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Abstract

This chapter discusses high-performance computational and information technologies for
numerical models and data processing. In the first part of the chapter, the numerical model of
the oil displacement problem was considered by injection of chemical reagents to increase oil
recovery of reservoir. Moreover the fragmented algorithm was developed for solving this
problem and the algorithm for high-performance visualization of calculated data. Analysis
and comparison of parallel algorithms based on the fragmented approach and using MPI
technologies are also presented. The algorithm for solving given problem onmobile platforms
andanalysis of computational results is given too. In the secondpart of the chapter, theproblem
ofunstructuredandsemi-structureddataprocessingwas considered. Itwasdecided to address
the task of n-gram extraction which requires a lot of computing with large amount of textual
data. In order to deal with such complexity, there was a need to adopt and implement
parallelization patterns. The second part of the chapter also describes parallel implementation
of the document clustering algorithm that used a heuristic genetic algorithm. Finally, a novel
UPC implementation of MapReduce framework for semi-structured data processing was
introducedwhich allows to express data parallel applications using simple sequential code.

Keywords: fragmented algorithm, high-performance visualization, computational
algorithms on mobile platforms, MPI, unstructured and semi-structured data processing,
n-gram extraction, MapReduce framework
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1. Introduction

With development of computer technology level and high-performance systems across the

world, efficiency of solving problems in the field of fundamental and engineering research is

increasing. Annual development of mathematical models allows to study physical and chem-

ical processes in greater detail. Modern numerical methods are also being developed for

solving applied problems and an amount of calculations are increasing. In this regard, using

high-performance computing and computational technologies to solve applied problems with

each year becomes more relevant.

In the middle stages of the development of high-viscosity oil fields, the problem of decreasing oil

recovery becomes an issue. Increasing oil recovery of reservoirs remains one of urgent tasks at

the moment. Methods of injecting polymers and surfactants into an oil reservoir are currently

widely used in the oil industry and are considered as one of the effective methods for increasing

the oil recovery of reservoirs [1, 2]. Therefore, the problem of oil displacement process by

polymer and surfactant flooding was perceived as being a task for given working group.

Parallel implementation of the oil displacement problem and applied method appears to be

complex problem of system parallel programming because it requires to provide synchroniza-

tion of separate computational processes, network data transfer, etc. In order to decrease

complexity of such parallel programs, technology of fragmented programming and its imple-

mentation called LuNA (Language for Numerical Algorithms) were adopted [3].

Visualization is an integral part of the analysis during the processing of the scientific data. It

has a significant role in large-scale computational experiments on modern high-performance

engines. The amount of data obtained in such calculations can reach several terabytes. Such

system requires a well-designed and implemented client-side visualization module taking into

account its client orientation. So such programming module was applied using modern visu-

alization technology Vulkan API [4].

Nowadays full computational potential of mobile devices almost not used because of devices

being idle for extended periods during a day. There are number of projects such as Berkeley

Open Infrastructure for Network Computing (BOINC) which use excessive computational

capabilities of PCs and mobile devices across the globe [5]. While provisioning services for its

customers as integrator of numerous computational resources for solving their problems, the

processing itself was conducted using only CPUs. Many recent mobile devices are equipped

with powerful GPUs generally used for 3D graphics rendering. By efficient usage of mobile

GPUs, one can achieve much more performance from a single device therefore increasing

overall productivity of such integrational computations. This task requires the mobile software

installed to be able to use capabilities offered by GPUs. Following researchers studied issues

and possibilities related to exploit GPU capabilities of mobile devices in integrated computa-

tions: Zhao [6], Montella et al. [7].

Because of the rapid progress on computer-based communications and information dissemi-

nation, large amounts of data are daily generated and available in many domains. The purpose

of the research presented in the second part of the chapter is to develop models and algorithms
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for unstructured and semi-structured data processing using high-performance parallel and

distributed technologies.

Today huge amount of information are being associated with the web technology and the

internet. To gather useful information from it, these text has to be categorized. Text categoriza-

tion is a very important technique for text data mining and analytics. It is relevant to discovery

various different kinds of knowledge. It is related to topic mining and analysis. It is also related

to opinion mining and sentiment analysis, which has to do with knowledge discovery about

the observer, the human sensor. The observer based on the content they produce can be

categorized. The indexing influences the ease and effectiveness of a text categorization system

[8]. The simplest indexing is formed by treating each word as a feature. However, words have

properties, such as synonymy and polysemy. These have motivated attempts to use more

complex feature extraction methods in text categorization tasks. If a syntactic parse of text is

available, then features can be defined by the presence of two or more words in particular

syntactic relationships. Nowadays authors [9–11] have used phrases (n-grams), rather than

individual words, as indexing terms. In this work, the task was also addressed to n-gram text

extraction which is a big computational problem when a large amount of textual data is given

to process. In order to deal with such complexity, there was a need to adopt and implement

parallelization patterns.

