5 ¼ JMpu þ JMpuKap þ KapKd þ KepuT þ JMpuKaiT þ JMpuTτeω
2
r (19)

a4 ¼ Kepu þ JMpuKai þ KaiKd þ KapKp þ JMpuTω
2
r þ JMpuτeω

2
r þ JMpuKapTω

2
r (20)

a3 ¼ JMpuω
2
r þ KapKi þ KaiKp þ JMpuKapω

2
r þ KapKdω

2
a þ KepuTω

2
a þ JMpuKaiTω

2
r (21)

a2 ¼ Kepuω
2
a þ KaiKi þ JMpuKaiω

2
r þ KaiKdω

2
a þ KapKpω

2
a (22)

a1 ¼ KapKiω
2
a þ KaiKpω

2
a (23)

a0 ¼ KaiKiω
2
a (24)

The stability indices are then computed using these calculated coefficients and the evaluation

function F in Eq. (25) is calculated using the terms from Eqs. (26)–(30). In this case, the evaluation

function F consists of an evaluation to match with the set reference value of the equivalent time

constant, an evaluation to reduce the change in the next stability index, and an evaluation to

match the standard forms of the stability indices γs,i. The weights w1 to w5 of the evaluation

functions are set to have values of (w1, w2, w3, w4, w5) = (100, 2, 10, 1, 4), respectively. These steps

are subsequently repeated to obtain the optimal controller gains by the DE method.

F ¼
1

w1f 1 þ w1f 1 þ w1f 1 þ w1f 1 þ w1f 1
(25)

f 1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τref � τ
� �2

q

(26)

f 2 ¼
X2

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γs, i � γi

� �2
r

(27)

f 3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γs,3 � γ3

� �2
r

(28)

f 4 ¼
X5

i¼3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γi � γiþ1

� �2
q

(29)

f 5 ¼
X6

i¼4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γs, i � γi

� �2
r

(30)

PID Controller Design Methods for Multi-Mass Resonance System
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3.3. Simulation results

Figure 8 shows an example of the simulation results in the form of the angular speed step

responses for the control input. The resonance vibrations can be seen in this figure.

Figure 9 shows the frequency response characteristics of the two-mass resonance model from

the control input uc to the motor angular speed ωM. The peak point of the mechanical reso-

nance can be observed in this figure. It is therefore essential to construct the controller design

method such that it reduces this resonance peak gain.

Table 2 shows the controller gains that were designed using the proposed method, where the

reference time constant τref is set to 0.05. Figure 10 shows the designed CD. In the figure, each

coefficient is multiplied by 100n, where n is the order of the characteristic polynomial. The

figure shows that the form of the diagram is very smooth and that the convex shape is

appropriately upward. The designed stability indices are shown in Figure 11. The results in

this figure confirm that the stability indices nearly fit the standard form of these indices, and

the fluctuations in the numerical values of adjacent indices are also small.

Figure 8. Angular speeds of the step responses of the two-mass model.

Figure 9. Frequency responses of the two-mass resonance model from uc to ωM.
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Figure 12 shows the simulation results, where the speed reference command input ωref is

changed from 0 to 30 rad/s at t = 0 s, and the disturbance torque input is changed from 0 to

20% of the rated torque at t = 0.25 s. The figure indicates that the wave provides a good

reference-following performance and illustrates the validity of the vibration suppression char-

acteristics and the disturbance response simultaneously. Additionally, the gain characteristic

that was derived using the proposed method over the range from the reference speed ωref to

Gain name Value Gain name Value Gain name Value

Kp 2.792 � 102 Ki 9.007 � 103 Kd 3.522

T 0.4368 Kap 1.834 Kai 96.53

Table 2. Controller gain results when designed using the proposed CDM method.

Figure 10. Designed coefficient diagram.

Figure 11. Designed and standard form stability indices.
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the motor angular speedωM is illustrated in Figure 13. The effectiveness of the proposedmethod

is confirmed by the characteristic shown in this figure because the resonance peak is reduced

considerably. Therefore, the results for the proposed method show that it is effective as a design

method for the vibration suppression controller for the two-mass resonance system.

