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Abstract

Most traits important to agriculture, biology, and biomedicine are complex traits, deter-
mined by both genetic and environmental factors. The complex traits that change their 
phenotypes over different stages of development are called dynamic traits. Traditional 
quantitative trait loci (QTLs) mapping approaches ignore the dynamic changes of complex 
traits. Functional mapping, as a powerful statistical tool, can not only map QTLs that con-
trol the developmental pattern and process of complex traits, but also describe the dynamic 
changes of complex traits. In this study, we used functional mapping to identify those 
QTLs that affect height growth in 10th generation recombinant inbred lines derived from 
two different Arabidopsis thaliana accessions. Functional mapping identified 48 QTLs that 
are related to height traits. The growth curves of different genotypes can be drawn for each 
significant locus. By GO gene function annotations, we found that these QTLs detected are 
associated with the synthesis of biological macromolecules and the regulation of biological 
functions. Our findings provide unique insights into the genetic control of height growth of 
A. thaliana and will provide a theoretical basis for the study of complex traits.

Keywords: complex traits, QTL, functional mapping, growth, Arabidopsis thaliana

1. Introduction

Complex traits are genetic traits controlled by multiple genes. They are sensitive to envi-

ronmental changes and easily affected by the environment [1]. The phenotypic expression 

of complex traits in individuals within a population displays a continuous variation and 

generally a normal distribution. Most important biochemical, medical, and agronomic traits 
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and the majority of human diseases are complex traits that are controlled by interconnected 

genetic networks and environmental factors. In these gene networks, the effect of each gene is 
small [2]. The characteristics also change at different developmental stages and demonstrate 
the dynamic features of complex traits. The study of these complex traits is an important topic 

in modern biology.

Genetic mapping aimed at mapping underlying genes to genomic locations is a powerful tool 
for dissecting the genetic architecture of complex traits. Lander and Botstein have proposed 
an approach for mapping quantitative trait loci (QTLs) based on a sparse-density linkage map 

of molecular markers. This so-called interval mapping method can overcome the confound-

ing problem of marker-QTL recombination [3]. Composite interval mapping includes other 

markers as covariates to control the overall genetic background, which displays increased 

power in QTL detection [4]. Considering QTL-QTL epistatic interactions in a linkage map, 

Kao et al. proposed using multiple marker intervals to map QTLs [5]. Currently, statistical 

methodologies for QTL mapping include regression analysis, maximum likelihood, and the 

Bayesian approach. With the development of high-throughput single nucleotide polymor-

phism (SNP) genotyping techniques, genome-wide association studies (GWAS) have pro-

vided a powerful means of mapping a complete set of genes underlying complex traits [6–8]. 

The genetic structure of a trait is explained by GWAS, which identify the numbers and chro-

mosomal locations of each gene, the size of each gene’s unique and pleiotropic effects, and 
the relative contributions of additive, dominant, and epistatic genetic effects. This provides an 
unprecedented tool for preparing a genotype-phenotype map [9]. So far, GWAS have detected 
many genetic variants for a wide range of complex traits, including those pertaining to agri-

culture, forestry, and human disease [9, 10].

It should be noted, however, that traits such as height and weight vary with time or other inde-

pendent environmental stimuli. The traditional QTL mapping method directly associates a sin-

gle marker with a single phenotype at a time point, which ignores the dynamic characteristics of 

organisms at different developmental stages, and cannot exactly reflect the whole genetic archi-
tecture of complex traits. Although thousands of QTLs were detected in many individuals, only 
a small number of QTLs were cloned and separated [11]. The reason for this problem is that the 

QTLs that have undergone rigorous statistical testing are divorced from biological relevance, 

which limited the projections of the genetic structure of traits. Genetic analysis of dynamic traits 
presents a serious statistical challenge. To solve these problems, Ma et al. [13] proposed a QTL 

mapping method based on a logistic-mixture model [12]. The QTL effect on developmental 
traits during ontogeny is considered as a function of time, and a series of growth formulas can 

be derived from the logistic curve describing plant height, size, and weight [13], arriving at a 

model which is expected to be improved in parameter estimation and statistical inference over 

previous models. Ma et al. [13] developed a maximum likelihood statistical framework based 

on a logistic-mixture model for the characteristics of function-valued traits, which change as a 

function of a specific variable. This QTL mapping strategy is called functional mapping.

