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Abstract

Endocrine and neural senescence overlap in time, by intertwined complex feedback 
loops. Womens’ brain is genetically more prone to suffer during life, and perimeno-
pause is a “critical period” in neuroaging, when the degenerative processes begin. Many 
hypotheses on the multifactorial nature of women’s brain aging are elaborated, and 
tested in high-tech research centers. The most analyzed Alzheimer’s disease (AD) is char-
acterized not only by Aβ oligomers and fibrils accumulation, but also by metabolic and 
inflammatory changes, with the onset during menopausal transition and early years of 
menopause. Deep analysis of endocrine, neural, and metabolic pathways are giving new 
insights to the sequential view of Aβ-centric in AD pathogenesis, prevention, and treat-
ment from perimenopause, for maintaining women’s neurological health.

Keywords: neuroaging, perimenopause, critical period

1. Introduction: sex differences in contemporary neurodegenerative 
disorders

Ovarian aging is very well-known in contemporary women’s life, and the jeopardizing meno-

pausal effects of sex steroid hormones deficiency are clinically evident in late-life mental dis-

orders. Endocrine and neural senescence overlap in time, and are mechanistically intertwined 

in complex feedback loops.

In the past century, both life expectancy and the average age of onset of menopause for women 

in many countries from Western Europe and North America were slightly over 50 years, 

whereas currently, women can expect to live until the age of 80 years, although the average 

age of menopause remains in the early 50s. Given the importance of the brain as a target organ 
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for sex steroids, it is not surprising that many of the complaints that prompt women to seek 

treatment related to menopause are neurological in origin.

Dementia with its most severe entities, such as the Alzheimer’s disease (AD), Parkinson’s 

disease (PD), multiple sclerosis (MS), and amyotrophic lateral sclerosis (ALS), are the most 

frequent contemporary neurodegenerative disorders, connected in majority by neural cell 

loss and neuroinflammation.

There are sex/gender differences in cognitive trajectories in clinically normal older adults [1], 

and women are known to have a higher propensity to develop AD versus men [2, 3], a higher 

risk of mild cognitive impairment and a lower risk, but poorer outcomes after stroke [4]. 

Women’s risk for AD is considered to be through their organizational effects during develop-

mental sexual differentiation of the fetal brain [5].

The AD is the most prevalent form of old-life mental failure in worldwide humans, being a 

progressive neurodegenerative disorder, for which a number of genetic, environmental, and 

lifestyle risk factors have been identified. The estimated prevalence of all-cause of dementia 
varies from 4.7% in Central Europe to 8.7% in North Africa/Middle East, with North America 

falling at 6.4%. Currently, over 46 million individuals live with dementia worldwide and the 

number is projected to increase to 131.5 million by 2050 [6]. The AD is familial with early-

onset and sporadic with late-onset, and the present chapter will discuss the sporadic AD with 

late-onset in women, the most common form of AD representing more than 95% of the cur-

rent human AD population [7].

In this very moment, the geroscience research is imperative with aims to forward a better and 
full understanding of neurodegeneration/neuroprotection of “the sexome” [8], and to prevent 

or delay by every tool the deleterious effects of brain aging [9]. Estrogen deficiency or estro-

gen disrupters are associated from menopause transition with episodic memory troubles, a 

cognitive domain in which impairments are associated with the increased risk of AD, being 

less known the onset of the other neurodegenerative disorders [10].

AD has an insidious onset and a gradual progression over several years—from 1.5 to 8 or up to 

10 years, or a preclinical stage with a subtle loss of cognitive functioning—as verbal memory 

on new information, that precede several years the AD diagnostic, period considered as a 

transition period from normal aging brain to AD [11]. During this period, there are discovered 

several subtypes of mild cognitive impairment (MCI), 10–15% with the risk to future evolution 

to AD per year [12], or a 12% conversion rate from MIC to dementia yearly [13]. The character-

istic deposits of β-amyloid and tau proteins depicted by neuroimaging or at autopsy located in 
the hippocampus, medial temporal regions, parietal, and frontal cortical regions [14] may be 

prevented from extension, as other structural degenerative diseases. It is imperious to prevent 

the intracellular appearance of the amyloid peptide, which induces by its toxicity neuronal 

apoptosis and cell death, events that can be prevented by sex steroid hormones [15].

