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Abstract

We introduce and study amatrixwhich has the exponential function as one of its eigenvectors.
We realize that this matrix represents a set of finite differences derivation of vectors on a
partition. Thismatrix leads to newexpressions for finite differences derivativeswhich are exact
for the exponential function. We find some properties of this matrix, the induced derivatives
and of its inverse. We provide an expression for the derivative of a product, of a ratio, of the
inverse of vectors, and we also find the equivalent of the summation by parts theorem of
continuous functions. Thismatrix could be of interest to discrete quantummechanics theory.

Keywords: exact finite differences derivative, exact derivatives on partitions, exponential
function on a partition, discrete quantum mechanics

1. Introduction

We are interested on matrices which are a local, as well as a global, exact discrete representa-

tion of operations on functions of continuous variable, so that there is congruency between the

continuous and the discrete operations and properties of functions. Usual finite difference

methods [1–4] become exact only in the limit of zero separation between the points of the

mesh. Here, we are interested in having exact representations of operations and functions for

finite separation between mesh points.

The difference between our method and the usual finite differences method is the quantity that

appears in the denominator of the definition of derivative. The appropriate choice of that

denominator makes possible that the finite differences expressions for the derivative gives the

exact results for the exponential function. We concentrate on the derivative operation, and we

define a matrix which represents the exact finite difference derivation on a local and a global
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scale. The inverse of this matrix is just the integration operation. These are interesting subjects

by itself, but they are also of interest in the quantum physics realm [5–7].

In this chapter, we will consider only the case of the derivative and the integration of the expo-

nential function.

2. A matrix with the exponential function as an eigenvector

Here, we consider the N �N antisymmetric, tridiagonal matrix

DN≔

�e�vΔ

2χ v;Δð Þ

1

2χ v;Δð Þ
0 … 0 0 0

�1

2χ v;Δð Þ
0

1

2χ v;Δð Þ
… 0 0 0

0
�1

2χ v;Δð Þ
0 … 0 0 0

⋮

0 0 0 … 0
1

2χ v;Δð Þ
0

0 0 0 …

�1
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0

1
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0 0 0 … 0
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A

, (1)

where v∈ℂ—it can be pure real or pure imaginary—, Δ∈ℝ
þ, and χ v;Δð Þ≔sinh vΔð Þ=v

≈Δþ v2Δ3=6þO Δ
5

� �

. This function χ v;Δð Þ is well defined for v ¼ 0, with value χ 0;Δð Þ ¼ Δ.

This matrix is interesting because, as we will see below, it represents a derivation on a partition.

A rescaled matrix DN is defined as

DN≔

�1=z 1 0 … 0 0 0

�1 0 1 … 0 0 0

0 �1 0 … 0 0 0

⋮

0 0 0 … 0 1 0

0 0 0 … �1 0 1

0 0 0 … 0 �1 z

0

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

A

, (2)

where z ¼ evΔ, and

DN≔
DN

2χ v;Δð Þ
: (3)

We are mainly interested in finding the eigenvalues and the corresponding eigenvectors of

these matrices.
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We start our study with a result about the determinant of DN � λIN ,

∣DN � λIN∣ ¼ ∣DN þ αIN∣

¼

α� 1=z 1 0 0 … 0 0 0

�1 α 1 0 … 0 0 0

0 �1 α 1 … 0 0 0

0 0 �1 α … 0 0 0

⋮

0 0 0 … α 1 0 0

0 0 0 … �1 α 1 0

0 0 0 … 0 �1 α 1
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�

�

�

�

�

¼ α�
1

z

� �

AN�1 αð Þ þAN�2 αð Þ,

(4)

where λ ¼ �α,

Aj αð Þ≔

α 1 0 … 0 0 0

�1 α 1 … 0 0 0

0 �1 α … 0 0 0

⋮

0 0 … α 1 0 0

0 0 … �1 α 1 0
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¼ αþ zð ÞBj�1 αð Þ þ Bj�2 αð Þ,

(5)

and

Bj αð Þ ¼

α 1 0 … 0 0

�1 α 1 … 0 0

0 �1 α … 0 0

⋮

0 0 … α 1 0

0 0 … �1 α 1

0 0 … 0 �1 α
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: (6)

Strikingly, we recognize the determinant Bj αð Þ as the Fibonacci polynomial of index jþ 1

[10, 11], i.e., Bj αð Þ=Fjþ1 αð Þ. Fibonacci polynomials are defined as
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F0 xð Þ ¼ 0, F1 xð Þ ¼ 1, Fj xð Þ ¼ xFj�1 xð Þ þ Fj�2 xð Þ, j ≥ 2: (7)