The chapter also focuses on research related to the application of genetic algorithm for docu-

ment clustering. Genetic algorithms make it possible to take into account peculiarities of the

search space by adjusting the parameters and selecting the best solutions from the solutions

obtained by the population [12–14]. Clustering algorithm is based on the assessment of the

similarity between objects in a competitive situation. Since clustering problem solution

requires large computational resources parallelization on the stage of genetic algorithm for

setting the coefficients in the formula of similarity measures was performed, as well as on the

stage of data clustering.

MapReduce technology has shown a great potential in dealing with large-scale data

processing problems [15, 16]. Such batch-oriented MapReduce systems as Apache Hadoop,

however, lacks efficiency in dealing with iterative problems. The main bottleneck can be

attributed to slow disk operations arising in data storage after current iteration in a distributed

file system. Number of solutions that deal with that problem has been proposed in a literature,

including ones that propose novel techniques that optimize loops [17] and ones that try to keep

static data [18]. Recently introduced novel approaches rely mostly on in-memory processing

mechanisms [19, 20]. Also some types of data parallel problems require efficient communica-

tion between parallel workers in order to be able to implement specific nature of the data

exchange patterns. In such a way, it is necessary to consider other parallel programming

models that can be effectively combined with MapReduce.

Partitioned global address space (PGAS) model presents an interesting approach to deal with

data communication problem. In PGAS model, a global memory is divided among threads

with different choices of memory to thread mappings. Several works introduced different

approaches to implement MapReduce functionality in a frame of PGAS model. For example,
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in [21], authors introduce a design of MapReduce system based on using unified parallel C that

belongs to a family of PGAS languages. In that approach collective operations for data

exchange are employed. A different implementation of MapReduce based on X-10 parallel

programming language of PGAS family uses hashmap data structure to deal with data

exchange task [22].

2. Mathematical and computer modeling of 3D oil displacement process in

porous media

2.1. Mathematical model of polymer and surfactant flooding

In general processes of oil displacement by chemical reagents controlled by complex physical

and chemical processes. Therefore, exact simulation of such processes using numerical

methods produces a number of certain issues. Therefore, the mathematical model of two-

phase flow in porous media has the following assumptions: (1) flow is incompressible; (2)

gravitational forces and capillary effects are neglected and (3) two-phase flow (water and oil)

obeys Darcy’s law.

Taking into account the foregoing assumptions, a system of equation was written for two-

phase flow in porous media, which contains mass conservation equations for water and oil

phases, the Darcy’s law, and the equation for the transfer of concentration and salt in the

reservoir [23, 24].

Mass conservation equations can be written as follows:

m
∂Sw
∂t

þ div vwð Þ ¼ q1 (1)

m
∂So
∂t

þ div voð Þ ¼ q2 (2)

where m is the porosity, Sw, So are the water and oil saturations, q1, q2 are the source or sink.

Porous medium saturated with fluids: Sw þ So ¼ 1.

Velocities of each phases is given by Darcy’s law:

vi ¼ �K0

f i sð Þ

μi

∇P, i ¼ w, o (3)

where f i sð Þ,μi is the relative permeability and viscosity for phase i, P is the pressure, K0 is the

permeability tensor.

Polymer, surfactant, salt and heat transport equations are given by:

m
∂

∂t
cpsw
� �

þ
∂ap

∂t
þ div vwcp

� �

¼ div mDpwsw∇cp
� �

(4)
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m
∂

∂t
cswsw þ csosoð Þ þ

∂asurf

∂t
þ div vwcsw þ vocsoð Þ ¼ div mDswsw∇csw þmDsoso∇csoð Þ (5)

m
∂

∂t
csswð Þ þ div vwcsð Þ ¼ 0 (6)

∂

∂t
1�mð ÞCrrrT þm Cwswrw þ C0s0r0ð ÞT½ � þ div rwCwvwT þ r0C0v0Tð Þ ¼ div D∇Tð Þ,

D ¼ 1�mð Þλ0 þm λ1sw þ λ2s0ð Þ (7)

where cp, cs is the concentrations of polymer and salt in water phase, csw, cso are the concentra-

tion of surfactant in water and oleic phases, ap, asurf are the adsorption functions, Dpw, Dsw, Dso

are the diffusion coefficients, Cw, Co, Cr are the specific heat of water, oil and rock, rw, ro, rr are

the water, oil and rock densities, λ0,λ1,λ2 are the thermal conductivity coefficients.

