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Abstract

Today exists a spread spectrum of tools to be used in pathogen identification. Traditional
staining and microscopic methods as well as modern molecular methods are presented in
this chapter. Pathogen identification is only the beginning to obtain information related to
pathogenicity of the microorganism in the near future. Once the pathogen is identified,
genome-sequencing methods will provide a significant amount of information that can be
elucidated only through bioinformatics methods. In this point, pathogenomics is a pow-
erful tool to identify potential virulence factors, pathogenicity islands, and many other
genes that could be used as therapeutic targets or in vaccine development. In this chapter,
we present an update of the molecular advances used to identify pathogens and to obtain
information of their diversity. We also review the most recent studies on pathogenomics
with a special attention on pathogens of veterinary importance.

Keywords: pathogenomics, pathogen identification, phylogeny, genome sequencing,
infectious diseases

1. Introduction

Infectious diseases not only represent one of the biggest threats to public health but also to

animal health and welfare. A significant number of pathogenic microorganisms can be trans-

mitted by vectors; among these, vector-borne pathogens are considered important since they

can spread easily pathogens to previously pathogen-free livestock areas [1].

Nowadays, we can identify cultured or non-cultured organisms with molecular techniques and

even reconstruct a phylogeny to propose a new species or reclassify reported microorganisms.

© 2018 The Author(s). Licensee InTech. Distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/), which permits use, distribution
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Molecular identification methods offer some advantages as being more sensitive and quicker

than traditional culture methods at relatively low cost. Many microorganisms are difficult to

culture or noncultured which difficult their study in vitro, this is overcome by using genome

sequencing as an alternative [2].

Currently, the high-throughput next generation sequencing (HT-NGS) technologies have pro-

vided a huge amount of information in genomics researches [3]. Genome sequencing and new

omics studies, such as pathogenomics, reveal a new landscape of study of microorganisms and

reveal unexpected aspects of pathogen biology. These studies have brought a re-evaluation of

definitions of pathogens and virulence factors [4].

In order to understand the complex interaction established between host-pathogen, sev-

eral genomes of farm animals are sequenced (http://www.ensembl.org/info/about/species.

html): cat (Felis catus), chicken (Gallus gallus), cow (Bos taurus), dog (Canis lupus familiaris),

horse (Equus caballus), pig (Sus scrofa), sheep (Ovis aries), turkey (Meleagris gallopavo), and

duck (Anas platyrhynchos).

However, a scarce number of reports are focused on studying pathogenomics of microorganisms

affecting farm animals, a field with a high potential to provide new insights to understand

pathogen-host interaction from an omic point of view. The new omics techniques applied in

veterinary studies provide a new landscape for research in order to elucidate the mechanisms

that pathogens employ to develop infection, and then try to develop newmechanisms of control

and treatment.

2. Pathogenomics

Molecular identification methods afford for culturable and non-culturable pathogens’ identifi-

cation; however, the entire genome information remains unknown. High-throughput sequenc-

ing technologies have opened the possibility to get access to valuable information contained in

the genome [5].

Pathogenomics is a discipline that seeks to mark out virulence factors and their contributions

to overall pathogenesis by comparing gene repertoires of pathogenic and non-pathogenic

strains/species [4].

Today, sequencing and comparing genomes of several strains of a single pathogen is a relatively

short time process [6]. One of the crucial genomic analyses is driven to understand microorgan-

isms’ pathogenicity and virulence through intensive and refined bioinformatics tools.

Over the years, the genomics information has changed the concept of a static microbial

genome and has demonstrated that bacterial genomes are in a dynamic process. The bacterial

genome dynamics is driven basically by three forces: gene gain, gene loss, and gene change,

and these three forces comprise of several factors affecting bacterial genome dynamics, such as

gene duplication, single-nucleotide polymorphism (SNPs), horizontal gene transfer (HGT),

recombination and rearrangements, among others (Figure 1) [4, 6].

Farm Animals Diseases, Recent Omic Trends and New Strategies of Treatment2



The smallest variation in bacterial genomes is the SNPs, which have been detected more

recently by whole-genome sequencing. Sondgeroth et al. [7] used SNPs of five genes to

monitor potential changes in the B. bovis population composition before and after passage

through the tick vector. A substantial polymorphism among F. hepatica isolates was observed

by Cwiklinski et al. [8], and they found that 48% of genes exhibited at least one non-synony-

mous SNP, and these genes were associated with biological processes as axonogenesis and

chemotaxis.

