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Abstract

The energy levels of bound states of an electron in a quantum well with BenDaniel-Duke
boundary condition are studied. Analytic, explicit, simple, and accurate formulae have
been obtained for the ground state and the first excited state. In our approach, the exact,
transcendental eigenvalues equations were replaced with approximate, tractable, alge-
braic equations, using algebraic approximations for some trigonometric functions. Our
method can be applied to both type I and type II semiconductors and easily extended to
quantum dots. The same approach was used for the semi-quantitative analyze of two toy
models of Janus nanorods.

Keywords: type I and type II semiconductors, BenDaniel-Duke boundary conditions,
Janus nanorods, toy models

1. Introduction

In the last three decades, nanophysics became a domain of increasing interest and intense

research, due to the huge number of new effects produced at nanoscale level, in quantum

wells (QWs), quantum dots (QDs), Janus nanoparticles, etc. These new effects are fasci-

nating from the perspective of both applied and theoretical physics. The semiconductors

provide the largest area of challenging subjects, due to their applications in nanoelectronic

devices, multifunctional catalysis, (bio-)chemical sensors, data storage, solar energy con-

version, etc.

An attractive aspect of nanophysics is the fact that a quite large number of interesting prob-

lems can be approached using quite simple theoretical tools, sometimes at the level of one-

particle quantum mechanics. In some cases, the properties of nanostructures like quantum
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wells, quantum dots, or quantum rods can be explained by just solving the Schrodinger

equation with simple potentials. For instance, the basic physical properties of a heterostructure

consisting of a thin layer of a semiconductor A sandwiched between two somewhat larger

semiconductors of identical composition, B can be obtained from the study of the movement of

a particle with position-dependent mass (PDM) in a finite square well. This particle is, of

course, a charge carrier in the semiconductor, and—in our case—will be an electron. As the

effective mass of a charge carrier in a semiconductor depends on the charge carrier-lattice

interaction, it changes if the lattice composition or the symmetry changes. So, excepting the

case of a charge moving in a perfect crystal, the effective mass of an electron or hole is,

rigorously speaking, position dependent.

But, simple as the theoretical tools needed for its investigation are, this problem of quantum

mechanics involves two important issues: the position-dependent mass (PDM) quantum

physics and semiconductor heterostructures. Let us shortly comment on these points.

The roots of the position-dependent effective mass concept are to be found in the pioneering

works of Wannier (1937) and Slater (1949) (see Ref. 1 in [1]). Recent papers give explicit

methods to obtain explicit solutions of the Schrödinger equation with PDM, for various forms

of this dependence and for several classes of potentials [2–4].

However, in practical situations usually encountered in the physics of semiconductor junctions

of two materials, A and B, the simplest and more popular form of position dependence of the

effective mass is a step function: the effective mass has a constant value in the material A and

another, constant value, in the material B: In such a case, the most convenient approach for

obtaining the wave functions or the envelope functions in a heterostructure—for instance, a

quantum well (QW) or quantum dot (QD)—is to solve the Schrödinger equation with

BenDaniel-Duke boundary conditions for the wave function [5, 6].

The transition from the complex problem of a real semiconductor (for instance, Kane

theory) to the simple problem of a particle moving in a square well with BenDaniel-Duke

boundary conditions is indicated, for instance, in Chapter III of Bastard’s book [5]. This

simple problem provides, however, a realistic description of states near the high-symmetry

points in the Brillouin zone of a large class of semiconductors. “It [i.e., ‘the simple prob-

lem’] often leads to analytical results and leaves the user with the feeling that he can trace

back, in a relatively transparent way, the physical origin of the numerical results.” ([5],

p. 63).

The boundary conditions for the wave functions or envelope functions at interfaces generate

the eigenvalue equations for energy; of course, different boundary conditions generate differ-

ent eigenvalue equations. They are transcendental equations, involving algebraic, trigonomet-

ric, hyperbolic, or even more complicated functions. With few exceptions (for instance, the

Lambert equation [7]), their solutions, which cannot be expressed as a finite combinations of

elementary functions, are not systematically studied.

However, in some situations, quite accurate analytical approximate solutions can be obtained.