4. Controller design using fictitious reference iterative tuning (FRIT)

In this section, an off-line tuning method for the vibration suppression-type speed and current

controller gains for the two-mass system is proposed based on the FRIT method; this method

uses only single-shot experimental input-output data and does not use either the model

parameters or the state equation of the two-mass resonance model. While most FRIT designs

only use one state variable, this method uses specific multiple state variables to design the

controller gains when using the FRIT method [6, 7, 14–16].

Figure 12. Simulation results when using the proposed method.

Figure 13. Gain characteristics when using the proposed method over the range from ωref to ωM.
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4.1. Frit

Figure 14 shows a typical control system, in which G is the transfer function of the object to be

controlled, r is the reference signal, r represents the controller gains, C(r) represents the

controller, u is the control input parameter, and y is the output parameter. In this case, the

mathematical model of G is not known in advance and is not required for this method.

Initially, as shown in Figure 15, a single-shot experiment is performed using the initial controller

gains r0, and the control input u0 and output y0 are measured. Then, the reference model M(s),

which matches the desired response, is determined. A fictitious reference signal is then generated

using the controller, the control input u0, and the output y0, as shown in Eq. (31) below. This

means that the initial data u0 and y0 can be obtained using any value of r if ~r rð Þ is input to the

closed-loop system used to implement C(r).

~r rð Þ ¼ C rð Þ�1u0 þ y0 (31)

The optimal controller gains that are required to achieve yM = y0 are then determined, as shown

in Figure 16, using an optimization search method. Finally, these controller gains then repre-

sent the best available solutions that allow the desired control system response to be obtained.

Therefore, the controller design process can be performed without any prior information about

either the model parameters or the state equations.

4.2. Vibration suppression controller design method by FRIT

Figure 17 shows a simplified form of the proposed vibration suppression control system,

where C
ω1, Cω2, Cω3, and Ci are the controllers. While the FRIT method generally uses one

Figure 14. Typical closed-loop system.

Figure 15. Measurement of the initial data.

Figure 16. Reference model showing the input of the fictitious reference signal.
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control input and one state variable for the initial experimental data, the proposed method

uses one control input, uc, plus two state variables, ωM and ia. The controller gain vector r is

given as follows:

r ¼ Kp Ki Kd TKap Kai

� �T
(32)

Therefore, the fictitious reference signal ~ωref rð Þ can be calculated using the following equation

without any need for the two-mass resonance model.

~ωref rð Þ ¼ 1þ C�1
ω1Cω2

� �

ωM0 þ C�1
ω1C

�1
ω3 ia0 þ C�1

ω1C
�1
ω3C

�1
i uc0 (33)

Here, uc0, ωM0 and ia0 represent the initial experimental data. The reference model M(s), as

shown in Eq. (34), is then used depending on the purpose of the system, where the time

constant τ is a reference model parameter.

M sð Þ ¼
1

τsþ 1ð Þ3
(34)

Here, τ is calculated using the following equation with the 99% response time parameter T99.

τ ¼
T99

4:4� 30:6
(35)

The differential evolution method is then used to search for the optimal gains. The perfor-

mance index function F is then defined as shown in Eq. (36) below using ωM0 and

yM ¼ M sð Þ~ωref rð Þ.

F rð Þ ¼ M sð Þ~ωref rð Þ � ωM0

	

	

	

	

2
(36)

4.3. Experimental results

Figure 18 shows an example of the experimental results in the form of the angular speed step

response of the control input. The resonance vibrations can again be observed in a similar

manner to the case of the simulation results shown in Figure 8 above.

Figure 19 shows the gain characteristics of the frequency responses from the experimental

results shown in Figure 18, which relate the input voltage to the motor angular speed ωM and

the load angular speed ωL. From these characteristics, the peak resonance vibrations at approx-

imately 300 rad/s are also observed. These results were calculated based on the experimental

Figure 17. Simplified proposed control system.
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input and output waves of the voltage step response using the method that was proposed in

[20]. Additionally, both the resonance and anti-resonance points can be found in these figures.

Figure 20 shows the experimental results obtained when using the general PI speed and

current controller for comparison with the effects of the proposed control system. Figure 21

shows the gain characteristics for the frequency responses shown in Figure 20, which relate

ωref to ωM and ωL, where ωref is 30 rad/s. These characteristics show that the peak gain of the

Figure 18. Angular speeds of the step responses (DC voltage input).