2.1. Pathogenomics studies

In order to address what makes bacteria pathogenic is important to know the functional

differences between pathogenic and non-pathogenic strains or species. Nowadays, the number

of sequenced genomes increases constantly and this has made feasible comparative analyses

between pathogenic and non-pathogenic bacterial genomes.

A significant variation in size and content of genomes between different genera and species,

and even in strains of the same species has been reported [6].

Pathogenicity is an ability of an organism to cause disease and microorganisms possess several

factors that enable them to increase their virulence or degree of pathogenicity.

Toxicity and invasiveness are the two properties of pathogens to cause disease; the first one

refers to degree to which a substance causes harm and the latter is the ability to penetrate into

the host and then spread [9]. Host and pathogens have co-evolved over millions of years and in

this relationship, pathogens have modified their virulence to adapt to the host immune system.

Due to gain or loss of genes pathogens adapting to the changing environments, in this sense,

genomic studies are indispensable to identify differences between genomes to provide invalu-

able insights into virulence and pathogenesis [10].

Figure 1. Gene gain, gene loss, gene change, and the environment are the main factors influencing on bacterial genome

dynamics.
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2.1.1. Mobile genetic elements (MGE)

The term MGE encompasses specialized genetic elements that play a role in genomic insta-

bility including plasmids, bacteriophages, transposons, genomic islands (GI), inteins, int-

rons, retroelements and integrons, and many other specialized genetic elements such as

insertion sequence elements (IS), miniature inverted-repeat transposable elements [MITEs],

repetitive extragenic palindromic [REP] sequences, and bacterial interspread mosaic element

[BIMEs] [11]. Among bacterial strains exist a particular interest due to the presence of

virulence factors that may be introduced to a new host genome. As MGE are involved in

genomic rearrangements and virulence acquisition they are considered important elements

in bacterial genome evolution [12].

MGE encode proteins that are involved in cell surface structures (capsular polysaccharides, O-

antigen, S-layer, flagella, pilli, and porins) and toxins [10]. Type II and type III toxin-antitoxin

systems (TASs) belong to the class of bacterial MGEs that are spread by horizontal gene

transfer and they appear to behave like selfish elements contributing to the stable maintenance

and dissemination of plasmids and genomic islands in bacterial populations [13]. Here, we will

focus on explaining some of the features of IS, GIs, and PAIs.

2.1.1.1. Insertion sequences (IS)

IS elements represents an important component of most bacterial genomes; they usually have

a size of ranging from 0.7 to 3.5 kB, including a transposase gene encoding the enzyme that

catalyzes IS movement. ISs are the smallest and simplest autonomous mobile genetic elements

that contribute massively to HGT and have an important role in genome organization and

evolution. Many ISs are delimited by short terminal inverted repeat (IR) and are flanked by

direct repeat (DR). More than 3500 ISs from bacteria and archaea have been described. These

DNA segments are capable of transposing within and between prokaryotic genomes causing

insertional mutations and chromosomal rearrangements.

They cause gene inactivation and have strong polar effects or activation or alteration of the

expression of adjacent genes [14–17].

Although IS elements are genomics parasites that harm their host by increasing the rate of

deleterious mutations, they generate beneficial mutations trough their transposition and

recombination. Indeed, IS elements are considered important elements for the adaptive evolu-

tion of their host [15, 18].

2.1.1.2. Genomic islands (GEIs)

There exists several ways how bacterial genomes can evolve, including mutations, rearrange-

ments or HGT, contributing to diversification, and adaptation of microorganisms to environ-

mental niches. GEIs are large DNA sequences specifically present in the genomes of certain

bacteria strains but not in the genomes of closely related variants. These are non-self-mobilizing

integrative and excisive elements that encode diverse functional characteristics; usually, they are

integrated in bacterial chromosome but also can be found in plasmids or phages [11]. Recent

information on GEIs suggests that these elements have become strongly selective for adaptive

Farm Animals Diseases, Recent Omic Trends and New Strategies of Treatment4



and auxiliary functions (pathogenicity, symbiosis, aromatic compound metabolism, mercury

resistance, and siderophore synthesis) [19–21].

2.1.1.3. Pathogenicity islands (PAIs)

PAIs are a group of GEIs that carry one or more virulence-associated genes and mobility genes

and occupy chromosome regions as large as 10 kb to more than 100 kb; “pathogenicity islets”

are smaller fragments of DNA ranging from 1 to 10 kb. PAIs are part of a flexible gene pool

that contain mobility genes so that they can be integrated into the host genome including genes

encoding to integrases, transposases, phage genes, and origins of replication [22]. Table 1

shows the main features of PAIs.