When a transcendental equation mixes algebraic and trigonometric functions, it might be
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possible to approximate the trigonometric functions with algebraic expression, and to trans-

form, in this way, the exact transcendental equation into an approximate algebraic one. In its

simplest form, for instance, in approximations like sin x≃ x, for x≪ 1, this “algebraization” is

largely used. But what is really interesting is to use algebraic approximations of the trigono-

metric functions valid on their whole domain of definition, as de Alcantara Bonfin and

Griffiths proposed in a recent paper [8]; such analytical approximations have been studied

and extended by other authors [9].

In this chapter, we shall obtain approximate analytical results for the energy of electronic

bound states in quantum wells and in simple models of Janus semiconductor nanorods. As

the concept of Janus nanoparticle is less popular than the concept of QWs or QDs, we shall give

here some short explanations.

Their name derives from the Roman god Janus: his head had two opposite faces. A Janus

nanodot can be a sphere composed of two semispheres of different materials. A Janus nanorod

can be a nanorod having the left half and the right half made of different materials. Due to their

intrinsic duality, the opposite parts of Janus particles can be functionalized differently [10].

Janus particles with an electron-donor and -acceptor side may be used in photovoltaics. As the

Janus nanoparticles have lower symmetry than their homogenous counterparts, their theoret-

ical description is more difficult. In this chapter, we shall propose toy models for semiconduc-

tor Janus nanorods.

The structure of this chapter is the following. We shall firstly formulate the basic theory for

the quantum mechanical problem of a quantum well, composed of a thin semiconductor

sandwiched between two massive ones. This heterojunction can de-modeled by a quantum

well (QW), essentially a finite square well, with BenDaniel-Duke boundary conditions. Such

a problem was recently discussed by several authors, like Singh et al. [11, 12], who replaced

the trigonometric functions entering in the transcendental equations for the bound states

energy by the first few terms of their series expansion; in this way, the equations become

simple, tractable algebraic ones. Our approach is different, being based on a more sophisti-

cate “algebraization” of trigonometric functions, as proposed by de Alcantara Bonfim and

Griffiths [8]. We shall obtain explicit formulas (series expansions) for the ground state energy

and for the first excited state, very accurate if the well is not too shallow. Our results can be

applied to both type I and type II semiconductors.

In the last part of our chapter, we shall study two toy models for semiconductor Janus

nanorods; for the simplest one, we shall obtain analytical expressions for some energy eigen-

values of electronic bound states.

2. Basic theory

We shall solve the Schrodinger equation for an electron moving in a square well, described by

the potential:
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V xð Þ ¼
0, xj j⩽L=2

V0 > 0, xj j > L=2

�

(1)

considering that its mass is position dependent. More exactly, the mass inside the well, mi, and

the mass outside the well, mo, are different:

m xð Þ ¼
mi, xj j⩽ L=2

mo, xj j > L=2

�

(2)

So, the Schrodinger equation for bound states is:

Hψ xð Þ ¼ �
ℏ
2

2

d

dx

1

m xð Þ

d

dx

� �

þ V xð Þ

� �

ψ
n
xð Þ ¼ Enψn

xð Þ� (3)

Its physically acceptable solutions, that is, the wave functions, have to satisfy two conditions:

(1) the continuity of the wave function and (2) the continuity of the probability currents density

at the interface. The first one is encountered in all quantum mechanical problems, but the

second one is specific to the case of the position-dependent mass [6], defined by the Eq. (2),

and takes the form:

1

mi

dψ
in

x < L=2ð Þ

dx

�

�

�

�

x!L=2

¼
1

mo

dψ
out

x > L=2ð Þ

dx

�

�

�

�

x!L=2

(4)

Eq. (4) is known as the BenDaniel-Duke boundary condition. The notations ψ
in
, ψ

out
were

used here to make more visible the physical content of this special boundary condition, and

will not be maintained in the rest of the chapter.

The nth bound state has a unique energy, En, but two wave vectors, one inside the well, kin,n,

and another one outside, kout,n:

En ¼
ℏ
2k

2
in,n

2m
, V0 � En ¼

ℏ
2k

2
out,n

2m
(5)

Due to the parity of the potential, V xð Þ ¼ V �xð Þ, the wave functions can be chosen to be

symmetric or antisymmetric.