Initial conditions:

swjt¼0 ¼ sw0, cpw
�

�

t¼0
¼ cp0, csjt¼0 ¼ cs0, cswjt¼0 ¼ csw0, csojt¼0 ¼ cso0,

Tjt¼0 ¼ Tp, asurf 0
�

�

t¼0
¼ asurf 0, ap

�

�

t¼0
¼ ap0 (8)

Boundary conditions:

∂sw
∂n

�

�

�

�

∂Ω

¼ 0;
∂P

∂n

�

�

�

�

∂Ω

¼ 0;
∂T

∂n

�

�

�

�

∂Ω

¼ 0;
∂cpw

∂n

�

�

�

�

∂Ω

¼ 0;

∂cpw

∂n

�

�

�

�

∂Ω

¼ 0;
∂csw
∂n

�

�

�

�

∂Ω

¼ 0;
∂cs
∂n

�

�

�

�

∂Ω

¼ 0 (9)

The following viscosity dependence on injected reagent concentrations and temperature was

used:

μa ¼ μw 1þ γ1cp þ γ2c
2
p þ γ3csw þ γ4c

2
sw

� �

c
γ5
s � γ6 T � Tp

� �

h i

(10)

μo ¼ μoo 1� γ7 T � Tp

� �� �

(11)

where γ1,γ2,γ3,γ4,γ5,γ6,γ7 are the constants, μoo is the initial viscosity of oil phase, Tp is the

reservoir temperature. The imbibition relative permeability curve for water/oil flow is given by

f w Swð Þ ¼ S3:5
w ; f o Swð Þ ¼ 1� Swð Þ3:5 (12)

The process of displacement of oil by polymer and surfactant solutions described through

developed mathematical model. First oil reservoir filled with surfactant solution is driven

by conventional water. After that polymer solution injected in order to control the slug which

improves volumetric sweep efficiency. This procedure followed by injection of an ordinary
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water flow. The amount of surfactant, polymer and water injected must be computed through

developing mathematical model describing distributing of pressure and temperature, satura-

tion of each phase, chemical concentrations of the process flowing within a reservoir. Reservoir

dimensions and shape described within mathematical model as three-dimensional computa-

tional domain (Figure 1a).

The numerical solution of Eqs. (1)–(12) based on finite difference method and explicit/implicit

scheme. The algorithm for constructing a solution is reduced to the following. The temperature

of the reservoir and the injected water, the initial oil saturation of the reservoir, the initial

pressure distribution, the technological and physical parameters of the reservoir are set. The

values of saturation, pressure, concentration and temperature are solved according to the

explicit Jacobi scheme on the basis of the finite difference method in the three-dimensional

grid [25] (Figure 1b).

2.2. Fragmented algorithm

For solving the three-dimensional fluid flow problem, the method with stabilizing correction

was used [26]. For implementation of parallel algorithm initial area (Nx�Ny�Nz) divided to

subdomains. At first division, division made by z-axis where number of subdomains depends

on number of processes, size of subarea equals Nz/size+2 shadow edges.

After that computations for the first and the second intermediary step were made in order to

find pressures and saturations by algorithm described in previous section. Then the second

subdivision of initial domain was done by y-axis and compute values of gas pressure by third

step of the method. After the third step, boundaries for all variables were exchanged and

compute first step of the method for further time step. At the end of this step domain was

made subdivision again but already by x-axis and compute the second and the third steps.

After that subdivision was made on by z-axis again, exchange shadow edges and start to

compute first and second intermediary steps as shown in Figure 2.

Advantage of such scheme of initial three-dimensional domain division at computing two

intermediary steps is the possibility to solve independently at each process by sequential

sweep [27] for which there is no efficient parallel algorithm. But there are global communica-

tions after each second intermediary step which appears when initial domain is divided.