Virulence factors (VFs) are encoded by genes found in pathogenic microorganisms. Pathogenic

bacteria possess various VFs that allow them colonize a variety of niches, cause infection,

and survive in the hosts [23]. In order to combat infectious diseases, it is absolutely necessary to

discover virulence factors of pathogenic microbes to identify targets for novel drugs and design

of new vaccines [24].

A special interest has emerged on VFs study, mainly due to the constant and persistent

antimicrobial resistance observed in pathogenic microorganisms, because they have modified

Table 1. Characteristics of genomic and pathogenicity islands.
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their virulence mechanisms to adapt to host defense system [9]. Today, complete genome

sequences of different microbial species either pathogenic or non-pathogenic enable compara-

tive studies to identify specific VFs in species through bioinformatics analyses.

As in other bacteria of clinical importance, some MGE have been identified in farm animals’

pathogens. The intraerythrocytic parasite of cattle B. bovis has mechanisms to protect their

cytoadhesion from the host adaptive immune response, and this function is mainly accom-

plished through antigenic variation of a virulence factor called VESA1 protein (Variant Eryth-

rocyte Surface Antigen-1) [25]. VESA1 is a size-polymorphic, heterodimeric protein that

comprises of two subunits of 105–115 and 120–135 kDa in mass approximately, depending on

the isolate and clonal line [26]. Genomic and transcriptomic analyses reveal that sMORF could

have a significant role for a rapid antigenic variation. However, experimental evidence is

necessary [27].

In F. hepatica, some proteins are virulence-associated factors. These proteins are cathepsin L

cysteine peptidase (FhCL) and have functions in parasite virulence including tissue invasion

and suppression of host immune responses. Among the functions are degradation of red blood

cells, a vital process when the parasite is located in the bile duct and needs to digest a large

quantity of host cells to support the enormous production of progeny (30–50,000 eggs/day/

worm) [28]. Through phylogenetic analyses, Robinson et al. [28] classified cathepsin L gene

family into three clades (Clades 1, 2, and 5) expressed by tissue-migrating adult worms and

two clades (Clades 3 and 4) expressed by early infective juvenile stage. Each of these cathepsins

is expressed in different larvae stages. Collagenolytic activities have been reported in FhCL2

and FhCl3, suggesting that this activity is essential to the parasite in order to degrade the

connective tissue matrix of the organs that break through during migration [29].

In Gram-negative pathogens, type IV Secretion System (T4SS) has a conserved structured and

function that is crucial for virulence and intracellular survival. The importance of this system

in Anaplasmataceae is its possibility as functional virulence factors due to its retention and

protein conservation among rickettsial species [30]. Recently, the high complexity of the Rick-

ettsia T4SS was revealed. Gillespie et al. [31] focus on the components of the Rickettsiales vir

homolog (rvh), a collection of VirB and VirD protein-encoding genes. They found that these

genes are comprised of unprecedented gene family expansion. Three families of gene duplica-

tion are contained in rvh genes: rvhb9, rvhB8, and rvhB4, and some genes are equivalent in

other T4SS. This study shows the need to characterize Rickettsia rvh components.

Some molecules have been investigated because of their physiological importance in microor-

ganisms. Aminopeptidases have been used as therapeutic and prophylactic targets in many

parasitic infections and other diseases [32]. In B. bovis, a member of the methionine aminopep-

tidase (MAP) family was characterized and expressed in E. coli. The results showed that the

construction aminopeptidase (MAP)-glutatione-S-tranferase (GST) was antigenic by inducing

high levels of cytokines and immunoglobulin IgG titers in the host, and importantly, inhibitors

of MAP inhibit the growth of Babesia parasites both in vitro and in vivo [32]. Methionine

aminopeptidases have an important role in N-terminal methionine excision from the polypep-

tide in ribosome during protein synthesis; their physiological importance relies on the lethality

of its absence in bacteria and yeast [33, 34]. MAPs in malaria play an important role in parasite

biology due to their role in parasite hemoglobin during peptide catabolism [35].

Farm Animals Diseases, Recent Omic Trends and New Strategies of Treatment6



Table 2. Selection of online resources for analysis and search of virulence factors, toxins, GEIs, and PAIs in microorganisms

[39–47].