The symmetric wave functions, describing the even states, are:

ψ2n x; 0 < x⩽L=2ð Þ ¼ A2n cos kin,2nx; ψ2n x; x > L=2ð Þ ¼ B2nexp �kout,2nxð Þ (6)

ψ2n x < 0ð Þ ¼ ψ2n �xð Þ (7)

The ground state wave function is, of course, ψ0 xð Þ. The antisymmetric wave functions,

describing the odd states, are:
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ψ2nþ1 x; 0 < x⩽ L=2ð Þ ¼ A2nþ1 sin kin,2nþ1x

ψ2nþ1 x; x > L=2ð Þ ¼ B2nþ1, sexp �kout,2nþ1xð Þ
(8)

ψ2nþ1 x < 0ð Þ ¼ �ψ2nþ1 �xð Þ (9)

The continuity of these functions in x ¼ L=2 gives:

B2n ¼ A2n cos
kin,2nL

2
exp

kout,2nL

2

� �

(10)

B2nþ1 ¼ A2nþ1 sin
kin,2nþ1L

2
exp

kout,2nþ1L

2

� �

(11)

So, the wave function outside the well is:

ψ2n x > L=2ð Þ ¼ A2n cos
kin,2nL

2
exp �kout,2n x�

L

2

� �� �

(12)

ψ2nþ1 x > L=2ð Þ ¼ A2nþ1 sin
kin,2nþ1L

2
exp �kout,2nþ1 x�

L

2

� �� �

(13)

The wave functions are normalized if:

1

A
2
2n

¼
L

2
1þ

sin kin,2nL

kin,2nL
þ
1þ cos kin,2nL

kout,2nL

� �

(14)

1

A
2
2nþ1

¼
L

2
1�

sin kin,2nþ1L

kin,2nþ1L
þ
1� cos kin,2nþ1L

kout,2nþ1L

� �

(15)

These results generalize the formula (24) in [11] and the Eqs. (25.3e, o) in [13].

It is convenient to use the potential strength P (introduced by Pitkanen [14], who actually used

α, instead of P)

P ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2

2ℏ2
miV

s

(16)

and to define also εn, β, and X as:

εn ¼
En

V
(17)

β ¼
mi

m0
(18)

Φn ¼ kin,n
L

2
(19)
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P, εn, β, and Φn are dimensionless quantities; Φn will be sometimes called dimensionless

wave vector.

It is easy to see that:

kin,n
L

2
¼ P

ffiffiffiffiffi

εn
p

(20)

kout,n
L

2
¼ P

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� εn

β

s

(21)

k2in,n þ βk2out,n ¼ 1

pL=2ð Þ2
(22)

Let us mention that, if the mass is position-independent, that is, if mi ¼ mo, the eigenvalue

equations are (see for instance [5], p. 3, Eqs. (15) and (16)):

tan
kin,2nL

2
¼ kout,2n

kin,2n
, even states (23)

tan
kin,2nþ1L

2
¼ � kin,2nþ1

kout,2nþ1
, oddstates (24)

If the mass is position dependent, according to (2), the eigenvalue equations obtained from the

Schrodinger equations, using BenDaniel-Duke boundary conditions have the form:

tan
kin,2nL

2
¼ mi

mo

kout,2n
kin,2n

¼¼ β
kout,2n
kin,2n

, even states (25)

tan
kin,2nþ1L

2
¼ � kin,2nþ1

kout,2nþ1
, oddstates (26)

We shall consider that both mi, mo are positive; this corresponds to type I semiconductors. So,

with β > 0, with kinL=2 replaced by Φ2n for even states and by Φ2nþ1 for odd states, we can put

the Eqs. (25) and (26) in a more convenient form:

Φ2n tanΦ2n ¼
ffiffiffi

β
p

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� p2Φ2
2n

q

, n ¼ 0, 1,…even states (27)

Φ2nþ1 cotΦ2nþ1 ¼ �
ffiffiffi

β
p

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� p2Φ2
2nþ1

q

, n ¼ 0, 1,…odd states (28)

or, equivalently:

cosΦ2n

Φ2n
¼ �1ð Þn p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

βþ 1� β
	 


p2Φ2
2n

q , n ¼ 0, 1, … even states (29)
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sinΦ2nþ1

Φ2nþ1
¼ �1ð Þn p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

βþ 1� β
	 


p2Φ2
2nþ1

q , n ¼ 0, 1, … odd states (30)

For β ¼ 1, they take the form of the well-known equations for the energy eigenvalues of the

finite square well. Approximate analytical solutions of these equations were obtained for deep

wells p≪ 1ð Þ [15] and in the general case [8, 9, 16, 17].

If 0 < β < 1 β > 1
	 


, the rhs of Eqs. (29) and (30) is a monotonically decreasing (increasing)

function ofΦ; in both cases, the roots of these equations can be obtained using the same approach.