The clinical symptoms/signs of MCI are considered by neuroscientists as prodrome to AD 

[16], and their algorithms for diagnosis may permit to initiate the hormone/estrogen therapy 

(HT/ET), because their onset moment is coincidental to perimenopause, as considering the 

North American clinicians [17]. The “timing” theory regarding the reproductive stage and 
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role of time since menopause at initiation of HT/ET may work in preventing the mental dete-

rioration due to aging [17], and perimenopause can be the “critical window” for opportunity 

in neuroprotection with steroids. The perimenopausal transition might also represent a “win-

dow of opportunity” to prevent age-related neurological diseases [10, 18, 19].

2. Hormonal and genetic data on perimenopausal neuroaging

The data of this chapter are regarding brain aging in perimenopause—a part in woman’s 

reproductive life, systematized in the stages of reproductive aging (STRAW) [20].

Menopausal transition starts with the variation of cycles duration and ends with the last period 

(recognized only after 12 months of amenorrhea), natural menopause at the average age 

51 years, premature menopause [premature ovarian failure (POF)] before 40 years, and early 

menopause between 40 and 45 years [21, 22]. Women with POF have been reported to have 

more anxiety, depression, somatization, sensitivity, hostility, and psychological distress than 

women with normal ovaries [23]. Perimenopause or “near menopause” starts from the stage −2 
of menopausal transition and ends at 12 months after last menstruation, may be of 10–15 years. 

During this period, there are important variations of sex steroids, summarized by low ovar-

ian inhibin [24], which in turn reduces the restraint on both the hypothalamus and pituitary 

gland, and results in elevated pituitary gonadotropin FSH, increased also by the hypothalamic 

gonadotropin-releasing hormone (GnRH). During the late menopause transition and a part of 

perimenopause, despite occasional episodes of normal cycling, women are exposed to peri-

ods of estrogen withdrawal, fewer ovulatory cycles, and prolonged hypogonadism, ultimately 

leading to the last menstrual period, after which is an elevated level of gonadotrophin secre-

tion (only tonic, not phasic) [25]. During this phase, besides the low ovarian E2 and proges-

terone, there are productions of androgens and growth factors, which will decline in future 

years of postmenopause [26]. The ovaries are stimulated during menopausal transition and 

early postmenopausal years by gonadotropins, but the pulsatile GnRH pattern is different in 
different species before reproductive failure. It is a decrease of GnRH gene expression in many 
middle-aged rats [27], and an increase in perimenopausal rhesus monkeys [28].

Premature menopause/early menopause can be spontaneous or induced; after medical inter-

ventions such as chemotherapy/radiotherapy or surgery. The most common cause of prema-

ture/early menopause is bilateral oophorectomy with/without hysterectomy. Primary ovarian 

failure (POF) may be a cause of early/premature menopause, for ischemic stroke [29], as for 

all cardiovascular diseases risks [30], and these conditions were first described as a cause of 
neurological disturbances in different European, North American, and Japanese populations 
[21, 31–33].

Bilateral oophorectomy at premenopausal ages is inducing drops of E2 and testosterone 

levels, by 40–50%, and an abruptly rise in FSH levels, the levels of androgen being lower 

than in natural menopause at ages of 65 years, when women in normal or in premature/early 

menopause continue to have some levels of androgens [34]. As it is shown in the Table 1, 

the hazard ratios reached statistical significance in cases with bilateral oophorectomy: at the 
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age < 34 years for dementia and <38 years for PD. Perimenopause is a “fragile” period in wom-

an’s life, comparable to the fragility of the adolescence, if we speak about “hormonal storms,” 

but the hormonal pyramid is upside down, and more than these, the North American neu-

rologists are considering perimenopause as a neurological transition state [35], because the 

characteristic symptoms regarding thermoregulation, sleep, circadian rhythms, and sensory 

processing are of neurological nature, besides the changes of cognitive function [36].