Testing conducted on “MVC” Supercomputer of Unified Supercomputer center of the Rus-

sian Academy of Sciences [28] which include nodes with two Xeon E5-2690 processors,

Figure 1. Computational domain (a) and computational grid (b).
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communicational and transport network based on FDR Infiniband and 64 Gb of Operating

Memory for each node. MPI MPICH3 and GCC compiler used.

Series of experiments allowed to define weak scalability of the implementation. That is for

different problem sizes increase in problem size was proportional to number of computational

nodes. Ideally, computation time must be equal for every experiment because number of

computations in each node is approximately the same. In reality, increased time leads to

increase in communication length and size of transferred values.

As show in Figure 3 (x-axis shows number of processes and appropriate domain size), MPI

implementation possesses best efficiency because unlike fragmented program it does not have

overhead expenses belonging to LuNA system algorithms [29]. But efficiency does not reach

100% because of existing global communications appearing at decomposition of the domain in

a process. Moreover, it can be noted that LuNA implementation approximately 200 time

slower than MPI while LuNAwith manual setting (LuNA-Fw) approximately 10 times slower.

From Figure 3, it can be seen that with increase of the problem size execution time for the

sequential program disappears. This related to the fact that program data no longer fits to a

memory of a single node while parallel and fragmented programs still do.

2.3. High-performance visualization

Let us consider the visualization module. Highly optimized visualization API with cross-

platform support is needed. Previously only the OpenGL standard can be such tool. However,

OpenGL has a number of limitations, mainly related to its high-level implementation. Because

of this, it cannot use advantages of processors from different manufacturers.

At the moment, a new low-level visualization standard, the ideological continuation of

OpenGL, Vulkan API [4] is rapidly developing. It also contains a functional for parallelizing

Figure 2. Scheme of computations for three-dimensional fluid flow problem.
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CPU-side computations and provides multiple performance improvements by reducing the

number of CPU addressing using a technology similar to AMD Mantle [30]. Vulkan is a cross-

platform response from the Khronos Group to the latest DirectX 12 Direct3D standard [31]

developed by Microsoft and released with the Microsoft Windows 10 operating system.

The Vulkan toolkit is extremely low-level and most settings are manually configured. The

main reason of the high performance shown by Vulkan compared to OpenGL is due to the

decrease of the dependence of video processor on the CPU. Indeed, in the old visualization

tools, the drawing of each animation frame was each time run directly from the CPU. Thus,

after each rendering iteration and presentation to the screen, a signal was sent to the CPU, after

which the video processor waited the completion of current CPU commands before launching

the next iteration. In other words, CPU and GPU were synchronized on each call of the render

function.

In an application that uses the Vulkan API, parts that flow on the CPU and the video processor

are generally unsynchronized. Synchronization at the moments of necessity is controlled by

the application itself, not by the driver and the library, as it was in OpenGL.

The demonstration of the implemented module is shown in Figure 4.

To test the capabilities of this visualizer, special test models obtained from the models

presented above were used (Figure 5). To simplify the creation of model, colors of the cells

were generated randomly. From this basic model (Figure 5a), using a special generator, a

similar model was created consisting of a much larger number of polygons and active cells.

Test models were generated by splitting each polygon of the base model.

The model shown in Figure 5b has a surface consisting of 62,078,400 polygons. The geometry

of this model occupies 1420 MB or 1.387 GB on graphics memory. One can interact with this

Figure 3. Weakly scalable testing. Dependence of computation time from the size of a problem and processes.
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model in real time, since the rendering is done at a frequency of 51–53 frames per second. At

the moment, Vulkan standard allows to significantly optimize the performance of graphics

applications due to special technologies for working with data and video card resources at a

low level.

By using the described technology, a new version of the information system visualizer shows a

significant increase in drawing performance. The presented results of the rendering speed can

theoretically correspond to the models with hundreds of millions of computational cells.

2.4. Computational algorithms on mobile platforms

2.4.1. Creation high-performance software on mobile devices

Nowadays, rapid grows of number of mobile devices pushed mobile industry to the very top

of the global technological market making it one of the most important areas of public services.

Huge interest in mobile market from common population set technological trend of mobile

industry to a fastest possible route. CPUs and especially GPUs present in modern mobile

devices being absolutely separate computational units can be used as a parts of heterogeneous

Figure 4. Demonstration of the visualization module using the Vulkan API (different colors represent the values of

permeability along the Оx axis: red color for maximum values and blue for minimum).