In this chapter, we shall obtain precise analytical approximations for the energy of the first two

states, that is, for the ground state and for the first excited state, considering the cases β < 1 and

β > 1 separately. For moderate and deep wells, the formulae are both simple and accurate. In the

limit β ! 1, we shall obtain the result of de Alcantara Bonfim and Griffiths, Eq. (17) of [8].

3. Approximate analytical solutions for eigenvalue equations

3.1. The first even state (the ground state)

According to Eq. (29), the dimensionless momentum of the first even state, which is also the

ground state, is the smallest positive root of the equation:

cosΦ0

Φ0
¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

βþ 1� β
	 


p2Φ2
0

q , 0 < x <
π

2
(31)

We shall discuss separately the cases β > 1 and β < 1:

3.1.1. The case β > 1

It is useful to introduce the new parameters γ
>
, g

>
, A2

>
:

γ
>
¼ β� 1, g

>
¼ 1

γ
>

, A2
>
¼ P2β

β� 1
¼ P2βg

>
(32)

because the eigenvalue equation can be written in a simpler form:

cosΦ0

Φ0
¼ 1

ffiffiffiffiffiffi

γ
>

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
>
� Φ2

0

q , 0 < Φ0 <
π

2
(33)

In the most physically interesting cases, P is quite large (the wells are quite deep), and according

to (32), A> is even larger, so it is more convenient to use A instead of P as “large parameter”.
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We shall replace the exact, transcendental Eq. (31) with an approximate, algebraic equation,

using one of the formulae proposed in [8] for cos x, namely:

cos x≃ f x; cð Þ ¼ 1� 2x
π

	 
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ cx2
p (34)

The precision of this approximation on various subintervals of 0; 1ð Þ depends on the exact

value of c, with 0:18≲ c≲ 0:23; in our numerical evaluation, we shall use the value c ¼ 0:22:

For a detailed discussion on this issue, see [18].

The algebraic approximation of the eigenvalue equation, we get with (34) is:

1

Φ0

1� 2Φ0

π

	 
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ cΦ2
0

q ¼ 1

ffiffiffiffiffiffi

γ>

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
> � Φ2

0

q (35)

with

Φ
2
0 ¼ z (36)

(35) can be written as:

z3 þ 1

16
π4cg> � A2

> � 1

2
π2

� �

z2 þ π2

2

π2

8
g> þ A2

> þ 1

8
π2

� �

z� 1

16
π4A2

> ¼ 0 (37)

Following the approach outlined in [19] and applied to this problem in [18], introducing the

notation:

C ¼ π2

2
c (38)

and considering that the well is not too shallow:

A2
> ≫ 1

we obtain for the physically interesting root the expression:

z β > 1
	 


¼ π2

4
� π3

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ C

2

� �

s

ffiffiffiffiffiffi

g>
p

α>

	 


þ π4

32
1þ Cð Þ ffiffiffiffiffiffi

g>
p

α>

	 
2

þπ5

32
1þ Cg>

2

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ C

2

� �

s

ffiffiffiffiffiffi

g>
p

α3
> þ π6

128
g> 1þ Cð Þ 1þ Cg>

2

� �

α4
> þ…

(39)

If the depth of the well increases indefinitely, α> ! 0 and z1 ! π2=4, Φ0 ! π=2, as requested.

Indeed, in a finite well, the energy of a bound state is smaller than the corresponding energy in

an infinite one, so the first term in
ffiffiffiffiffiffi

g>
p

α> in the previous formula is negative.

Semiconductors - Growth and Characterization54



It is useful to write (39) in terms of more physical parameters, p and β: In order to do this, let us

notice that:

g>α
2
> ¼ p2

β
, α2

> ¼ β� 1

β
p2 (40)

so Eq. (39) takes the form:

z β > 1
	 


¼ π2

4
� π3

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ C

2

� �

s

p

β1=2
þ π4

32
1þ Cð Þ p

2

β

þπ5

32

ffiffiffiffiffiffiffiffiffiffiffiffi

1þ C

2

r

β� 1þ C

2

� �

p3

β3=2
þ π6

128
β� 1þ C

2

� �

1þ Cð Þ p
4

β2
þ…

(41)

and:

z β ¼ 1
	 


¼ π2

4
� π3

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ C

2

� �

s

pþ π4

32
1þ Cð Þp2 þ π5

32

ffiffiffiffiffiffiffiffiffiffiffiffi

1þ C

2

r

C

2
p3 þ π6

128

C

2
1þ Cð Þp4 þ… (42)

It is a simple exercise to check that the first three terms of the previous formula coincides with

the first three terms of the power series given by Eq. (17) of [8].