Since we have that Bj αð Þ=Fjþ1 αð Þ, and the recursion relationship for Fibonacci polynomials, we

also have that

Aj αð Þ ¼ αþ zð ÞFj αð Þ þ Fj�1 αð Þ ¼ zFj αð Þ þ Fjþ1 αð Þ, (8)

and then

∣DN þ αIN ∣

¼ α�
1

z

� �

zFN�1 αð Þ þ FN αð Þ½ � þ zFN�2 αð Þ þ FN�1 αð Þ

¼ z αFN�1 αð Þ þ FN�2 αð Þ½ � þ α�
1

z

� �

FN αð Þ

¼ αþ z�
1

z

� �

FN αð Þ:

(9)

Then, the eigenvalues of the derivative matrix DN are λ1 ¼ z� 1=z ¼ evΔ � e�vΔ ¼ 2sinh vΔð Þ

and λm ¼ �αm, where αm is the m-th root of the N-th Fibonacci polynomial, which is a

polynomial of degree N � 1 [10, 11].

The system of simultaneous equations for the eigenvector eTm ¼ em,1 em,2;…; eNð Þ corresponding

to λm, can be put in a form similar to the recursion relationship for the Fibonacci polynomials,

i.e.,

em,2 ¼ λmem,1 þ
em,1
z

, (10)

em, jþ1 ¼ λmem, j þ em, j�1, 1 < j < N, (11)

zem,N ¼ λmem,N þ em,N�1: (12)

This set of recursion relationships can be written as the matrix equation

em, j

em, jþ1

� �

¼
0 1

1 λm

� �

em, j�1

em, j

� �

, j ¼ 1,…, N, (13)

where em,0 ¼ em,1=z and em,Nþ1 ¼ zem,N. Thus

em, j

em, jþ1

� �

¼
0 1

1 λm

� �j em,0

em,1

� �

, j ¼ 1,…, N, (14)

but

0 1

1 λm

� �j

¼
Fj�1 λmð Þ Fj λmð Þ

Fj λmð Þ Fjþ1 λmð Þ

� �

, (15)
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and then,

em, j

em, jþ1

� �

¼
Fj�1 λmð Þ Fj λmð Þ

Fj λmð Þ Fjþ1 λmð Þ

� �

em,0

em,1

� �

, j ¼ 1,…, N: (16)

i.e., the j-th component of the m-th eigenvector is

em, j ¼ Fj λmð Þ þ
Fj�1 λmð Þ

z

� �

em,1 for j ¼ 1, 2,…, N: (17)

For the case of the eigenvalue λ1 ¼ z� 1=z, we can rewrite Eq. (17) by noticing that if we let

x ¼ w� w�1 (w∈ℂ), then Fn xð Þ þ Fn�1 xð Þ=w ¼ wn�1 for n ¼ 1, 2,…. This can be proved by

induction method as follows. For n ¼ 1, it is immediately verified. First, suppose that the

equality holds for n ≤ k. Next, we compute the right-hand side of the equality for kþ 1. Substitut-

ing Fk�1 ¼ w wk�1 � Fk
� �

in the expression for kþ 1, and using the properties of the Fibonacci

polynomials, we obtain

Fkþ1 xð Þ þ
Fk xð Þ

w
¼ xFk xð Þ þ Fk�1 xð Þ þ

Fk xð Þ

w

¼ xFk xð Þ þ wk � wFk xð Þ þ
Fk xð Þ

w

¼ wk:

(18)

Therefore, according to Eqs. (17) and (18), the eigenvector for the eigenvalue λ1 ¼ 2sinh vΔð Þ

takes the form e1 ¼ c 1; z;…; zN�1
� �T

, where c is a normalization constant. We can take advan-

tage of the normalization constant and write

e1 ¼ c evq1 ; ; evq2 ;…; ; evqNð ÞT , (19)

with eigenvalue λ1 ¼ v (in original scaling, i.e., the eigenvalue of the matrix DN), q1 is an

arbitrary constant, and qj ¼ q1 þ j� 1ð ÞΔ. This means that the exponential function is an

eigenvector of the derivative matrix which is a global representation of the derivative on the

partition q1; q2;…; qN
	 


. Recall that the exponential function is an eigenfunction of the deriva-

tive of functions of continuous variable.