Figure 5. Basic model containing 67,165 active cells (a) coarse mesh; (b) finer mesh.
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computational platform combining ordinary servers and other alternative connected devices

with purpose of integral computation. Recent models of mobile devices equipped with GPUs

supporting nVidia CUDA technology. This technology can be used to implement parallel

versions of conventional algorithms further allowing to solve computational intensive tasks.

The mobile nature of computational devices allows to exploit them directly at oil field even if

there no wireless connection. In case if there is access to digital network they can be a part of

heterogeneous computational cluster.

This section describes oil displacement problem in order to test the parallel algorithm on GPU,

which uses a shared memory for storage of a grid node values and comprises of various

comparative tests focusing on effectiveness of mentioned algorithms. Oil displacement prob-

lem by polymer and surfactant injection taking into account temperature effects. The computer

model described the complex real industrial problem of oil recovery [32, 33].

2.4.2. A parallel algorithm using CUDA technology on a mobile platform

Let us make assumption that GPU grids chosen for allocating program data contain several

blocks. Every block represented in a three-dimensional form and program data copied from

the global memory to the shared memory of a GPU during computation. After relocation of

data into shared memory it cannot be used again. Therefore, it will be copied back from the

global memory which usually appears to be slowest one. It means that copying data from the

global memory to GPUs shared memory four times creates inefficiency. Other issue is that

each subdomain requires data from its neighbors to continue computation. This creates

situation where data will be copied from the global memory every time the boundary layer

data needed [34].

To tackle abovementioned issue, the kernel function introduced into parallel implementation

of an algorithm. Using kernel function allows data to be declared in a shared memory

according to a size of a problem. Every thread within a single block has access to the shared

memory only. The performance of the shared memory much higher than of the global memory.

This allows to avoid loading data from the global memory every time the boundary data

required which leads to noticeable increase in performance. The parallel algorithm within the

kernel function works as follows: a temporary array declared in the shared memory where an

output of a calculation will be stored; at first this array represent a copy of an input array; after

that values at edges of a given array will be replaced by boundary values from neighboring

blocks. Every time algorithm requires input data values it gets them from the shared memory

instead of the global memory. High performance of the shared memory significantly speeds up

total computation. One must be careful when working with boundary values from neighbor-

ing block because wrong choice of indices lead to incorrect output data.

Conducting mobile computations on problems related to real-world technological processes

recently became popular topic among science and industry. Game industry actively utilize com-

putaional capabilities of recent mobile devices by developing games with high-performance

graphical data processing. Other examples are image recognition and machine learning in

mobile cloud services. One can easily notice rapid grows of computational capabilities of modern

mobile devices. Recent developments in this industry like nVidia Tegra X1 chipset possesses 256
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GPU cores based on nVidia Maxwell architecture [35]. This chipset has extraordinary computa-

tional performance potential up to 1 TFlops which is comparable with performance of small

supercomputer. Such situation undoubtedly expands area of problems solving with such devices

to a new height.

2.4.3. Results and comparison of computational experiments

In Figure 6, the ratio of calculating time for solving oil recovery problem on the PC and the

mobile device can be seen. By increasing the grid size, the time ratio decreases.

Figure 7 demonstrates the application for the mobile device on the base of the model of oil

displacement process by polymer and surfactant taking into account the salinity and temper-

ature of the reservoir in porous medium.

Figure 6. Computing times of mobile device and PC (polymer and surfactant flooding).

Figure 7. Demonstration of the mobile application results.
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The prototype of hydrodynamic simulator developed for high-performance computations on

mobile devices and uses existing industrial file formats of a known foreign software companies

(Schlumberger, Roxar, etc.). This means that computation results of developed simulator can

be backward compatible with file formats used in other software products by these companies.

Advantage of a mobile application before traditional one is that the mobile app allows users

get results of a computation being located directly on the field.

3. High-performance information technologies for data processing

3.1. Comparison of distributed computing approaches to complexity of n-gram extraction

Nowadays there are several HPC frameworks and platforms that can be used for the distrib-

uted computing text processing. n-Gram extracting task was implemented on three platforms:

(1) MPJ Express, (2) Apache Hadoop, and (3) Apache Spark. Moreover two different kinds of

the input datasets were used: (i) small number of large textual files and (ii) large number of

small textual files. Experiments were conducted with each of the HPC platform, each experi-

ment uses both datasets and the experiment repeats for a set of different file sizes. The speedup

and efficiency among MPJ Express, Apache Hadoop, and Apache Spark were computed. The

guidelines for choosing the platform could be provided based on the following criteria: kind of

dataset (i) or (ii), dataset size, granularity of the input data, priority to reliability, or speedup.