The central and peripheral hormonal changes in menopausal transition and perimenopause 

were assessed in many research centers from Western Europe [37], Australia [24, 38], North 

America [25], and besides these, the rat models on gene expression analyses demonstrated 

that there are two distinct aging programs: chronological and endocrine, regarding bioener-

getic gene expression involved in brain metabolism and synaptic plasticity [39].

The endocrine transition marked by changing from regular to irregular menstrual cycles is 

characterized by the impairment of the energy metabolism, glucose hypometabolism, and 

chronic oxidative stress, which were demonstrated by gene expression in brain metabolism, 

mitochondrial function, and long-term potentiation. Rat model analysis on brain energetic 

metabolism in menopausal transition demonstrated that insulin/insulin-like growth factor 

1 and adenosine monophosphate-activated protein kinase/peroxisome proliferator-activated 

receptor gamma coactivator-1-alpha (AMPK/PGC1α) signaling pathways are upstream 
regulators [39], and these pathways suggest the critical role of E2 in neuronal survival. E2 

stimulates the mitochondrial sequestration of Ca2+ and protects neurons against adverse con-

sequences of excess cytoplasmic Ca2+ and subsequent dysregulation of Ca2+ homeostasis, with 

concomitant preservation of mitochondrial respiratory capacity [40].

Adjusted odd ratio for dementia after unilateral oophorectomy

Age at surgery (years) Hazard ratio CI 95% P value

<43 1.74 0.97–3.14 0.06

43–48 1.68 1.06–2.66 0.03

>48 1.09 0.74–1.61 0.66

Adjusted odd ratio for dementia after bilateral oophorectomy

<34 4.61 2.52–8.43 <0.0001

34–41 1.23 0.67–2.26 0.51

>41 1.50 1.05–2.13 0.03

Adjusted odd ratio for PD after bilateral oophorectomy

<38 2.85 1.28–6.35 0.001

38–45 1.38 1.28–6.35 0.42

>45 1.38 0.92–3.03 0.09

Cases of cognitive impairment/dementia and Parkinson disease (PD) in women with unilateral (813) and bilateral 

(676) oophorectomy: For a nonmalignant disease, in Olmsted County, Minnesota (USA) during 1950–1987, followed up 
the death or the finish of study at 2001–2006 (Rocca et al. [32]).

Table 1. Utero-ovarian surgery and neurological disturbances in premenopause.
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Genetic analyses demonstrated that the menstrual cycles acyclicity is accompanied by a rise 

in genes required for fatty acid metabolism, a decline of genes required for mitochondrial 
function, β-amyloid degradation, and neuroinflammation including increased number in 
microglia population in aging hippocampus [41], plus the shift of microglia activation with 

predominant production of inflammatory cytokines [42], and a higher basal level of comple-

ment cascade genes and interleukin 1 receptor-like 1 in women versus men [43].

There are neuroimmune modulation differences in normal memory processes and memory 
dysregulation, in the roles of cytokines, astrocytes, and microglia in females and males [44]. 

These differences are from early development and differentiation of the brain [5], making 

women’s brain inherently vulnerable to neurodegenerative diseases, to a higher risk of mild 

cognitive impairment and AD in advanced ages [45] (though not all studies are in agreement 

on this point, [1]), and non-neurodegenerative cognitive impairments fact that drive to the 

deleterious/beneficial consequences for estrogen therapy. The metabolic and neuroinflam-

matory changes are connected via redox regulation during normal brain aging, and may be 

predictive for later-life vulnerability to hypometabolic conditions of AD [46].