Functional mapping combines mathematical functions that describe biological processes and 

assembles mathematical formulas into the statistical framework of QTL mapping to study the 

interactions between genes and phenotypic traits of organisms during growth and develop-

ment. We estimate the parameters of a specific genotype that determines the development of 
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a trait by statistical hypothesis testing and parameter estimation, rather than directly estimat-

ing the genetic effects of the gene at all-time points. Because of the combination of biologi-
cal laws (defined by mathematical models) and the reduced number of genetic parameters 
that need to be estimated, functional mapping increased the potency of detecting significant 
QTLs [14]. Statistical merits of functional mapping will be exemplified in which case data 
are recorded irregularly, bringing on data sparsity. Such sparse longitudinal data cannot be 

well analyzed by traditional mapping for two reasons. First, because the problem of miss-

ing data existing at a given time point, traditional method is unable to use all of individuals, 

thus leading to a biased parameter estimation and reduced power of QTL detection. Second, 

individuals are measured at a few number of time points, limiting the fit of growth equation. 
Functional mapping is robust for handling longitudinal sparse data in which no single time 

point has the phenotypic data for all individuals, facilitating the QTL mapping to study the 

genetic architecture of hard-to-measure traits.

A set of tree data is used to assess the statistical validity of functional mapping. Several QTLs 
affecting the developmental trajectories of poplar were detected with the QTL mapping method 
based on the logistic-mixture model [15], and these QTLs were located on a genetic linkage map 

constructed by polymorphic markers. Studies have shown that functional mapping is useful in 

establishing gene-phenotype relationships and predicting QTL phenotypes of individual organ-

isms based on the control of a trait. Functional mapping combines the principles of Mendelian 

genetics with statistical and developmental mechanisms, and is superior to traditional QTL 

mapping methods that combine the principles of statistics and genetics. To date, functional map-

ping has been used for mapping dynamic QTLs in poplars [16], jujubes [17], soybeans [18], rice 

[19], maize [20], yeast [21], oysters [22], mice [23], humans [24], and drug responses [25, 26].

Arabidopsis thaliana is a small, annual or winter annual, rosette plant. A. thaliana is a central 

genetic model and universal reference organism in plant and crop science. The successful 

integration of different fields of research in the study of A. thaliana has made a large con-

tribution to our molecular understanding of key concepts in biology. The Arabidopsis refer-

ence genome sequence was the first published nuclear genome of a flowering plant in 2000 
(http://www.arabidopsis.org) [27, 28]. The ease and speed with which experiments can be 

conducted on A. thaliana has allowed enormous fundamental progress in our knowledge of 

the molecular principles of plant development, cell biology, metabolism, physiology, genet-

ics, and epigenetics [29]. The uses of Arabidopsis as the universal reference plant continue to 

expand, particularly in the field of systems biology [30, 31]. Important work has been done to 

investigate the molecular networks that mediate environmentally controlled developmental 

switches in A. thaliana. Examples include the transition from vegetative to reproductive devel-

opment, also termed flowering time control [32–34], seed dormancy and germination control 