The remain of the eigenvectors have eigenvalues equal to the negative of the roots of the N-th

Fibonacci polynomial λm ¼ �xm, m ¼ 1, 2,…, N � 1, and have the form

em ¼ c

1

F2 λmð Þ þ e�vΔ

F3 λmð Þ þ e�vΔF2 λmð Þ

⋮

FN�1 λmð Þ þ e�vΔFN�2 λmð Þ

e�vΔFN�1 λmð Þ

0

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

A

(20)
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The vector that we will be interested on is the one which is the exponential function (19) with

eigenvalue v.

3. The matrix DN represents a derivation

Let us consider a partition, P Nð Þ≔ qi
	 
N

1
, qi ∈ℝ, of N equally spaced points qi of the interval

a; b½ �∈ℝ, a < b, with the same separation Δ ¼ b� að Þ= N � 1ð Þ between them.

The rows of the result of the multiplication of the derivative matrix DN and a vector

g≔ g1; g2;…; gn
� �T

are

DNgð Þj ¼
gjþ1 � gj�1

2χ v;Δð Þ
, j ¼ 1, 2,…, N, (21)

where g0≔e�vΔg1 and gNþ1≔evΔgN . We recognize these expressions as the second order deriv-

atives of the function g xð Þ at the mesh points, but instead of dividing by twice the separation Δ

between the mesh points, there is the function χ v;Δð Þ in the denominator. This function makes

it possible that the exponential function be an eigenvector of the matrix DN .

The values g0 ¼ e�vΔg1 and gNþ1 ¼ evΔgN extend the original interval a; b½ � to a� Δ; bþ Δ½ � so

that we have well defined the second order derivatives at all the points of the initial partition,

including the edges of the interval. When g xð Þ is the exponential function, we have g0 ¼ ev x1�Δð Þ

and gNþ1 ¼ ev xNþΔð Þ, i.e., they are the values of the exponential function evaluated at the points

of the extension.

Thus, we define finite differences derivatives for any function g xð Þ defined on the partition as

Dgð Þ1 ¼
g2 � e�vΔg1
2χ v;Δð Þ

, (22)

Dgð Þj ¼
gjþ1 � gj�1

2χ v;Δð Þ
, (23)

Dgð ÞN ¼
evΔgN � gN�1

2χ v;Δð Þ
, (24)

to be used on the first, central, and last points of the partition.

The determinant of the derivative matrix is not always zero, and in fact, it is [see Eqs. (4) and (9)]

∣DN ∣ ¼ 2sinh vΔð ÞFN 0ð Þ: (25)

But, since F2jþ1 ¼ 1, and F2j ¼ 0, then
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∣D2j∣ ¼ 0, ∣D2jþ1∣ ¼ 2sinh vΔð Þ: (26)

Hence, only the matrices with an odd dimension have an inverse.

Next, we will derive some properties of these finite differences derivatives.

3.1. The derivative of a product of vectors

There are two equivalent expressions for the finite differences derivative of a product of

vectors defined on the partition. A set of such expressions is

Dghð Þ1 ¼
g2h2 � e�vΔg1h1

2χ v;Δð Þ

¼
g2h2 � e�vΔg1h2

2χ v;Δð Þ
þ g1

e�vΔh2 � h2 þ h2 � e�vΔh1
2χ v;Δð Þ

¼ h2 Dgð Þ1 þ g1 Dhð Þ1 þ g1h2
e�vΔ � 1

2χ v;Δð Þ

¼ h2 Dgð Þ1 þ g1 Dhð Þ1 þ g1h2 �
v

2
þ
v2

4
ΔþO Δ

3
� �

� �

,

(27)

Dghð Þj ¼ hjþ1 Dgð Þj þ gj�1 Dhð Þj, (28)

Dghð ÞN ¼ hN Dgð ÞN þ gN�1 Dhð ÞN þ
1� evΔ

2χ v;Δð Þ
gN�1hN

≈ hN Dgð ÞN þ gN�1 Dhð ÞN þ gN�1hN �
v

2
�
v2

4
ΔþO Δ

3
� �

� �

:

(29)

A second set of equalities is

Dghð Þ1 ¼ g2 Dhð Þ1 þ h1 Dgð Þ1 þ g2h1
e�vΔ � 1

2χ v;Δð Þ

¼ g2 Dhð Þ1 þ h1 Dgð Þ1 þ g2h1 �
v

2
þ
v2

4
ΔþO Δ

3
� �

� �

,

(30)

Dghð Þj ¼ gjþ1 Dhð Þj þ hj�1 Dgð Þj, (31)