There are new animal studies on female neuroaging, regarding the microglia involvement in 

neurogenesis [47], to innate immune system [48], being revealed the microglia sensome by 

direct RNA sequencing [49]. Molecular studies on mice aging [50] revealed a central role of 

gender in the transcriptomic response in hippocampal and cortex aging, demonstrating sexu-

ally divergent changes of neuroinflammation, mainly an increase of microglia-specific genes, 
and C1q protein expression of the complement system, in the activation of astrocytes, and in 

cytokine release and function in aging. C1qa induction is a driver of synapse loss with greater 

C1qa induction associated with poorer cognitive performance. It is considered that the age-

related changes in inflammatory hippocampal genes amplified in women after estrogen fail-
ure may contribute to sex differences in age-related neurological diseases. There are classes 
of genes in which inductions and reductions in gene expression are acting synergistically in 

female aging hippocampus [50].

The rise of microglia-specific genes in aging females is interrelated to a significant decrease in 
the activation of two pro-neurogenesis pathways evident in aging hippocampus: Notch1 and 
Presenilin 1 and 2 (PSEN1 and PSEN2) regulated genes [51]: Notch1 is necessary for neural 
stem cell maintenance [52], the PSEN1 expression regulates neuroprogenitor cell differentia-

tion [53], and the defects in PSEN1 expression are associated with the manifestation of AD in 

old age [54]. Another change of neuroinflammatory genes in aging women is that of Tyrobp 
known as TREM2, as a causal regulator in microglia-associated changes in AD [55], and its 

proper mechanism in AD etiology is still being determined [56].

3. Hypothesis on brain aging and neurodegeneration during 
perimenopause

The months/years of perimenopause represent an important moment during women’s aging, 

when steroids and their receptors decline is evident in the hippocampal and cortical neurons, 

after estrogen exposure during the reproductive years. The estrogens decline is associated/acts  
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synergic to other factors as hypertension, diabetes, hypoxia/obstructive sleep apnea, obesity, 

vitamin B12/folate deficiency, depression, and traumatic brain injury to promote different 
pathological mechanisms involved in brain aging, memory impairment, and AD.

The Californian and Australian neuroscientists had shown that chronic cerebral hypoperfu-

sion deprives the brain from its two paramount trophic substances, oxygen and glucose, and 

consequently, the brain suffers from synaptic dysfunction and neuronal degeneration/loss, 
leading to both gray and white matter atrophy. The magnetic resonance imaging of the head 
used in the North American studies from Kronos Early Estrogen Prevention Study (KEEPS) 

showed a brain volume decrease with an average of 0.30–0.35% per year, and an increase 

of 3.59–3.73% in the ventricular volumes in the first 18 months of menopause [57], with a 

regional reduction of volume, which is more important in the hippocampus [58].

There are two hypotheses regarding neurodegeneration in brain aging, connected to low 

energy fuel supply, glucose hypometabolism and its complications for normal functioning 

[59], and microglia activation with associated secondary effect. In these hypothetical condi-
tions, there are sexually divergent differences in gene expression in aging brain with compar-

ing the number of gene expression changes in both males and females, and separating gene 

expression profiles based on up or downregulation.

The first hypothesis regards to the deficiency in glucose availability and mitochondrial dys-

function well-known as hallmarks of brain aging, which are particularly accentuated in neu-

rodegenerative disorders, and the shift from an aerobic glycolytic to a ketogenic phenotype 

of bioenergetic metabolism. The model on female rat brain aging revealed that bioenergetic 

decline is starting from perimenopausal transition, which is followed by the decrease of brain 

synaptic plasticity [39]. The mouse female transgenic model of familial AD revealed that 

ovariectomy induces a shift in fuel availability and metabolism in the hippocampus, with 

an increase of enzymes required for long-chain fatty acid and ketone body metabolism, to 
obtain brain energy [46, 60]. Glucose hypometabolism associated to cerebral hypoperfusion 

initiated with perimenopausal atherosclerosis [61], hypercholesterolemia, nitric oxide, and 

impairment of redox homeostasis is considered as the key pathophysiologic promoter of 

neurodegeneration [59], and the known differences in regional brain metabolism make some 
women prone to AD [62].