[35, 36], and the light-regulated development of seedlings [37, 38]. A. thaliana has also served 

as a model research organism for exploring many areas of fundamental biology, including 

photobiology, the circadian clock, DNA methylation, DNA repair, RNA silencing, protein 
degradation, and G-protein signaling, many of which have direct application in human health 
[39–42]. Insights into the functions of a multitude of individual genes, as well as the elucida-

tion of biosynthetic pathways and regulatory networks, in A. thaliana have proven invalu-

able for identifying the genetic basis of agronomically important traits in crops such as plant 

height and flowering time [43, 44]. Classical molecular genetics approaches have been used in 
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A. thaliana to dissect the patterning and development of flowers [45], embryos [46], leaves, and 

roots [47]. In this study, we describe the implementation of functional mapping to identify 

and map QTLs for height trajectories in a population of A. thaliana. The mapping population 

is composed of 144 recombinant inbred lines (RILs) derived from a Landsberg erecta (LER) 
cultivar and a Shadara (SHA) cultivar. Functional mapping identified 48 QTLs that determine 
the height growth of A. thaliana. The identification of these QTLs will help us address funda-

mental questions about the genetic mechanisms of height growth.

2. Materials and methods

2.1. Materials

In this study, the mapping population included 114 RILs derived from two cultivars of 
Arabidopsis. The main phenotype of the LER cultivar includes round leaves, short petiole, 
short pedicel, flowers clustered at inflorescence tips, short pod width, sharp tip, inflores-

cence compact, and a plant height of 10–25 cm. The general traits of the SHA cultivar are 
described in The Arabidopsis Information Resource database as a slightly narrow leaf with a 
height of about 30 cm. To ensure adequate seeds for the sustainability of the material, each 
RIL carried out a generation of expansion. For the sterilization of Arabidopsis seeds, the seeds 

were shaken in a centrifuge tube with 10% sodium hypochlorite for 6 min; 1 ml of 95% alco-

hol was then added, and the tubes were shaken for 5 min. The seeds were rinsed 5–6 times 

to thoroughly wash away the remaining sodium hypochlorite solution on the seed surface. 

The alcohol was poured out, and the tubes were dried at a super clean bench to obtain sterile 

Arabidopsis seeds.

For vernalization of A. thaliana seeds, distilled water was added to the seeds and the seeds 

were placed in a 4°C refrigerator for 3 days of dark treatment before sowing. To sow the seeds 
after vernalization, vermiculite, peat, and limestone were mixed evenly in a 1:1:1 ratio and 
used as the soil. An 18 × 18 cm plastic grid with 90 squares was placed over the plant pot. The 
seeds were placed into each mesh with a toothpick. The planting diagram of the experiment 

is shown in Figure 1. Circles and triangles represent the two different lines of A. thaliana, 

planted in the same growing space. After planting, the plant pot was covered with plastic 
wrap and then transferred to the long day (16 h) and short day (8 h) artificial climate room 
(22°C). When the Arabidopsis sprouts displayed green shoots, the plastic wrap was removed.

2.2. Phenotypic data acquisition

Plant height was measured after 1 week of planting. Each line of A. thaliana was randomly 

selected for 10 strains. In total, 1160 strains of Arabidopsis were selected. The height of 

Arabidopsis plants were measured once per week until the end of the plant’s life cycle by 

manual measurement with a 1 mm ruler (accurate to 1 mm).

The plant height phenotype was measured for 1160 A. thaliana strains. The height of 1–60 
lines of Arabidopsis was measured seven times, and the height of 60–116 lines of Arabidopsis 

was measured seven times. Because of environmental or genotypic reasons, nine lineages of 
Arabidopsis did not complete a life cycle (numbers 1–4, 22, 28–30, and 60).
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The growth of Arabidopsis strains can be seen in Figure 2a–c, which indicates the growth of the 

strains for 1, 3, and 6 weeks, respectively.

2.3. Acquisition of SNP data

A. thaliana DNA was extracted with a DNA extraction kit (TIANGEN DP305) according to 
the manufacturer’s instructions. The plant material used was 100 mg of the young leaf. After 
DNA was detected in the samples, the DNA sequence was determined by an outside com-

pany. The resulting sequence data was subjected to SNP calling.

2.3.1. DNA quality inspection

The degree of degradation of the DNA was analyzed by agarose gel electrophoresis and imaged 
with an ultraviolet gel imager. The DNA sample was determined to be without degradation if 

Figure 1. Schematic diagram of Arabidopsis planting.