If the parameter A> cannot be considered “large,” the exact expression of the root can be

obtained using the standard approach [19]; they are elementary, but cumbersome, and will be

not given here; the interested reader can find them in [18] .

3.1.2. The case β < 1

If β < 1, the eigenvalue equation for the dimensionless wave vector is:

cosΦ0

Φ0
¼ 1

ffiffiffiffiffiffi

γ<

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
< þ Φ2

0

q , 0 < Φ0 <
π

2
(43)

with the following definitions for the parameters:

γ< ¼ 1� β,
1

γ<

¼ g<, A2
< ¼ P2β

1� β
¼ P2βγ< (44)

Using the de Alcantara Bonfim-Griffiths algebraization for cos x (34) [8], it gives an algebraic

equation, which becomes, with the same substitution

Φ
2
0 ¼ z (45)

a cubic equation:
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z3 þ A2
< � 1

2
π2 � 1

16
π4cg<

� �

z2 þ π2

2

1

8
π2 � A2

< � π2

8
g<

� �

zþ 1

16
π4A2

< ¼ 0, β < 1 (46)

Following the same steps as in the previous case, we find that the parameters g>, α> enter into

the various expressions needed for obtaining the cubic roots only through the monoms g>α
2
>,

α2
> at various powers, and the roots of Eq. (46) can be obtained from the root (39) making the

substitution:

g> ! �g<, α2
> ! �α2

< (47)

in Eq. (39). The final result, z β < 1
	 


, expressed in terms of p and β, has exactly the form (41).

3.2. The first odd state

3.2.1. The case β > 1

The exact eigenvalue equation for the first odd state, which is also the first excited state, can be

written as:

sinΦ1

Φ1
¼ 1

ffiffiffiffiffiffi

γ>

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
> � Φ2

1

q ,
π

2
< Φ1 < π (48)

As the shape of the function sin x=x on the interval 0;π½ � is quite similar with the shape of cos x

on the interval 0;π=2½ �, we can try an algebraization for sin x=x similar to that proposed by de

Alcantara Bonfim and Griffiths for cos x :

sinΦ1

Φ1
≃

1� Φ1=πð Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ aΦ2
1

q , 0 < Φ1 < π, a≃ 0:2 (49)

A detailed discussion of the precision of this approximation is given in [18] (see Fig. 3 and

Eq. (88)). Following, exactly the same steps as in the case of the ground state, we find that

z β
	 


¼ π2 � π2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ π2að Þ
q

p
ffiffiffi

β
p þ π4

2
a
p2

β
þ π4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ π2að Þ
q

β� 1
	 
 p

ffiffiffi

β
p

 !3

þ π6

2
a β� 1
	 
 p4

β2
þ…

(50)

For β < 1, the expression of the root, in terms of β and p is identical with (50), written in terms

of g<, g>, α<, α>, the formulae are different, see Eqs. (99) and (103) in [18].

For both cases—β≶1—in the limit of an infinitely deep root, z β≶1; α< ¼ 0
	 


¼ π2, Φ1ðβ≶1,
α< ¼ 0Þ ¼ π, as requested, and the first correction to this value is negative.

The relative errors of the formulas (39) and (50), with respect to the exact roots of the correspo-

nding algebraic equations, are very small—of about 10�4
…10�6 for physically interesting values
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of the parameters p, β, a, c: In other words, the main contribution to the errors of our results is

given by the approximation of trigonometric functions with algebraic ones, not by the approxi-

mation of the exact formulae of the roots of cubic equations with the low order terms of their

series expansions.

As already mentioned, one of the physical motivations of the calculation of the energy of

bound states in heterostructures is to explain their photoluminescence properties. In several

cases (see for instance [20]), the authors use Barker’s formula for the energy levels in a square

well [15]. Much more precise analytical expressions for these energy are available in the

literature [8, 9], for the case of constant mass; in this paper, we propose similar formulas,

considering the case of position-dependent mass.