Posterior cingulated and prefrontal cortex, which closely resembles the hypometabolic pro-

file of AD brains are the postmenopausal women’s brain areas with reduced cerebral blood 
flow, with alteration of brain blood barrier glucose transport, and with significant decline in 
glucose metabolism [63].

It was demonstrated that brain aging is associated with a decrease of central insulin concen-

tration [64–66], with an impairment of insulin receptor binding ability, resulting in an increase 

in deterioration of glucose homeostasis in the brain. Brain insulin resistance [67] is associated 

to peripheral insulin resistance–a typical feature of elder ages, associated to atherogenic dys-

lipidemia [65], and ET influences insulin resistance in medial prefrontal gyrus metabolism.

The second hypothesis is focusing on neuroinflammation specifically after low estrogen lev-

els, connected to the shift of microglia activation, with the changing rate of microglia after 
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activation M1 (classical) to M2 (alternative) type [68] or it is a maladaptive microglia activa-

tion [69], or a shift from neuroprotection to neurotoxicity, underlining chronic neuroinflam-

mation and parainflammation, which is different in women and men [70, 71]. The shift is 

connected to proinflammatory cytokines and oxidative-nitrosative stress, which plus elevated 
levels of complement pathway components and other immune factors plays a key patho-

physiological role in promoting cognitive dysfunction by enhancing endothelin, Amyloid-β 
deposition, cerebral amyloid angiopathy, aberrant synapse elimination in the hippocampus 

[72], and blood-brain barrier disruption.

AD is characterized by the loss of neurons and synapses from the cerebral cortex and cer-

tain subcortical regions of the temporal and parietal lobes, and parts of the frontal cortex 

and cingulated gyrus [73], and accumulation of plaque made up of small peptides called 

β-amiloid (also written as A-beta or Aβ). β-amyloid is a fragment from a larger protein called 
amyloid precursor protein (APP), a transmembrane protein that penetrates through the neu-

ron’s membrane. The Italian studies from Florence have demonstrated that estradiol is restor-

ing in menopause the neuroprotective gene, seladin-1 (for SELective Alzheimer’s Disease 

INdicator-1), or the gene DHCR24, which is downregulated in AD [74]. This gene inhibits the 

activation of caspase-3, a key modulator of apoptosis, and the gene encodes 3β-hydroxysterol, 
which catalyzes the conversion of desmosterol into cholesterol, and an appropriate amount 

of membrane cholesterol plays a pivotal role to protect nerve cells against Aβ toxicity and 
counteracts the synthesis of Aβ in AD [75, 76].

Microglia, a type of glial cell derived from myeloid precursors in the bone marrow that popu-

late the CNS during development, as well as a brain resident innate immune cell, is the first 
line of defense in the CNS, as a monitor/sensor of neuronal activity in normal brain [77], pro-

tecting the local environment against invading pathogens, helping recovery from injury, and 

also in synapse pruning and neurodevelopment [78]. It is crucial in clearing debris, apoptotic/

necrotic cells, or products from necrotic cells, infiltration of infectious agents, mediating the 
brain’s inflammatory and repair response to traumatic injury, stroke, or neurodegeneration 
[79]. It was suggested that age-dependent and senescence-driven impairments of microglia 

functions and responses play essential roles during onset and progression of neurodegen-

erative diseases as AD and PD, in which molecular changes on microglia senescence are 

similar [80]. The unique nature and developmental origin of microglia causing microglial self-

renewal and telomere shortening led to the hypothesis that these CNS-specific innate immune 
cells become senescent [81]. There are two important characteristics of human brain microg-

lia: their heterogeneity observed in brain regions, and their different sensitivity to aging; the 
microglia from cortex, basal forebrain, and hippocampus are more sensible [81].