The contributions from our work include:

• Comprehensive experimental evaluation on English Wikipedia articles corpora;

• Time and space comparison between implementations on MPJ Express, Apache Hadoop,

and Apache Spark;

• Detailed guidelines for choosing platform.

The n-gram feature extraction was conducted from the Wikipedia articles corpora. The corpora

size is 4 gb and it is consists of more than 200000 articles, each article’s size is approximately 20

kb. Furthermore all dataset was divided into six subsets: 64, 256, 512, 1024, 2048 and 4096 Mb,

where each subset is divided into two sets: (i) a large number of small textual files and (ii) a

small number of large textual files. The articles were kept as is for data set (i), whereas articles

were concatenated into bigger files for data set (ii).

Our goal is to extract n-gram from all articles and from each article separately. So the

full n-gram model was considered to be all extracted n-grams, where n∈ 1; k½ � and k are the

length of longest sentence in the dataset. Further the method that is described by Google in

their paper [36] was used and improvements suggested by work [37] were considered. Both

algorithms are based on MapReduce paradigm. Method proposed by [37] optimized mem-

ory consumption overall performance, but at the same time rejecting not frequent n-grams.

The reason of using Google’s proposed algorithm is because our goal is to obtain full n-gram

model.
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As a result the algorithm for our goal of n-gram extraction was adopted from the individual

articles. Our method operates with sentences, text of the articles is represented as set of sentences

S, where S ¼ S1; S2;…; Snð Þ and each sentence Sn is a list of words Sn ¼ W1;W2;…;Wmð Þ,

whereWm is a single word.

The functions sliding(),map(), and reduce() were implemented. Functionmap() takes list of sentences

S and for each Si executes sliding() function with the parameter n ¼ 0; 1; 2;…;mð Þ, where n is size

of slides (n-grams) that function will produce and m is number of words W in sentence Si.

Function reduce() takes output of map() function, which is the list of n-grams (list of list of words)

and count similar ones. As a results it returns list of objects (n-gram; v), that is usually called Map,

where v is the frequency of particular n-gram in the text. This approach provide ability to execute

independent map() and avoid communication between nodes until reduce() stage.

For our experiments the cluster of 16 nodes was used, each node has the same characteristics.

More details about cluster and frameworks could be found in [38] work. Figure 8 shows

results of the conducted experiments. It is clear that parallelization reveal good efficiency and

speedup on all three HPC platforms. During our experiments, Apache Hadoop shows low

speed and efficiency for a large number of small files. Researches [39] show that Apache

Hadoop works faster if input data is represented as a few big files instead of many small files.

This is because of HDFS design, which was developed for processing big data streams.

Readings of many small files leads to many communications between nodes, many disk head

movements and as a consequence leads to extremely inefficient work of HDFS. Details of the

comparison could be found in the work [38].

3.2. Parallel text document clustering based on genetic algorithm

This section describes parallel implementation of the text document clustering algorithm. The

algorithm is based on evaluation of the similarity between objects in a competitive situation,

which leads to the notion of the function of rival similarity. While attributes of bibliographic

description of scientific articles were chosen as the scales for determining similarity measure. A

genetic algorithm is developed to find the weighting coefficients which are used in the formula

of similarity measure. To speed up the performance of the algorithm, parallel computing

technologies are used. Parallelization is executed in two stages: in the stage of the genetic

algorithm, as well as directly in clustering. The parallel genetic algorithm is implemented with

the help of MPJ Express library and the parallel clustering algorithm using the Java 8 Streams

library. The results of computational experiments showing benefits of the parallel implemen-

tation of the algorithm are presented.

3.2.1. Clustering using the function of rival similarity

FRiS-Tax algorithm described in [40] is chosen as a clustering algorithm. The measure of rival

similarity is introduced as follows. In the case of the given absolute value of similarity m(x, y)

between two objects, the rival similarity of object a with object b on competition with c is

calculated by the following formula:
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Fb=c að Þ ¼
m a; bð Þ �m a; cð Þ

m a; bð Þ þm a; cð Þ
(13)

where F is called a function of rival similarity or FRiS-function. To measure similarity, the attri-

butes of the bibliographic descriptions of scientific articles were proposed to be taken as scales.