Dghð ÞN ¼ gN Dhð ÞN þ hN�1 Dgð ÞN þ gNhN�1
1� evΔ

2χ v;Δð Þ

≈ gN Dhð ÞN þ hN�1 Dgð ÞN þ gNhN�1 �
v

2
�
v2

4
ΔþO Δ

3
� �

� �

,

(32)
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3.2. Summation by parts

The sum of Eqs. (28) or (31), with weights 2χ v;Δð Þ, results in

X

m

j¼n

2χ v;Δð Þhjþ1 Dgð Þj þ
X

m

j¼n

2χ v;Δð Þgj�1 Dhð Þj

¼
X

m

j¼n

2χ v;Δð Þ Dghð Þj

¼ gmþ1hmþ1 þ gmhm � gnhn � gn�1hn�1,

(33)

or

X

m

j¼n

2χ v;Δð Þgjþ1 Dhð Þj þ
X

m

j¼n

2χ v;Δð Þhj�1 Dgð Þj

¼ gmþ1hmþ1 þ gmhm � gnhn � gn�1hn�1:

(34)

This is the discrete version of the integration by parts theorem for continuous variable func-

tions, a very useful result.

3.3. Second derivatives

Expressions for higher order derivatives are obtained through the powers of DN . For instance,

for the first two points, the second derivative is

D2g
� �

1
¼

e�2vΔ � 1
� �

g1 � e�vΔg2 þ g3
4χ2 v;Δð Þ

¼
Dgð Þ2 � e�vΔ Dgð Þ1

2χ v;Δð Þ
, (35)

D2g
� �

2
¼

e�vΔg1 � 2g2 þ g4
4χ2 v;Δð Þ

¼
Dgð Þ3 � Dgð Þ1
2χ v;Δð Þ

, (36)

For inner points we get

D2g
� �

j
¼

gj�2 � 2gj þ gjþ2

4χ2 v;Δð Þ
¼

Dgð Þjþ1 � Dgð Þj�1

2χ v;Δð Þ
, 3 ≤ j ≤N � 3, (37)

and for the last two points of the mesh, we find

D2g
� �

N�1
¼

gN�3 � 2gN�1 þ evΔgN
4χ2 v;Δð Þ

¼
Dgð ÞN � Dgð ÞN�2

2χ v;Δð Þ
, (38)

D2g
� �

N
¼

gN�2 � evΔgN�1 þ e2vΔ � 1
� �

gN
4χ2 v;Δð Þ

¼
evΔ Dgð ÞN � Dgð ÞN�1

χ2 v; 2Δð Þ
:

(39)
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These derivatives also have the exponential function as one of their eigenvectors, and we can

generate expressions for higher derivatives with higher powers of the derivative matrix.

3.4. The derivative of the inverse of functions

It is possible to give an expression for the derivative of h�1 qð Þ, including the edge points. For

the first point, we have

D
1

h

� �

1

¼
1

2χ v;Δð Þ

1

h2
�
e�vΔ

h1

� �

¼
1

2χ v;Δð Þ
�
h2 � h1
h1h2

þ
1� e�vΔ

h1

� �

¼ �
Dhð Þ1
h1h2

þ
1� e�vΔ

2χ v;Δð Þ

1

h1
þ

1

h2

� �

:

(40)

For central and last points, we find that

D
1

h

� �

j

¼ �
Dhð Þj

hj�1hjþ1
, (41)

D
1

h

� �

N

¼ �
Dhð ÞN

hN�1hN
þ

evΔ � 1

2χ v;Δð Þ

1

hN�1
þ

1

hN

� �

: (42)

The derivatives for the first and last points coincide with the derivative for central points when

Δ ¼ 0.

3.5. The derivative of the ratio of functions

Now, we take advantage of the derivative for the inverse of a function and the derivative of a

product of functions and obtain what the derivative of a ratio of functions is

D
g

h

� �

1
¼

1

h2
Dgð Þ1 þ g1 D

1

h

� �

1

þ
g1
h2

e�vΔ � 1

2χ v;Δð Þ

¼
1

h2
Dgð Þ1 þ g1 �

Dhð Þ1
h1h2

þ
1

2χ v;Δð Þ

1

h1
þ
1� e�vΔ

h2

� �� �

þ
g1
h2

e�vΔ � 1

2χ v;Δð Þ

¼
1

h2
Dgð Þ1 �

g1
h1h2

Dhð Þ1 þ
g1
h1

1� e�vΔ

2χ v;Δð Þ
,

(43)

D
g

h

� �

j
¼

Dgð Þj

hj�1
� gjþ1

Dhð Þj

hjþ1hj�1
, (44)

D
g

h

� �

N
¼

1

hN
Dgð ÞN �

gN�1

hN�1hN
Dhð ÞN þ

gN�1

hN�1

evΔ � 1

2χ v;Δð Þ
, (45)
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expressions which are very similar to the continuous variable results. Again, these expressions

coincide in the limit Δ ! 0, and they reduce to the corresponding expressions for continuous

variables.