Figure 2. Arabidopsis growth conditions at 1 week (a), 3 weeks (b), and 6 weeks (c).
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the sample did exhibit dispersion phenomena. All of the samples were determined not to be 
degraded and were sequenced.

We measured the absorbance of the DNA samples at wavelengths of 260 and 280 nm and 
calculated the value of the optical density (OD) 260/OD280. Samples were determined to be of 
sufficient quality if this value was greater than 1.8 and less than 2.2. After testing, all samples 
were found to meet the requirements for sequencing.

2.3.2. Sequencing and mapping

DNA from the sample was sequenced on the Illumina HiSeq 2000 platform to generate 
125 bp paired-end reads at greater depth. All these RILs sequencing were performed at Total 
Genomics Solution (TGS) Institute. After sequencing quantity control, the data of 107 samples 
reached 117.68 G, with an average of 1.10 G per sample. The percentage of Q30 bases was 
more than 90%, the percentage of Q20 bases was more than 95%, and the distribution of GC 
was normal. Thus, the quantity and quality of the sequencing met the requirements for sub-

sequent analysis.

The per-base coverage depth across all contigs was calculated by mapping raw reads from 

each RIL against reference genomes. The results showed that the average mapping ratio and 
sequencing coverage of the samples were higher than 95 and 92%, respectively. The sequence 
depth of the samples was 9.91×. In addition to the line 110, the other lines are better for subse-

quent variation detection and analysis.

2.4. SNP calling

SNP detection was performed with the widely accepted mutation detection software GATK.
SNP. The screening criteria were as follows: The depth of sequencing for each sample was 
greater than or equal to 4, otherwise the sample was marked as missing. Additionally, 
the quality value of the comparison must be greater than or equal to 20, and the variation 
detection quality value must be greater than or equal to 50. If the allele frequency was less 
than 5% or the absence rate of the sample was greater than 50%, the site was filtered out.

The RIL population contains 105 progeny and two parents; the parent number is “A518_
LER” and “A518_SHA.” The reads of each sample were compared with the reference 
genome. The average ratio of the samples was above 95%, and the coverage was greater 
than 92%. The average sequencing depth was 9.19×. By processing, we obtained 107 sam-

ples and 1,023,325 whole genome SNP markers. According to the situation of this popula-

tion, individuals with heterozygous genotype ratios over 25% and markers indicating that 
parents possessed heterozygous genotypes were eliminated. Finally, 609,427 SNPs and 80 
individuals met the model requirements and could be used to detect the QTLs that affect 
the growth height of A. thaliana.
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3. Functional mapping

3.1. Statistical model

Let   y  
i
   = c ( y  

i
   (1) , ⋯ ,  y  

i
   (T) )   denote the vector of trait values for RIL, i measured at T time-points. 

Consider a SNP with two alleles Q and q, generating two genotypes: QQ with n1 RILs 
and qq with n

2
 RILs. In this study, the likelihood for height growth data of A. thaliana is 

expressed as

  L (Φ | y)  =  ∏ 
i=1
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where  Φ  indicates the unknown parameters including the time-dependent effects of dif-

ferent QTL genotypes and the time-dependent residual variance and correlations.   f  
1
   ( y  

i
  )   

and   f  
2
   ( y  

i
  )   are a multivariate normal distribution with a time-dependent mean vector for 

genotype QQ and qq,

   { 
 μ  1   =  ( μ  1   (1) , .…  μ  1   (T) ) for QQ,

    
 μ  

2
   =  ( μ  

2
   (1) , .…  μ  

2
   (T) ) for qq.

     (2)

(T × T)-dimensional longitudinal covariance matrix is expressed as  Σ , which can be modeled 

by using a statistical approach such as the first-order autoregressive [AR(1)] model or an 
autoregressive moving-average process (ARMA). The maximum-likelihood estimates (MLEs) 
of the unknown parameters are implemented with the simplex algorithm in R software [48].