The year of issue; code UDC; key words; authors; series; annotation; title were chosen as

attributes of division of articles from bibliographic databases into clusters. A genetic algorithm

was developed to choose weighting coefficients which are used in the formula of similarity

measure (Eq. (13)). The use of genetic algorithm allows automating the search for the most

acceptable weighting coefficients in the formula of similarity measure.

3.2.2. Genetic algorithm for adjustment of coefficients in the formula of similarity measure

To create the initial population of genetic algorithm and its further evolution, it is necessary to

have an ordered chain of genes or a genotype. For this task, a chain of genes has a fixed length

Figure 8. Speedup and efficiency of each platform.
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equal to 13 and presents a set of parameters made up on the basis of attributes of bibliographic

description of documents.

In genetic algorithms, the individuals entering the population are presented by ordered subse-

quent genes or chromosomes with coded in them sets of the problem parameters.

At the stage of selection, the parents of the future individual are determined with the help of

methods Roulette Selection, Tournament Selection, and Elitism Selection. The survived indi-

viduals take part in reproduction. For crossover operator, the following methods are used: One

point crossover, Two point crossover, Uniform crossover, and Variable to Variable crossover.

The stage of mutation is necessary not to let the solution of the problem get into a local

extremum. It is supposed that, after the crossover is completed, part of the new individuals

undergo mutations. In our case, 25% of all individuals are selected which are subjected to

mutation. In this work, the quality of the obtained clusters is evaluated using the Purity and

Root mean square deviation measures of estimation.

3.2.3. Development of the parallel clustering algorithm

Parallelization is carried out in two stages of the algorithm of clustering. The first stage is

occurred during the selection of individuals in the genetic algorithm when clustering is

performed with different sets of weighting coefficients. The program is written in Java, and

this stage of the parallel algorithm is performed using MPJ Express. Secondly, it is directly in

the course of performing the clustering algorithm.

The load test revealed the two slowest stages in the clustering algorithm. They are the methods

of finding the first centroid called pillar and finding the next pillar, which are doing N*(N-1)

and N*(N-1)*M operations, where N is the number of articles and M is the number of already

found pillars. To accelerate these methods, the technology Java 8 Streams was used. Since

repeated (N-1) and (N-1)*M times operations in methods finding first and finding next pillar,

respectively, are simple and their result need to be summarized at the end, it is reasonable to

implement here parallel() method of Java 8 (Figure 9).

For clustering and performance analysis, the journal “Bulletin of KazNU” of 2008–2015 was

used as initial data. Sampling includes 95 pdf documents. The total number of articles is 2837.

The choice of the initial data is conditioned by the fact that all documents were divided into

series (mathematics, biology, philosophy, etc.) and further divisions do not cause difficulties,

when using measures of similarity based on only bibliographic descriptions or titles of the

articles. In order to evaluate the quality of division of sampling, this body was divided into

clusters with the help of an expert into the problem domain.

The time of execution was determined as follows. The measurements of the time of clustering

processes were made for the clusters being formed on one computer node and several com-

puter nodes for parallel realization. Figures 10 and 11 present acceleration and efficiency of

parallel realization. As it is seen in the constructed diagrams, with the increase in the number

of processes, acceleration increases to a certain value which is related to the expenditure of

communication. The most optimum number of processes proved to be eight at which the

maximum value of acceleration was observed but the highest value of efficiency was achieved

with 4 processes.
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It can be concluded that the use of the genetic algorithm allowed to determine the values of

attributes at which clustering of documents gives the best results [41].

Figure 9. Stream parallelization on 4-core processor, find first pillar.

Figure 10. Speedup of parallel clustering algorithm.
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3.3. PGAS approach to implement MapReduce framework based on UPC language

In Section 3.1, the important role of the MapReduce paradigm and distributed file systems in

large data processing tasks was emphasized. The weak side of distributed file systems is the

considerable time spent on performing read and write operations. In this chapter, an approach

to implement MapReduce functionality was described using partitioned global address space

model (PGAS). PGAS is a parallel programming model in which memory is divided among

threads with certain affinity rules. The affinity is a property that tells how memory is distrib-

uted among threads. In some sense, PGAS is considered to be a model that shares the proper-

ties of both shared and distributed memory models. The memory is divided in such a way that

each thread controls some portion of shared memory region and a private memory which is

used to store local to that thread variables. The obvious benefits of using such a model are:

• Transparent view of shared memory by each thread;

• No need to use low-level message passing techniques to exchange data between threads.