3.3. Higher-order states

In the previous subsections, we analyzed the ground state n ¼ 0ð Þ and the first excited state

n ¼ 1ð Þ of a square well, with BenDaniel-Duke boundary conditions. For n⩾ 2, the de Alcantara

Bonfim formula (34) can be extended to larger arguments:

cosΦ≃

1� 4 Φ� 2nπð Þ2=π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ c Φ� 2nπð Þ2
q , 2nπ < Φ < 2nπþ π

2
(51)

but the eigenvalue equation, obtained in this way, is a sextic equation (which cannot be reduced

to a cubic equation in Φ2), so it cannot be solved. We meet similar difficulties if we try to use in

the eigenvalue equation the algebraization of tan (see later on, Eq. (73) and (74) of the present

paper). Even the “parabolic approximation” for cos x=xð Þ2 or sin x=xð Þ2, in the sense used in [16],

gives a quartic equation for the dimensionless wave vector. Its roots are given by complicated,

but still elementary formulas.

3.4. Graphical illustration of our main results

In order to illustrate graphically some of our results, let us notice that, using Eqs. (17)–(22), we

can write the following relations for the energy:

miL
2

2ℏ2
En ¼ Φ2

n ¼ zn pð Þ (52)

where zn is the root of the cubic equations obtained after the algebraization of the transcen-

dental eigenvalue equations for the ground state n ¼ 0ð Þ and for the first excited state n ¼ 1ð Þ:
According to the Eqs. (39) and (50), for a deep well, the root z can be approximated with a

quartic polynomial in p, the inverse of the potential strength P: Let us mention that, if we

replace in the definition of P, Eq. (16), mi with the free electron mass, we choose the length of

the well L ¼ 10 nm and we express the potential V0 in electron volts, we get:

P ¼ 25:616
ffiffiffiffiffiffi

V0

p

, p ¼ 3:9� 10�2 1
ffiffiffiffiffiffi

V0

p (53)
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We shall plot our main results, that is, the series expansions of the dimensionless wave vectors,

Φ
2
0 and Φ

2
1, as functions of p, on the range 0 < p < 0:1, when the condition of convergence is

satisfactorily fulfilled (Figure 1). The energy is a monotonically increasing function of β; its

values, for β ¼ 1, are obtained from Eqs. (42) and (50).

3.5. Applications to other nanostructures

Our calculations can be easily applied to type II semiconductors heterostructures, when one of

the effective mass of the charge carrier is negative: mimo < 0 ([5], chapter 3, Eqs. (35) and (36));

a detailed description of such heterointerfaces can be found for instance in [5], p. 66. So, instead

of (25) and (26), the eigenvalue equations take the form:

Figure 1. The plot of Φ2
0 að Þ and Φ2

1 bð Þ, which are proportional to the energies E0, E1, as functions of the inverse

potential strength p:
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tan
kin,2nL

2
¼ �

mi

moj j

kout,2n

kin,2n
¼ � β

�

�

�

�

kout,2n

kin,2n
, even states (54)

tan
kin,2nþ1L

2
¼

moj j

mi

kin,2nþ1

kout,2nþ1
¼

1

β
�

�

�

�

β
�

�

�

�, oddstates (55)

and can be solved following exactly the same approach.

As already mentioned, the wave function in the Schrodinger Eq. (3) can be interpreted as an

envelope function. This approximation works well when the materials constituting the

heterostructures are perfectly lattice-matched and they crystallize in the same crystallographic

structure (in the most cases, the zinc blend structure). Its application is restricted to the vicinity

of the high-symmetry points in the host’s Brillouin zone Γ; X; Lð Þ: Actually, most of the

heterostructures’ energy levels relevant to actual devices are relatively closed to a symmetry

Figure 2. Schematic representation of the conduction band Ec and of the valence band Ev for type I (a) and type (II) (b)

semiconductors.
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point in the host’s Brillouin zone. A popular example is given by the lowest conduction states
of GaAs-GaAlAs heterostructures with GaAs layer (typically, its thickness is about 100 Å or
larger). A detailed description of the cases in which the envelope function model is successful
is given in [5], p. 66 (See Figure 2).

As there are some similarities between QWs and QDs, our results are also relevant for these
devices. The simplest remark is that the eigenvalues equations for the first odd state in a QWare
identical to that corresponding to the l ¼ 0 state in a QD (see for instance [13], problem 63). Also,
the eigenvalue equations for the wave vectors of the energy levels for a finite barrier rectangular
shaped QD, Eq. (36) in [21], are quite similar to ours—(29) and (30), but somewhat more
complicated. The ground state energy of electrons and holes in a core/shell QD is given by the
Eq. (21) of [22], an equation similar to ours, just mentioned previously. Such results are impor-
tant, inter alia, for the interpretation of photoluminescence spectra and photon harvesting of QDs.