3.6. The local inverse operation of the derivative

The inverse operation to the finite differences derivative, at a given point, is the summation

with weights 2χ v;Δð Þ

X

m

j¼n

2χ v;Δð Þ Dgð Þj ¼
X

m

j¼n

gjþ1 � gj�1

� �

¼ gmþ1 þ gm � gn � gn�1: (46)

This equality is the equivalent to the usual result for continuous functions,
Ð x
a dy dg yð Þ=dyð Þ

¼ g xð Þ � g að Þ. Note that the inverse at the local level is a bit different from the expressions

obtained by means of the inverse matrix S (see below) of the derivative matrix D. When

dealing with matrices there are no boundary terms to worry about.

3.7. An eigenfunction of the summation operation

Because the exponential function is an eigenfunction of the finite differences derivative and

according to Eq. (46), we can say that

X

m

j¼n

2χ v;Δð Þvevqj ¼
X

m

j¼n

2χ v;Δð Þ Devqð Þj ¼
X

m

j¼n

evqjþ1 � evqj�1ð Þ

¼ evqmþ1 þ evqm � evqn � evqn�1 ,

(47)

in agreement with the corresponding continuous variable equality
Ð x
a dxvevx ¼ evx � eva. How-

ever, here, we have to deal with two values at each boundary.

3.8. The chain rule

The chain rule also has a finite differences version. That version is

Dg h qð Þð Þð Þj ¼
g h qjþ1

� �� �

� g h qj�1

� �� �

2χ v;Δð Þ

¼
g h qjþ1

� �� �

� g h qj�1

� �� �

2χ v; h qjþ1

� �

� h qj

� �� �

2χ v; h qjþ1

� �

� h qj

� �� �

2χ v;Δð Þ

¼ Dg hð Þð Þj

χ v; h qjþ1

� �

� h qj

� �� �

χ v;Δð Þ

(48)

where
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Dg hð Þð Þj≔
g h qjþ1

� �� �

� g h qj�1

� �� �

2χ v; h qjþ1

� �

� h qj

� �� � (49)

is a finite differences derivative of g hð Þ with respect to h, and the second factor approaches the

derivative of h qð Þ with respect to q

χ v; h qjþ1

� �

� h qj

� �� �

χ v;Δð Þ
≈

h qjþ1

� �

� h qj

� �

þO Δh2
� �

ΔþO Δ
2

� � : (50)

Thus, we will recover the usual chain rule for continuous variable functions in the limit Δ ! 0.

4. The commutator between coordinate and derivative

Let us determine the commutator, from a local point of view first, between the coordinate—the

points of the partition P Nð Þ—and the finite differences derivative. We begin with the deriva-

tive of q,

Dqð Þj ¼
qjþ1 � qj�1

2χ v;Δð Þ
¼

Δ

χ v;Δð Þ
≈ 1�

v2

6
Δ
2
: (51)

Hence, the finite differences derivative of the product qg qð Þ is

Dqgð Þj ¼ qjþ1 Dgð Þj þ gj�1 Dqð Þj ¼ qjþ1 Dgð Þj þ gj�1

Δ

χ v;Δð Þ
, (52)

i.e.,

Dcqgð Þj � qjþ1 Dcgð Þj ¼ gj�1

Δ

χ v;Δð Þ
: (53)

This is the finite differences version of the commutator between the coordinate q and the finite

differences derivative D. This equality will become the identity operator in the small Δ limit, as

expected. An equivalent expression is

Dqgð Þj � qj�1 Dgð Þj ¼ gjþ1

Δ

χ v;Δð Þ
: (54)

This is the finite differences version of the commutator between coordinate and derivative;

the right hand side of this equality becomes gj in the small Δ limit, i.e., it becomes the identity

operator.
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4.1. The commutator between the derivative and coordinate matrices

The commutator between the partition and the finite differences derivative can also be calcu-

lated from a global point of view using the corresponding matrices. Let the diagonal matrix