Microglia is activated from its normal state of a functionally “resting” resident immune cell 

of the CNS, and upon activation, microglia may proliferate and undergo a morphological 

transformation from a ramified to amoeboid appearance, and movement to sites of injury or 
stress can occur along with a release soluble immune mediators [82]. The activated microglia 

are functioning like a phagocyte or macrophage, having toll-like receptors (TLRs), that recog-

nize specific molecular patterns as complement, mannose, scavenger, C-type lectin, nucleotide-
binding oligomerization domain-like, and this specific action of microglia is called autophagy. 
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The autophagy is crucial for neuronal health and survival, the delivery of toxic molecules and 

organelles from neuronal apoptotic cells to microglia lysosomes may be acutely and/or chroni-

cally dysregulated by senescence, affecting phagocytosis and inflammation-innate immune 
functions in all age-associated neurodegenerative diseases [83]. There are two phenotypes of 

activated microglia: M1 (the cells become more cytotoxic by releasing additional pro-inflamma-

tory cytokines- TNF, Il-1β, Il-6, and free radicals [84]), and M2, which becomes more anti-inflam-

matory, by secreting anti-inflammatory cytokines and neurotrophic factors and helps repair 
local damage [82]. The mouse model on AD is showing a distinct shift in activated microglia 

phenotypes, that occurs between the beginning of Aβ pathology (alternative phenotype), and 
advanced stages (classical phenotype), the latter may cause disease-associated neuron loss.

In this context, there are comments/discussions on microglia: if it is a scapegoat, a saboteur, 
or something else. A multicenter research group has discovered the presence of microglia 

amylin receptors mediating Aβ inflammation and neurodegeneration on primary cultures of 
fetal human and rats microglia [84], these receptors being common to neurons and microglia. 

It was proposed a model of microglia activation for AD, and neuronal death, involving these 

receptors, microglia, neurons, inflammation, amyloid precursor protein, and Aβ (Figure 1).

The amylin receptors are increasing as microglia responds to inflammatory triggers, such as 
lipopolysaccharide, resulting in microglia activation. The interaction of Aβ with amylin recep-

tors of the activated microglia leads to increased production and release of cytokines, which 

act directly on neurons to produce cell death, with additionally increased production of Aβ 
via processing the amyloid precursor protein. The Aβ interacts with neurons and microglia 
amylin receptors to produce cell death [84].

The microglia activation is via the release of ATP, neurotransmitters, growth factors or cyto-

kines, ion changes, special of Ca+2 in the CNS environment, or loss of inhibitor molecules dis-

played by healthy neurons, or when microglia cells encounter molecules not normally found 

in the healthy CNS, as blood clotting factors, intracellular constituents released by necrotic 
cells (hypomethylated mammalian DNA, RNA), externalized phosphatidylserine on apop-

totic cells, immunoglobulin-antigen complexes, opsonizing complement, abnormally folded 

proteins or pathogen-related structures. When microglia activation occurs, the activation is 

correlated to the severity degree of the stressor, being recorded the disruptions of microg-

lia functions causing synaptic dysfunction and excess synapse loss early in abnormalities of 

learning and memory [77].

Being a debate about the initiator from the two hypotheses: first, the bioenergetic hypoth-

esis based on mitochondrial dysfunction, and the second on the microglia activation as the 

driving force for neuroinflammation, which is “a lesson learned from microglia depletion 
models” [85], there are multiple evidences that these abnormalities exacerbate each other, 

and these mechanistic diversities have cellular redox dysregulation as a common denomina-

tor and connector [86]. According to these, one may consider a metabolic inflammatory axis 
during brain aging and in neurodegenerative diseases [42]. In conditions of hypoglycemia, 

lactate can serve as an auxiliary fuel by metabolism of glycogen stores to generate glucose 

and subsequently lactate; some studies revealed that glial cells are likely to produce lactate in 

excess to its utilization by neurons [46].
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Neurological symptoms that emerge during perimenopause are indicative of disruption in 

multiple estrogen-regulated systems, and affect multiple domains of cognitive and memory 
functions [87].