Figure 19. Calculated frequency responses to dc voltage input (left: uc to ωM, right: uc to ωL).

Figure 20. Experimental results obtained using conventional PI controller.
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resonance is not greatly attenuated. Figures 22–24 show the initial experimental waves for

ωM0, ia0 and uc0, respectively, that were obtained using the values of the initial controller gain

r0, which are listed as follows:

r0 ¼ 0:1 30 0:0001 0:001 1 10½ �T (37)

Both the initial rise and the oscillation can be observed in these figures.

Table 3 shows the results for the controller gains determined using the proposed FRIT design

method with searching by the DE method, where T99 was set at 0.2 s. Figure 25 shows a

comparison of the experimental results obtained using the controller gains that were designed

using the proposed method with the simulated results for the reference output yM. The results

in the figure show that the proposed off-line tuning method works very well, despite the fact

that the design was performed using the initial one-shot experimental data alone. Figure 26

Figure 21. Frequency responses of conventional PI speed control system (left: ωref to ωM; right: ωref to ωL).

Figure 22. Initial ωM0 data.
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shows the experimental results that were obtained for ωM, ωL, and ia when the proposed FRIT

method was used. Here, ωref is stepped from 0 to 30 rad/s when t is 0 s. The figure shows the

good response of the proposed vibration suppression speed controller. Figure 27 shows the

experimental results, where ωref is stepped from 30 to 50 rad/s when t is 0 s and the disturbance

torque is increased from 0 to 10% of the rated torque when t is 0.5 s. As these figures show,

good waves were observed in terms of their reference-following performance and disturbance

response.

Figure 23. Initial ia0 data.

Figure 24. Initial uc0 data.

Gain name Value Gain name Value Gain name Value

Kp 1.24 Ki 17.0 Kd 6.53 � 10�3

T 8.59 � 10�4 Kap 2.37 Kai 135

Table 3. Controller gain results when designed using the proposed FRIT method.
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Figure 28 shows the gain characteristics of the frequency responses of the proposed control

system, where these characteristics are shown from the perspectives of ωref relative to ωM and

ωL. The resonance vibration suppression effect can be observed in these figures. Therefore, the

effectiveness of the proposed control system and the design method based on use of the FRIT

method can be confirmed. Additionally, Figure 29 shows the experimental results (ωL) that

were obtained for various values of the speed reference time parameter, where T99 = 0.15,

0.175, 0.2, 0.25, 0.3, and 0.35. As shown in this figure, the response times change satisfactorily

and the proposed design method for the controller gains can thus also be used to design the

response times arbitrarily.

Figure 25. Initial experimental results for ωM0 and simulation results for yM.

Figure 26. Experimental results for ωM, ωL, and ia obtained when the proposed FRIT method.
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Figure 27. Experimental results for speed step response and disturbance response.

Figure 28. Frequency responses of the proposed control system (left: ωref to ωM; right: ωref to ωL).

Figure 29. Experimental responses of ωL to various values of T99.
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5. Conclusion

This chapter has proposed two design methods for the controller gains required for vibration

suppression control in a two-mass resonance system. The proposed controller consists of a

modified-IPD speed controller and a PI current controller. The proposed controller design

methods are based on application of the coefficient diagram method (CDM) and application

of the fictitious reference iterative tuning (FRIT) method. Both methods use the motor side

variables only, including the motor’s angular speed and the armature current. The CDM

method uses the coefficient of the characteristic polynomial of the control system and can

determine the control performance based on the shape of the coefficient diagram and the

stability indices. In this chapter, the fitting performances for the standard form of the stability

indices and the coefficient values were used to determine the controller gains, which were

designed using the differential evolution method. The effectiveness of the proposed CDM was

confirmed by the simulation results. The FRIT method can be used to design the controller

without knowledge of the model state equations and their parameters. Furthermore, a ficti-

tious signal that was calculated using the initial experimental data for multi-state variables was

also proposed in this chapter. The effectiveness of the proposed FRIT method was confirmed

using the experimental results. Consequently, the CDM and the FRIT method were shown to

produce the same design performance. The CDM is useful for controller design when the

mathematical model and the object parameters are known. The FRIT method is effective when

the mathematical model is unknown but the initial experimental data can be observed.
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