[QN] which will represent the coordinate partition

QN≔diag q1; q2;…; qN
� �

: (55)

Then, the commutator between the derivative matrix and the coordinate matrix is

DN;QN½ � ¼
Δ

2χ v;Δð Þ

0 1 0 0 … 0 0 0

1 0 1 0 … 0 0 0

0 1 0 1 … 0 0 0

⋮

0 0 0 0 … 0 1 0

0 0 0 0 … 1 0 1

0 0 0 0 … 0 1 0

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

: (56)

This is a kind of nearest neighbors’ average operator, inside the interval. The small Δ limit is

just

DN,QN½ � ≈ I, (57)

where I is the identity matrix, with the first and last elements replace with 1/2. Thus, coordi-

nate and derivative matrices are finite differences conjugate of each other.

5. An integration matrix

Since the determinant of the derivative matrixDN is not always zero, we expect that there exist

an inverse of it. At a local level, the inverse of the finite differences derivation is the summation

as was found in Eq. (46). In this section, we determine the inverse of the derivative matrix, and

we find that it is a global finite difference integration operation.

Once we know the eigenvalues and eigenvectors of the derivative matrix DN, it turns out that

we also know the eigenvectors and eigenvalues of the inverse matrix, when it exists. In fact, the

equality DNem ¼ λmem, with λm 6¼ 0, imply that

D�1
N em ¼ λ�1

m em: (58)

The inverse matrix SN ¼ D�1
N is
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SN ¼
1

z� 1
z

1 �z 1 �z 1 … �z 1

z �1 1=z �1 1=z … �1 1=z

1 �1=z 1 �z 1 … �z 1

z �1 z �1 1=z … �1 1=z

⋮

1 �1=z 1 �1=z 1 … �z 1

z �1 z �1 z … �1 1=z

1 �1=z 1 �1=z 1 … �1=z 1

z �1 z �1 z … �1 1=z

1 �1=z 1 �1=z 1 … �1=z 1

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

, (59)

Its determinant is

∣SN∣ ¼ sinhN�1 vΔð Þ: (60)

This matrix represents an integration on the partition, with an exact value when it is

applied to the exponential function evq on the partition. When applied to an arbitrary vector

g ¼ g1; g2;…; gN
� �T

, we obtain formulas for the finite differences integration, including the

edge points

SNgð Þ1 ¼
1

z� 1=z
g1 þ

X

M

i¼1

g2iþ1 � zg2i
� �

" #

, (61)

SNgð Þ2j ¼
1

z� 1=z
zg1 þ

X

j�1

k¼1

zg2kþ1 � g2k
� �

þ
X

M

k¼j

g2kþ1

z
� g2k

� �

2

4

3

5, (62)

SNgð Þ2jþ1 ¼
1

z� 1=z
g1 þ

X

j

k¼1

g2kþ1 �
g2k
z

� �

þ
X

M

k¼jþ1

g2kþ1 � zg2k
� �

2

4

3

5, (63)

SNgð ÞN ¼
1

z� 1=z
g1 þ

X

M

i¼1

g2iþ1 �
g2i
z

� �

" #

, (64)

where N ¼ 2Mþ 1. These are new formulas for discrete integration for the exponential func-

tion on a partition of equally separated points with the characteristic that it is exact for the

exponential function evq.

6. Transformation between coordinate and derivative representations

Since one of the eigenvalues of the derivative matrix is a continuous variable, we can talk of

conjugate functions with a continuous argument v. The relationship between discrete vectors
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on a partition qi
	 


and functions with a continuous argument v makes use of continuous and

discrete Fourier type of transformations, a wavelet [12]. If we have a function h of continuous

argument v, a conjugate vector on the partition qi
	 


is defined through the type of continuous

Fourier transform F as

Fhð Þ qj

� �

≔

1

L
ffiffiffiffiffiffi

2Δ
p

ðL=2

�L=2

e�iqjvh vð Þdv, (65)

and vice-versa, a continuous variable function is defined with the help of a discrete type of

Fourier transform F as

Fgð Þ vð Þ≔ L
ffiffiffiffiffiffi

2Δ
p

X

N�1

j¼�Nþ1

2χ v;Δð Þeiqjvgj: (66)