Pathogenomics and Molecular Advances in Pathogen Identification
http://dx.doi.org/10.5772/intechopen.73695

7



2.2. Bioinformatics tools in pathogenomics

As mentioned before, despite the recent advances of modern medicine based on genomic data,

still infectious diseases are considered as one of the biggest threats to public and animal health

[36]. Comparative genomic analysis of pathogenic and non-pathogenic bacteria can reveal

horizontally transferred genes between bacteria, thus conferring new properties. PAIs have

some detectable properties, like genomic signatures and mobility genes helping in integration

into the host genome, as genomic signatures helps to identify pathogens, functional signatures

provide information about what a pathogen is capable of [5, 37].

Recently, an updated database has been reported, the Virulence Factor Database or VFDB

(http://www.mgc.ac.cn/VFs/) that provide the latest information about virulence factors of

various bacterial pathogens, especially those obtained by next generation sequencing technol-

ogies (NGS) [36]. The Pathogenicity Islands Database, PAIDB (http://www.paidb.re.kr), is a

database that contains comprehensive information on all reported PAIs and candidate PAIs in

prokaryotic genomes; additionally, information of Resistance Islands (REIs) is considered.

The importance of PAIs, a subset of GIs, is that genomes of pathogenic bacteria mediate the

horizontal transfer of genes encoding a significant number of virulence factors [38].

PAIDB also contains information of antimicrobial resistance islands, REIs. This, another, class

of GIs is linked to pathogenesis by conferring resistance to multiple antibiotics and thus

facilitating the emergence of multidrug–resistance pathogens. PAIDB contain 223 types of

PAIs and 1331 GenBank accessions of complete or partial PAI and 88 types of REIs from 108

accessions [38]. Several database and software are available for in silico analysis of PAIs, VFs,

and IS (Table 2).

3. Methods used to identify pathogens

3.1. Staining and microscopic methods

Many methods are available to identify bacteria, and microscopy has an important role in

microorganism identification. Especially, when an urgent diagnosis is required, fast micro-

scopic methods are the first option. Many bacterial pathogens are identified by staining

methods, and among these, differential stains are common in microbiology and provide some

information about the species and many times can be compared to automated species differ-

entiation methods [48].

Gram-stain is an old differential technique, but very popular to distinguish between Gram-

positive and Gram-negative bacteria. This method is based on the different cell wall structures

and components of both bacteria types. The bacterial cell wall of Gram-positives is stained

by crystal violet and iodine, which form an insoluble blue dye complex while Gram-negatives

are counterstained by fuchsin or safranin. This staining is also applied to some fungi, such as

Candida spp., Nocardia spp., or Actinomyces spp. When cells walls are damaged or even cells are

dead, false Gram-negatives may result [48, 49].

Farm Animals Diseases, Recent Omic Trends and New Strategies of Treatment8



Another common technique is Giemsa staining, which was primarily developed for the visu-

alization and histopathological diagnosis of Plasmodium spp. at the end of nineteenth century.

Now, this staining method is used to identify many other parasites including Babesia bovis, B.

bigemina; Leishmania spp., Trypanosoma spp.; Toxoplasma gondii, and others, and bacteria as

Anaplasma marginale, A. phagocytophilum, and fungi (Figure 2).

The Giemsa’s solution is a composition of methylene blue and oxidation products of methy-

lene blue (Azure A and B) that stain primary proteins and nucleic acids [48].

Even natural herbal dyes as curcuma, alizarin, and henna have been used to stain Fasciola

hepatica without the carcinogenic effect of traditional synthetic dyes [50, 51]. Fluorescent dyes

such SYBR Green 1, YOYO-1, and ethidium homodimer-2 could be detected using fluorescent

microscopy in combination with Giemsa staining, this method has been proposed to improve

microscopic diagnosis of Plasmodium falciparum [52]. According to these results, the combina-

tions of fluorescent and non-fluorescent dyes could be applied to enhance other microorgan-

isms’ identification.

Oocysts parasites identification is an issue that has been resolved through microscopic observa-

tion. In avian coccidiosis, most of the oocysts have a very similar morphological appearance with

size differences that allow distinguish them. Castañón et al. [53] reported an approach based on

image recognition by algorithms to identify Eimeria spp. oocysts; the authors extracted morpho-

logical information by using computer vision techniques in order to perform an automatic

species differentiation of oocysts. The parameters considered in the identification process were:

(1) multiscale curvature, (2) geometry, and, (3) texture to construct a 13-dimensional future vector

for each oocyst image. With this powerful tool, molecular diagnosis based on PCR using the

ribosomal ITS1 or multiplex PCR can be complemented with the use of the Eimeria Image

Database [53].