4. The infinite square well with two semiconductor slabs

4.1. The symmetric case

Let us consider an infinite 1D square well, delimited by two rigid walls situated in �L=2,
respectively L=2, containing two semiconductor slabs, of equal width, but of different materials.
It is a toymodel for a Janus nanorod, composed of two different semiconductors, with large work
functions. We preferred to choose this particular case (equal width), in order to avoid too cum-
bersome mathematical calculations. The electron effective mass is position dependent, like in (2):

m xð Þ ¼
m1, � L=2 < x < 0
m2, 0 < x < L=2

�

(56)

with:

m2 ¼ βm1 (57)

We want to investigate how the energies of the electronic bound states will be affected,
compared to the situation when in the infinite well there is only one slab, with effective
electron mass m1 or m2: As

E ¼
ℏ
2k

2
1

2m1
¼

ℏ
2k

2
2

2m2
(58)

we have, with (57):

k2 ¼
ffiffiffi

β
p

k, k ¼ k1 (59)

The electronic wave function is obtained solving the Schrodinger equation, as in the case of a
finite well, studied in Section 2:
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ψ xð Þ ¼
A1 sin k1xþ φ1

	 


, � L=2 < x < 0

A2 sin
ffiffiffi

β
p

k1xþ φ2

	 


, � L=2 < x < 0

(

(60)

The boundary conditions for the wave function give:

sin �
kL

2
þ φ1

� �

¼ 0 (61)

sin
ffiffiffi

β
p kL

2
þ φ2

� �

¼ 0 (62)

and the continuity in the origin:

A1 sinφ1 ¼ A2 sinφ2 (63)

The BenDaniel-Duke boundary condition means:

1

m1
ψ

0

0�ð Þ ¼
1

m2
ψ

0

0þð Þ (64)

or:

ffiffiffi

β
p

A1 cosφ1 ¼ A2 cosφ2 (65)

Together with the orthonormality condition for the wave function, Eqs. (61)–(63) and (65) form

a system of five equations for five quantities, k, φ1, φ2, A1, A2: As the amplitudes are not of

primary interest, we can combine (64) and (65) to obtain:

1
ffiffiffi

β
p tanφ1 ¼ tanφ2 (66)

Replacing in (66), the values of φ1, φ2 obtained from (61) and (62):

φ1 ¼ n1πþ
kL

2
, φ2 ¼ n2π�

ffiffiffi

β
p kL

2
(67)

we get:

tan
kL

2
¼ �

ffiffiffi

β
p

tan
ffiffiffi

β
p kL

2
(68)

With

kL

2
¼ K (69)

it can be written as:
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tanK þ
ffiffiffi

β
p

tan
ffiffiffi

β
p

K ¼ 0 (70)

If
ffiffiffi

β
p

¼ 1, (67) gives:

2 tan
kL

2
¼ nπ ! kn ¼

nπ

L
(71)

k1 ¼
π

L
! K1 ¼

π

2
(72)

so the solutions corresponding to the infinite well with an homogenousmedium inside the walls.

Eq. (70) is a transcendental one, and its solutions cannot be expressed as a finite combination of

elementary functions. A quite popular analytical approximation for the tangent function has

been proposed by de Alcantara-Bonfim [8] and generalized by the present author [9]:

tan x≃
0:45π x� nπð Þ

2x� 2n� 1ð Þπ
, n�

1

2

� �

π < x < nπ (73)

tan x≃
0:45π x� nπð Þ

2nþ 1ð Þπ� 2x
, nπ < x < nþ

1

2

� �

π (74)

In order to see how this approximation works, let us consider the first two roots of Eq. (68), if

β≲ 1: For β ¼ 0:9, we obtain (for instance, using the command FindRoot in Mathematica)

K1, exact ¼ 1:65804 and K2, exact ¼ 3:29797, close to π=2, respectively π, that is, to the values

corresponding to β ¼ 0: We shall discuss the case of the second root of Eq. (70). As