Assuming that the involved integrals converge absolutely, we can say that

F Fgð Þ qj

� �

≔

1

L
ffiffiffiffiffiffi

2Δ
p

ðL=2

�L=2

e�iqjv
L
ffiffiffiffiffiffi

2Δ
p

X

N�1

k¼�Nþ1

2χ v;Δð Þeiqkvgkdv

¼ 1

Δ

X

N�1

k¼�Nþ1

gk

ðL=2

�L=2

ei qk�qjð Þvsinh vΔð Þ dv
v

¼
X

N�1

k¼�Nþ1

gkK qk � qj; L;Δ
� �

:

(67)

where

K qk � qj; L;Δ
� �

≔

1

Δ

ðL=2

�L=2

ei qk�qjð Þvsinh vΔð Þ dv
v

¼ 1

2Δ
shi

L

2
i qk � qj

� �

þ Δ

� �

� �

þ ishi
L

2
qk � qj � iΔ

� �

� �

�2ishi
L

2
qk � qj þ iΔ

� �

� ��

:

�

(68)

The function K qk � qj; L;Δ
� �

is an approximation to the Kronecker delta function δk, j. The

function shi is the hyperbolic sine integral shi zð Þ ¼
Ð z
0 dt sinh tð Þ=t. A plot of it is shown in

Figure 1.

Additionally,

F Fhð Þ vð Þ ¼ L
ffiffiffiffiffiffi

2Δ
p

X

N�1

j¼�Nþ1

2χ v;Δð Þeiqjv 1

L
ffiffiffiffiffiffi

2Δ
p

ðL=2

�L=2

e�iqjuh uð Þdu

¼
ðL=2

�L=2

duh uð Þ J v� u;Nð Þ,

(69)
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where

J x;Nð Þ≔
2χ v;Δð Þ

Δ

X

N�1

j¼�Nþ1

ei qj v�uð Þ ¼
2χ v;Δð Þ

Δ

X

N�1

j¼�Nþ1

ei j v�uð ÞΔ

¼
2χ v;Δð Þ

Δ

sin N � 1=2ð Þ v� uð ÞΔð Þ

sin v� uð ÞΔ=2ð Þ
,

(70)

The ratio of sin functions, in this expression, is an approximation to a series of Dirac delta

functions located at v� uð ÞΔ ¼ kπ, k∈ℕ. Thus, the operations F and F are finite differences

inverse of each other.

6.1. The discrete Fourier transform of the finite differences derivative of a vector

Next, based on Eq. (28), we find that

De�iqvg
� �

j
¼ gjþ1 De�iqv

� �

j
þ e�iqj�1v Dgð Þj

¼ �ivgjþ1e
�iqjv þ e�iqj�1v Dgð Þj:

(71)

If we sum this equality, we get

X

N�1

j¼�Nþ1

2χ v;Δð Þ De�iqvg
� �

j
¼ �iv

X

N�1

j¼�Nþ1

2χ v;Δð Þgjþ1e
�iqjv

þ
X

N�1

j¼�Nþ1

2χ v;Δð Þe�iqj�1v Dgð Þj

(72)

Figure 1. A plot of the kernel function K x; a; bð Þwith a ¼ 1 and b ¼ :1. This function is an approximation to the Kronecker

delta δx,0.
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i.e.,

FN Dgð Þð Þ vð Þ ¼ iv FNþ1gð Þ vð Þ

þ e�ivΔ e�iqjvgj
N
j¼�Nþ2 þ

ffiffiffi

2
p

L
e�iqjvgj

�

�

�

�

�

�

�

�

N�1

j¼�Nþ1

" #

(73)

Therefore, the discrete Fourier transform of the derivative of a vector g is iv times the discrete

Fourier transform of g, plus boundary terms.

The Fourier transform of the derivative of a continuous function of variable v is easily found if

we consider the equality

d

dv
e�iqjv ¼ �iqje

�iqjv: (74)

The integration of this equality with appropriate weights gives

�iqj

ðL=2

�L=2

dve�iqjvh vð Þ ¼ �
ðL=2

�L=2

dve�iqjv
dh vð Þ
dv

þ e�iqjvh vð Þ
�

�

�

�

�

L=2

v¼�L=2

, (75)

i.e.,

Fh0ð Þj ¼ iqj Fhð Þj þ
1

L
ffiffiffi

2
p e�iqjvh vð Þ

�

�

�

�

L=2

v¼�L=2

: (76)

Hence, as is usual, the Fourier transform of the derivative of a function h vð Þ of continuous

variable v is equal to iqj times the Fourier transform of the function, plus boundary terms.