The implementation of MapReduce using PGAS approach is based on using hashmap data

structure. Hashmap data structure is used to store key/value pairs generated during

MapReduce execution. The main idea is that array containing hashmap entries is created in

a global shared memory space. Array is distributed in such a way that each array entry

correspond to exactly one thread. Since, hashmap is located in a global shared memory

region each thread can view and modify/read the hashmap entries of the other threads. This

way data exchange for the MapReduce (see Figure 12) can easily be implemented by just

exchanging and distributing corresponding key/value pairs among different threads. For

each thread to decide set of keys to be processed in reduce stage the problem of key

distribution was formulated.

The problem of key distribution among threads after map stage has been stated in the following

way:

Figure 11. Efficiency of parallel clustering algorithm.
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min
X

threads�1

i¼0

X

keys

j¼1

xij � costij (14)

xij ∈ 0; 1f g (15)

min max
i, j¼0::threads�1

loadi � loadj
�

�

�

�

	 


(16)

loadi ¼
X

threads�1

t¼0

X

keys

j¼1

xij � sizetj (17)

Finding the cost of assigning key j to thread i is done by building the cost matrix. The quantity

costij represents the cost of moving key j to thread i. This value is defined to be a number of

elements with certain key to be moved from other threads to the thread with an index of i.

Keys need to be distributed in such a way that Eqs. (14) and (16) are satisfied. Eq. (15) specifies

the domain of xij. The value of xij is equal to zero when thread i is not assigned to process key j

and xij ¼ 1 otherwise. Load balancing function is defined in Eq. (16) and can be computed as a

minimum of maximal difference of loads assigned to any pair of threads. Load for each thread

i is defined in Eq. (17) [42].

Since the described problem of key distribution is proven to be NP-hard, finding the optimal

distribution even for a small set of keys is a computationally very expensive task. Therefore, a

heuristic genetic algorithmwas used that tries to find a close approximation to the optimal result.

The MapReduce framework has been tested on WordCount application (see Figure 13).

WordCount application is used to compute number of occurrences of each word in a collection

Figure 12. Data exchange mechanism for MapReduce using PGAS approach.
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of documents. This is a standard benchmark application to test performance of different

parallel tools in Big Data domain. In Figure 14 the results of Apache Hadoop versus

MapReduce on UPC for WordCount application is presented.

The presented MapReduce framework was developed using UPC parallel programming

language which belongs to a family of PGAS languages. The overall obtained performance

Figure 13. Implementation of map and reduce functions for WordCount application.

Figure 14. Apache Hadoop versus MapReduce on UPC.

void * map (string filename)

{

char * file_data;

file_data = read_file_contents (filename);

Vector tokens;

vector_init(&tokens);

Tokenize (file_data,&tokens);

for (int i = 0;i < tokens.size;i++)

{collect (vector_get (&tokens,i),1);}

free(file_data);}

void reduce (string key,shared [] vector_sh *values)

{

int i;

int cnt = 0;

for (i = 0;i < values- > size;i++)

{int v = vector_get_shared_copy (values,i);

cnt + =v;}

reduce_collect (key,cnt);}
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and programmability benefits allow efficiently using this system for MapReduce based data

processing tasks.

4. Conclusion

This chapter discusses high-performance computational and information technologies for

numerical models and data processing. As a numerical model the oil recovery problem was

considered. New fragmented algorithm was proposed, the algorithm for high-performance

visualization and the algorithm on mobile platforms to solve this problem. Study of efficiency

of applied algorithm implementations show that LuNA system appears to be less efficient than

manual MPI implementation which justifies further development of LuNA functionality con-

sidering simplicity of software development with given system.

The described system contains the specialized visualization module implemented using

Vulkan API. Given technology provides high-performance capabilities which were demon-

strated using common desktop PC on a generated dataset.

The textual data processing problems as n-gram extraction and data clustering were also

studied. In order to deal with computational complexity we had to adopt and implement

parallelization patterns. Additionally, a new implementation of MapReduce framework was

presented based on UPC language which provides functionality of combined MapReduce and

partitioned global address space parallel programming models in a single execution environ-

ment which can be conveniently used in many complex workflows of data processing.
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