K2, exact ¼ 3:29797∈ π; 32π
	 


and K2, exact

ffiffiffi

β
p

¼ 2:9682∈ π
2 ;π
	 


, the two tangent functions

appearing in Eq. (70) will be approximated by the two variants of Eqs. (73) and (74), the result

being the following:

K � π

3π� 2K
þ

ffiffiffi

β
p ffiffiffi

β
p

K � π
	 


2
ffiffiffi

β
p

K � π
¼ 0 (75)

So, K can be obtained as a root of a second order equation, namely:

K β
	 


¼
π

4

�3βþ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9β2 � 24β
3
2 þ 26β� 8β1=2 þ 1

q

β1=2 1� β1=2
	 
 (76)

We find that K β ¼ 0:9
	 


¼ K2,approx ¼ 3:2987, so quite close to the exact value, the error being:

K2, exact � K2,approx

K2, exact
¼

3:29797� 3:2987

3:29797
¼ �2:2135� 10�4 (77)

However, due to the rapid variation of the tangent functions near its singularities, this approxi-

mation method must be used with utmost care, as it can easily give unacceptable results (this is

the case of the first root, for β ¼ 0:9).
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4.2. The asymmetric case

Let us consider now the case of a rectangular infinite asymmetric well, with the potential:

V xð Þ ¼

∞, x < �L=2

0, � L=2 < x < 0

V0, 0 < x < L=2

∞, x > L=2

8

>

>

>

<

>

>

>

:

(78)

with V0 > 0, containing, as in the previous example, two semiconductor slabs. It is also a

toy model of a Janus nanorod, somewhat more realistic than that discussed in Section 4.1.

We also chose a particular geometry (the same width for each slab) to avoid irrelevant

mathematical complications. For an electronic bound state of energy E > V0, the wave

vectors (and the electronic effective masses) are different in different slabs, according to

the relations:

E ¼
ℏ
2k

2
1

2m1
; E� V0 ¼

ℏ
2k

2
2

2m2
, m2 ¼ βm1 (79)

Defining the wave vector k0 by:

V0 ¼
ℏ
2k

2
0

2m1
(80)

noticing that:

k
2
2 ¼ β k

2
1 � k

2
2

	 


(81)

and following exactly the same steps as in the symmetric case, we obtain the following eigen-

value equation:

1

K1
tanK1 þ

ffiffiffi

β
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K2
1 � K2

0

q tan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β K2
1 � K2

0

	 


q

¼ 0 (82)

with the notations:

K1 ¼
k1L

2
, K2 ¼

k2L

2
, K0 ¼

k0L

2
(83)

If 0 < E < V0, k2 (and, evidently, K2) become imaginary, and tanK2 ! �itanhK2: The Eq. (82)

and its hyperbolic counterpart are much complicated than (68); even if there are some methods

of obtaining approximate analytical solutions, they will be not discussed here. The case of a

finite asymmetric well, with two different semiconductor slices, can be studied following

exactly the same approach, but now the complications are even more serious, as the wave

function extends outside the wells.
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5. Conclusions

In this chapter, we obtained approximate analytical solutions for the eigenvalue equation of

the first two bound states in a semiconductor quantum well, in a particular case of position-

dependent mass of the charge carrier—in fact, the simplest one, corresponding to BenDaniel-

Duke boundary conditions. This position dependence can be characterized by β, the ratio of

the mass inside, to the mass outside the well. Actually, we obtained quite simple expressions

for the dimensionless wave vector, in terms of the potential strength and of β: Even if we

solved this problem in terms of one-particle quantum mechanics, obtaining the wave function

and the eigenvalues of the bound states, our results can be directly applied in the theory of

envelope functions in the conduction band at heterointerfaces. Our approach is based on the

“algebraization” of trigonometric functions present in the transcendental eigenvalue equa-

tions; in this way, they are transformed in tractable algebraic equations.

We also proposed two models for a semiconductor Janus nanorod—a system, which was not

yet treated analytically.

Our results can be easily extended to more realistic (e.g., linear) position dependence of the

mass carrier and to other nanosystems. For instance, the eigenvalue equations for the wave

vectors of bound energy levels of a finite barrier rectangular-shaped quantum dot, Eq. (36) in

[21], are quite similar to ours—(22), (23), but somewhat more complicated. The ground state

energy of electrons and holes in a core/shell quantum dot is given by Eq. (21) of [22], an

equation similar to ours, just mentioned previously. Such results are important, inter alia, for

the interpretation of photoluminescence spectra of heterojunctions.
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