With the recent development of fluorescent techniques and imaging tools, farm animals’

pathogen identification has become a more efficient and reliable process.

Figure 2. Visualization of (A) Giemsa staining of A. marginale (Am) inside bovine red blood cells (RBC), (B) Giemsa

staining of A. phagocytophylum (Ap) inside a human neutrophil (N). (Anaplasmosis Unit, CENID-PAVET, INIFAP, Human

blood was obtained with patient’s consent).
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3.2. Genotypic methods

Conventionally, cultural and biochemical techniques are the primary methodology for identify-

ing most pathogens; however, Koch’s postulates are critical for fulfilling most of the times [2, 54].

The culture-based testing usually yield results in several days or even up to weeks after sampling

without success guaranteed, because of the unsuitable culturing conditions and the special

requirements for the bacterial species [55].

Besides, pathogen identification can be a hard task when these cannot be cultured. With the

development of molecular techniques and sequencing technologies, many non-cultured micro-

organisms, as Mycoplasma haemobos and M. wenyonii have been identified and many microor-

ganisms already known have been reorganized phylogenetically [56].

3.2.1. Polymerase chain reaction (PCR)

Molecular methods based on nucleic acid amplification have circumvented the culturing

problem with some benefits. In the molecular detection by PCR, the pathogen is first detected

by PCR product amplification and then identified by sequencing, resulting in more rapid

diagnoses [55]. Several pathogens of veterinary importance have been detected successfully

by PCR, including A. marginale, B. bovis, Mycobacteria spp., F. hepatica, and F. gigantica, Theileria

spp., among others [57–61]. Ribosomal RNA (rRNA) genes have emerged as the most promi-

nent target in microbial detection mainly due to fact that the region represents a versatile mix

of highly conserved and moderately to highly variable segments [62]. In bacteria, the rRNA

genes are firstly transcribed from the ribosomal operon as 30S rRNA and then cleaved into 16S,

23S, and 5S rRNA by RNase III. The ribosomal operon size, nucleotide sequences, and second-

ary structures of 16S, 23S, and 5D rRNA are well conserved within bacterial species [63]. Since

rRNA genes are evolving more slowly than protein encoding genes they have a particular

importance for identification and phylogenetic analysis of distant related species [64].

3.2.1.1. Molecular markers

During the last two decades, the 16S rRNA sequences have been widely used for the identifi-

cation and classification of bacteria, the main uses of 16S sequences are: identification and

classification of isolated pure cultures and estimation of bacterial diversity in environmental

samples without culturing through metagenomic approaches [65].

The rRNA operon in bacteria comprises 16S, 23S, and 5S, spaced by intergenic spacer regions

(ITS, also called internal transcribed spacer) which have been used also to detect and differen-

tiate pathogens [62]. Amplified PCRs products based on ITS sequences have distinguished 55

bacterial species, including 18 Clostridium and 15 Mycoplasma [66]. More recently, rRNA ITS,

specifically 16S–23S, has been used in Vibrio identification [67], Mycoplasma from cattle [68],

Brucella [69, 70], and Mycobacteria [71, 72].

Similarly to 16S rRNA, 18 s rRNA is a sequence commonly used for eukaryotic identification,

such as parasites. Actually, there exists several molecular markers used to identify B. bovis and

B. bigemina using 18S rRNA, cytochrome b gene, antigenic protein encoding genes msa-1 and

msa-2, EF-1a, beta-tubulin, among others [73].

Farm Animals Diseases, Recent Omic Trends and New Strategies of Treatment10



Alternatively, other genes less commonly used that can help in bacterial identification are

chaperonin-60 (cpn60) [74], chaperonine GroEl [75], recombination and repair protein

(recN), and DNA polymerase III subunits γ, τ (dnaX) [76], the β-subunit of RNA polymerase

(rpoB) [76], and esterase (est) [77]. Among all genes used to identify bacteria, still 16S rRNA

is the most used when the bacterial pathogen is non culturable, this is mostly because there

exists a significant number of 16S rRNA sequences available in databases that can be used

to compare and then identify [Ribosomal Database Project (http://rdp.cme.msu.edu) and

Greengenes (http://greengenes.lbl.gov)]. These databases are not always complete because

16S rRNA sequences are constantly reported and many are still missing, besides, many

times the species can only be identified at genus level and analyses with other genes are

necessary [78].