3.2. Modeling the mean vector

One of the most important equations for capturing time-specific change in growth is the logis-

tic curve [49, 50], which we used to describe height growth of the QTL genotype according to 

the following expression:

  g (t)  =   a ______ 1 +  be   −rt 
  ,  (3)

where g(t) represents the trait value at time point t, a indicates the asymptotic value of g when  

t → ∞ , b is a parameter to position the curve on the time axis, and r indicates the relative growth 

rate. Consequently, any specific growth characteristics described by the logistic growth equa-

tion can be captured by parameter a, b, and r, and these can be used to determine the coordi-

nates of biologically important benchmarks along the growth trajectory. The mean vector for 

the QTL genotypes QQ and qq from time 1 to T in the multivariate normal density function is 

expressed as:
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3.3. Modeling the covariance structure

The first-order autoregressive [AR(1)] model has been successfully applied to model the struc-

ture of the within-subject covariance matrix for functional mapping. The AR(1) model includes 
two basic assumptions: (1) variance stationarity (the residual variance, σ2) is unchanged over 

time points and (2) covariance stationarity (the correlation between different time points) 
decreases proportionally (in ρ) with increased time interval. The AR(1) is described as:

  Σ =  σ   2   
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where 0 < ρ < 1 is the proportion parameter with which the correlation decays with a time point.

3.4. Hypothesis tests

After the MLEs of the parameters are obtained, the hypothesis concerning the existence of a 
QTL affecting overall growth can be written as:

   { 
H0 :  a  1   =  a  

2
  ,  b  1   =  b  

2
  ,  r  1   =  r  

2
  
    

H1 : at least one of the equalities above does not hold
  ,  (6)

where the null hypothesis H0 corresponds to the reduced model and the alternative hypoth-

esis H1 corresponds to the full model. The test statistics for testing the hypotheses is the log-

likelihood ratio (LR) of the full over reduced model. The critical threshold is determined from 
permutation tests.

3.5. Candidate gene function annotation

Gene ontology (GO) annotation analysis was performed using Blast2GO [51]. Finally, R script 
language programming was used to translate the GO annotation results into charts.

4. Results

4.1. QTL detection

By plotting the total growth against growth week, it was observed that each of the 116 mapped 
genotypes followed the logistic growth curve. Figure 3 illustrates the growth trajectories of 
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height for each RIL over 9 weeks. A least-squares approach was used to fit height growth with 
the logistic curve (Eq. (3)) for each RIL. Based on statistical tests, all genotypes can be fit by a 
logistic curve containing parameters a, b, and r (P < 0.01, Figure 3).

According to the fit results, the relative growth rate of A. thaliana was r = 0.61, and the asymp-

totic value of plant height was calculated to be a = 10.08. We can see from Figure 3 that the plant 

height of A. thaliana increases exponentially over a period of time, and as growth time increases, 

the trend of the curve begins to flatten, until the plant height does not change anymore. In addi-
tion, different genotypes showed different growth curves, suggesting the possibility of genetic 
control over the growth trajectories. The statistical model built upon the logistic growth curve 

model is used to map QTLs responsible for growth trajectories in plant height.

Functional mapping was implemented to analyze the mapping population. A Manhattan plot 
of LR values against the genome locations of SNPs distributed throughout the genome is 
shown in Figure 4. We found QTLs that affect the growth trajectory of plant height on the 
fourth chromosome of the RIL population (Figure 4). The genome-wide empirical estimate 

of the critical value is obtained from permutation tests. The profile of the LR value of the full 
and reduced model across the length of chromosome 4 has a clear peak from 7.9 to 22.5 kb. A 
total of 48 significant QTLs responsible for growth trajectories of plant heights were identi-
fied. The LR value at this peak is 437.78, which is beyond the empirical critical threshold at 
the significance level p = 0.05.