Estrogens (special E2) are appreciated as a master regulator of bioenergetic systems in the 

body and brain [88].

The hypothesis on estrogen action or “healthy-cell bias” hypothesis [87, 89] is similar to the 

understanding of the different cardiovascular protective/harmful effects of estrogens at differ-

ent women ages—protective before 60 years and harmful after 65 years. The protective effect 
of E2 is altered in the presence of the APOE4 genotype, which alters the response of microglia 

Figure 1. Model of neurodegeneration in AD proposed by Fu et al. [84]: Through the involvement microglia and neural 
amylin receptors in mediating the Aβ-induced neurodegeneration. Legend: The expression of amylin receptors of resting 

microglia, increased in response to inflammatory triggers like LPS, induces microglial cells activation. The interaction 
of Aβ with amylin receptors of the activated microglia leads to increased production and release of cytokines (TNF, 
Il-1β, and Il-6), which act directly on neurons to produce cell death and additionally augment the production of Aβ 
via processing of the amyloid precursor protein (APP). The Aβ, in turn, interacts with neuronal and microglial amylin 
receptors to produce cell death. Adapted from Fu et al. [84]. Open access to this article is distributed under the terms of 

the creative commons attribution 4.0 international license (http://creativecommons.org/licenses/by/4.0/), which permits 
unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original 

author(s) and the source, provide a link to the creative commons license, and indicate if changes were made. The creative 

commons public domain dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data 
made available in this article, unless otherwise stated.
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and macrophages to 17β-E2 [90], and this fact may be an explanation of some studies showing 

better results with ET on memory recall in women aged around 70 and 20 years postmeno-

pausal, if women have not demonstrated memory impairment [91].

It was demonstrated how during reproductive ages the estrogen-induced signaling pathways in 

hippocampal and cortical neurons converge upon the mitochondria to enhance aerobic glycolysis 

coupled to the citric acid cycle, mitochondrial respiration, and ATP generation, and in senescence 

when estrogens are missing, it is a chronic oxidative stress due to the shift from an aerobic gly-

colytic to a ketogenic profile/phenotype/ [35, 60], and this shift is preceded by the early, already 

mentioned decline in glucose transport and metabolism [46]. In mouse model, the mitochondrial 

bioenergetic deficit precedes AD [92]. The estrogen decline in perimenopause is associated to the 

decline in mitochondria bioenergetics and together with the shift to ketogenetic profile are steps 
to Aβ depositions in AD [93, 94]. Hexokinase, the first rate limiting step in glycolysis, interacts 
with mitochondria and prevents mitochondria-mediated apoptosis and through this mecha-

nism, is promoting survival in neurons and other cell types [95], but AD patients exhibit declined 

hexokinase activity in the brain, cerebral microvessels, leukocytes, and fibroblasts.

Calcium dynamics play a pivotal and mandatory role in the estradiol-inducible cascade that 

leads to neurotrophic and neuroprotective benefit [89]. Dynamics of Ca2+ homeostasis are 

tightly regulated in healthy neurons and dysfunctional in degenerating neurons at elder ages.

The emergence of glucose hypometabolism, microglia activation, and impaired synaptic func-

tion in brain provide plausible mechanisms of neurological symptoms of perimenopause and 

can be predictive of later-life vulnerability to hypometabolic conditions such as AD. The alter-

ation in the bioenergetic profile of the brain in the months/years of perimenopause may be an 
explanation for the controversies on estrogen therapy/hormone therapy divergent outcomes, 

beneficial [18, 19] or harmful (WHI Memory Study) effects on neural health, on memory and 
cognition [46].
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