Amplification of 16S sequence have allowed identification and phylogenetic reconstruction of

several Anaplasma species in China, including A. marginale y A. ovis [79]; a comparison between

A. marginale and A. centrale 16S rRNA revealed that both sequences have 98.08% identity, even

with this level of identity A. centrale was identified by PCR primers based on 16S rRNA [80].

Bovine hemoplasmas “Candidatus Mycoplasma haemobos” and Mycoplasma wenyonii has also

been detected by 16S rRNA PCR and RT-PCR in Brazil and Switzerland [81–83]. Detection of

rickettsia A. marginale, causal agent of bovine anaplasmosis, using genomic DNA as template

for PCR is an alternative diagnostic tool. Singh et al. [84] used a semi-nested PCR assay for the

detection of A. marginale in carrier cattle in India. The PCR was optimized to identify the major

surface protein 5 (Msp5) based on primers previously reported [85]. The nested PCR (nPCR)

employing msp5 primer sequences were able to detect as few as 30 infected erythrocytes per ml

of the blood and then detect low levels of rickettsiaemia in cattle [85].

Noaman and Shayan [86] employed 16S ribosomal RNA (rRNA, GenBank M60313) gene of

A. marginale on DNA isolated from blood samples of cattle. The nucleotide sequence of 16S

rRNA is highly conserved in Anaplasma spp., and is use to amplify fragments of the gene in

all known Anaplasma species.

B. bigemina, one of the several Babesia species known to cause bovine babesiosis has also been

detected by PCR, besides, the amplified product is parasite and species specific [87]. From

sensitivity studies, the authors showed that the 278-bp fragment amplified by PCR and visu-

alized in reactions could contain as little as 10 pg. of parasite template DNA.

3.3. Multiplex PCR

A variant of the PCR is the multiplex PCR (mPCR) that detects more than one species at a time

in a very effective way using a mixture of locus-specific primers in a single reaction [88].

mPCR offers an important advantage over single-species PCR because co-infections can be

detected, for instance, detection of swine, avian and equine viruses [89–91], bacteria in fish

[92], cattle bacteria and parasites, including Mycobacterium bovis, T. annulata, F. hepatica, and B.

bovis [93–97], and nematodes [98] have been reported.

Multiplex PCR for detecting multiple pathogens has not been widely used in animal health

diagnostic laboratories because this assay is difficult to optimize and validate [2].
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3.4. PCR-restriction fragment length polymorphism (PCR-RFLP)

PCR-RFLP is an approach based on the fact that the genomes of closely related pathogen have

variations in sequence, thus, a different length can be obtained from enzymatic digestion of a PCR

fragment [99]. Due to that digested DNA represents a unique pattern, and this method offers a

much greater sensitivity for the identification of pathogens, especially when culture is difficult.

Using PCR-RFLP, Theileria annulatawas identified in ticks (Ixodidae), showing that parasite has a

preference forHyalomma anatolicum anatolicumwhich suggest that its major role in transmission of

parasite [100]. Identification of parasites as Fasciola species also employs PCR-RFLP analysis. The

region between 18S and 28S (which includes ITS1, 5.8S, ITS2) of ribosomal RNAwas amplified by

PCR and then digested with restriction endonucleases, in this analysis, 90 Fasciola samples from

different geographical regions were identified as F. hepatica or F. gigantica [58].

3.5. DNA microarrays

DNA microarrays are a viable platform for detection of pathogenic organisms. This detection

has a cost lower than multiplex PCR and technologies like high-throughput sequencing [101].

A microarray is a miniaturized device that contains short single-stranded DNA oligonucleo-

tides (25- to 70-mers) probes attached to a solid substrate. These probes would be complemen-

tary to segments of one or more target organism genome. El-Ashker et al. [59] identified

Babesia, Theileria, and Anaplasma species in cattle using DNA microarray. This novel DNA

microarray system was compared with microscopy and PCR assay for the diagnosis of bovine

piroplasmosis and anaplasmosis. All samples positive by PCR for Babesia/Theileria spp. also

were positive in the microarray analysis, which supports this technique as a valuable improve-

ment in veterinary diagnoses. Another microarray developed for Mycoplasma spp. consist of

probes for 55 different cattle pathogenic bacteria includingM. mycoides subs.Mycoides [102]. To

date, no microarray has been developed for diagnosis of bovine tick-borne diseases.
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