Functional mapping can also be used to observe the dynamic expression of a QTL over time 

such as when a QTL starts to affect a growth process. The parameter combination of the 
QQ genotype was a1 = 9.07, b1 = 370.08, and r1 = 0.92. The parameter combination of the qq 

genotype was a
2
 = 39.62, b

2
 = 114.61, and r

2
 = 0.28. Different QTL genotypes corresponded to 

different parameter combinations, which indicate that the QTL controls the developmental 

Figure 3. The growth trajectories of height for individual recombinant inbred lines (RILs) are shown in green, whereas 
yellow lines are the mean growth trajectories of all RILs fitted to a curve. The x- and y-axes of the plot denote time (in 
weeks) and height (in cm).
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Figure 5. Growth trajectory for different genotypes at the QTLs detected on groups.

trajectory of the plant height. Using the estimates from the growth curves, we drew two dif-

ferent curves, each corresponding to a genotype at each of the detected QTLs on the fourth 

chromosome (Figure 5).

On the basis of the hypothesis test (6), this QTL is detected to be inactive until A. thaliana grew 

to 4 weeks, and its effect on height growth increased with time. At 9 weeks, the genotype qq 

exhibited height growth more than its alternative QQ. The effect of qq on plant height was 

more significant than that of QQ. If different genotypes at a given QTL correspond to different 
trajectories, the QTL must affect the differentiation of this trait. Apparently, this mapped QTL 
interacts significantly with time to affect the height growth of A. thaliana.

4.2. Candidate gene function annotation

GO classification is widely used for gene classification and functional annotation, and GO pro-

vides three types of semantic terms, including cell component, molecular function, and biological 

Figure 4. The log-likelihood ratio (LR) of height change of Arabidopsis thaliana. The profiles of the LR between the full 
model (there is a quantitative trait locus [QTL]) and reduced model (there is no QTL) for height growth trajectories 
throughout the A. thaliana genome. The critical thresholds for claiming the genome-wide existence of a QTL are obtained 

from permutation tests.
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process, to describe the characteristics of genes and gene products [52, 53]. To further summarize 

the data of GO classification, the cytological components include cell structure, tissue, protein 
complex, extracellular structure, and cell process. Biological processes include developmental 
processes, physiological processes, regulatory processes, and the processes of responding to 

stress. Molecular functions include binding, catalysis, activation, structural molecules, and tran-

scriptional regulatory functions (Figure 6).

Functional prediction and classification analysis of 48 loci were screened with the National 
Center for Biotechnology and the Joint Genome Institute (JGI) databases. There are 20 gene 
families in these loci, which include the F-box and calcium-binding EF-hand protein families. 

Pathway cluster analysis was used to compare the 48 genes with the known protein sequences 
in the JGI database.

It was found that 7 of the 48 genes corresponded to functions in the JGI database. They were 
divided into nine groups, including carbon fixation pathways in prokaryotes, biosynthesis of 

Figure 6. Gene ontology annotations of significant sites.
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antibiotics, one-carbon pool by folate, starch, and sucrose metabolism, glycerolipid metabo-

lism (synthase), glycerolipid metabolism (lipase), polyketide sugar unit biosynthesis, strep-

tomycin biosynthesis, and pentose and glucuronate interconversions. We found that these 
nine pathways are mostly associated with carbohydrate, energy, and amino acid metabolism. 

These biological processes play an important role in the development of height in Arabidopsis.

We also found that AT4G00160.1 encodes an F-box protein in the signal transduction pathway. It 
has been shown that F-box is an auxin receptor [54]. Plant height development is regulated by gib-

berellin (GA) and auxin (indole-3-acetic acid [IAA]) [55], and GA20ox and GA30ox are encoded 
by multiple genes, and mutations in these loci can result in dwarfing of the plant in the later stage 
of GA biosynthesis [56]. The most significant site, AT4G01150.1, is related to protein curvature 
thylakoid chloroplastic. Protein curvature thylakoid chloroplastic tends to be located in leaves 

and stems, and plays an important role in plant photosynthesis, which affects plant growth [57].