7. Conclusion

We proceed with a brief discussion of the relationship between the derivative matrix DN and

an important concept in quantum mechanics; the concept of self-adjoint operators [8, 9]. In

particular, we focus on the momentum operator, whose continuous coordinate representation

(operation) is given by �id=dq, i.e., a derivative times �i, in the case of infinite-dimensional

Hilbert space.

In the finite-dimensional complex vectorial space (where each vector define a sequence gi
	 
N

i¼1

of complex numbers such that
P

i gi
�

�

�

�

2
< ∞). A transformation A is usually called Hermitian,

when its entries ai, j are such that ai, j ¼ a∗j, i (
∗ denote the complex conjugate). Our matrix DN is

related to an approximation of the derivative (see Section 3) which uses second order finite

differences. Therefore, we can ask if the matrix �iDN is also Hermitian.
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Let PN ¼ �iDN and v ¼ ix be the eigenvalue of DN, where x∈ℝ is a free parameter, the

corresponding eigenvalue of �iDN is indeed the real value x; which is one of the properties of

a Hermitian matrix, as is also the case of infinite-dimensional space (for the Hilbert space on a

finite interval, these values are discrete, and for the Hilbert space on the real line, these values

conform the continuous spectrum, instead of discrete eigenvalues). Other characteristic of

�iDN is that the eigenvector corresponding to x is the same exponential function which is the

eigenfunction of �id=dx (see Section 2).

Furthermore, let P†

N denote the adjoint of PN . Thus, if we restrict our attention to the off-

diagonal entries PNð Þi, j ¼ �i DNð Þi, j, it is fulfilled that P
†

N

� �

i, j ¼ �idj, i
� �

∗

¼ �idi, j ¼ PNð Þi, j

(noticing that, with v ¼ ix then χ x;Δð Þ ¼ sin x;Δð Þ=x∈ℝ). Even more, if we do not care about

the two entries di, i for i ¼ 1, N, we will have a Hermitian matrix. Finally, as it was seen in

Section 4, we can say that PN can be considered as a suitable approximation to the conjugate

matrix to the coordinate matrix.

In conclusion, we have introduced a matrix with the properties that a Hermitian matrix should

comply with, except for two of its entries. Besides, our partition provides congruency between

discrete, continuous, and matrix treatments of the exponential function and of its properties.

Author details

Armando Martínez Pérez and Gabino Torres Vega*

*Address all correspondence to: gabino@fis.cinvestav.mx

Physics Department, Cinvestav, México City, México

References

[1] Boole G. A Treatise on the Calculus of Finite Differences. New York: Cambridge Univer-

sity Press; 2009. p. 1860

[2] Harmuth HF, Meffert B. Dogma of the continuum and the calculus of finite differences in

quantum physics. In: Advances in Imaging and Electron Physics. Vol. 137. San Diego:

Elsevier Academic Press; 2005

[3] Jordan C. Calculus of Finite Differences. 2nd ed. New York: Chelsea Publishing Com-

pany; 1950

[4] Richardson CH. An Introduction to the Calculus of Finite Differences. Toronto: D. Van

Nostrand; 1954

[5] Santhanam TS, Tekumalla AR. Quantum mechanics in finite dimensions. Foundations of

Physics. 1976;6:583

Matrices Which are Discrete Versions of Linear Operations
http://dx.doi.org/10.5772/intechopen.74356

37



[6] Pérez AM, Torres-Vega G. Translations in quantum mechanics revisited. The point spec-

trum case. Canadian Journal of Physics. 2016;94:1365-1368. DOI: 10.1139/cjp-2016-0373

[7] de la Torre AC, Goyeneche D. Quantum mechanics in finite-dimensional Hilbert space.

American Journal of Physics. 2003;71:49

[8] Gitman DM, Tyutin IV, Voronov BL. Self-Adjoint Extensions in Quantum Mechanics.

General Theory and Applications to Schrödinger and Dirac Equations with Singular

Potentials. New York: Springer; 2012

[9] Schmüdgen K. Unbounded self-adjoint operators on Hilbert space. In: Graduate Texts in

Mathematics. Vol. 265. Heidelberg: Springer; 2012

[10] Hoggatt Jr VE, Bicknell M. Roots of Fibonacci polynomials. Fibonacci Quart. 1973;11:271

[11] Li Y. Some properties of Fibonacci and Chebyshev polynomials. Advances in Difference

Equations. 2015;2015:118

[12] Kaiser G. A friendly guide to wavelets. Birkhäuser. 1994, 2011. ISBN: 978-0-8176-8110-4

Matrix Theory-Applications and Theorems38