5. Discussion

Gene mapping has been shown to be a powerful approach for the study of the genetic archi-
tecture of complex traits. It has been instrumental for the characterization of QTLs that control 

quantitative traits of interest to agriculture, biology, and human disease [58, 59]. However, tra-

ditional mapping strategies do not provide much insight into the genetic control mechanisms 

for phenotypic variations if some statistical and biological issues related to the approach are 

not resolved. Ma et al. (2002) integrated some fundamental biological principles into the map-

ping framework, aimed at generating more biologically meaningful discoveries related to trait 

formation and development, further proposing so-called functional mapping [13]. Functional 

mapping attempts to combine strong statistical and molecular genetics with the developmen-

tal mechanisms of biological features, and to elucidate the genetic mechanisms of complex 

traits. Since functional mapping combines different mathematical functions with biological 
significance, it possesses three advantages over traditional mapping methods in QTL map-

ping: (1) because the underlying biological mechanism is considered, the results of functional 
mapping are closer to biological reality; (2) a smaller sample size can be used to achieve suf-
ficient accuracy for QTL detection because multiple measurements of the same individual 
improve mapping accuracy; and (3) by treating the growth process as a smooth curve, a large 
number of variables can be analyzed simultaneously, and the estimation of a small number of 

parameters can improve the accuracy of the parameter estimation and flexibility of the model.

With the development of high-throughput sequencing technology and the reduction of 
sequencing cost, GWAS have become an important tool for studying complex traits and have 
been widely used in genetic studies of complex traits in humans, animals, and plants [60]. 

Most GWAS only use single phenotypic data to perform regression analysis with each SNP 
such as with Plink software [61]. In addition, some GWAS have been developed to solve the 
false positive loci of population structure and genetic relationship [62–64]. The successes and 

potential of GWAS have not been explored when complex phenotypes arise as a curve. In 
any regard, a curve is more informative than a point in describing the biological features of a 

trait. To apply functional mapping to GWAS by integrating GWAS and functional aspects of 
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dynamic traits, a new analytical model for genome-wide association analysis of dynamic data, 

called functional GWAS (fGWAS), has been derived [65]. There are two advantages to fGWAS 
over GWAS: (1) fGWAS is able to identify genes that determine the final form of the trait and 
(2) it provides the ability to study the temporal pattern of genetic control over a time course.

The regulation network of plant height traits has been studied intensively in molecular biol-

ogy. We already know that the development of plant height traits is regulated by growth 
hormones such as GA and IAA. Using functional mapping, we found 48 growth QTLs in A. 

thaliana. Through the GO annotation of QTLs, we found that there are many genes among 
the significant loci identified in this study that are related to the pathways for synthesis and 
conduction of growth hormones, such as AT4G00160.1, which encodes an F-box protein in the 
signal transduction pathway. It has been shown that the F-box is an auxin receptor. Thus, we 

can see that the QTLs identified in this study may not only be applicable to A. thaliana, but also 

to other plants. These results show that functional mapping can reveal more intricate details 

of dynamic traits such as height growth and other phenotypes.

Functional mapping is far from enough to fully study complex traits, and there are still many 

limitations in describing the developmental pathways leading to the final phenotype and 
revealing the underlying genetic mechanisms for the formation and development of these 

traits. It is too simple to draw a complete dynamic diagram of complex traits. Wu [66] extends 

functional mapping to system mapping. By identifying the dynamic formation process of 
complex traits as a system and decomposing it into several parts, the QTL that controls the 

interaction of each component during the development of complex characters is identified. 
From the point of view of ecology, the process of character formation is extremely complex. 

To draw a complete quantitative genetic structure, we need to study the characteristics of 

an organism affected by its own genes as well as the influence from the community part-
ner genome. In nature, most organisms live in groups, and individuals compete with each 

other. Wu combined game theory with QTL mapping, which opens up new opportunities for 
improving the accuracy and resolution of complex phenotype QTL recognition [67].
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