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Abstract

In order to achieve more scientific returns for Mars, future Mars landers will be required
to land at certain landing point with special scientific interest. Therefore, autonomous
navigation is indispensable during the Mars approach, entry, and landing phase. How-
ever, the number of beacons or the Mars orbiters which can provide the navigation service
is so limited and the line-of-sight visibility cannot be guaranteed during the landing
period. So the navigation scheme especially the beacon configuration has to be optimized
in order to efficiently use the limited navigation information. This chapter aims to analyze
the feasibility and optimize the performance of the Mars Networks-based navigation
scheme for the Mars pinpoint landing. The observability of navigation system is used as
an index describing the navigation capability. Focusing on the relationship between the
configuration of radio beacons and observability, the Fisher information matrix is intro-
duced to analytically derive the degree of observability, which gives valuable conclusions
for navigation system design. In order to improve the navigation performance, the navi-
gation scheme is optimized by beacon configuration optimization, which gives the best
locations of beacons (or the best orbit of navigation orbiters). This is the main approach to
improve the navigation capability.

Keywords: Mars networks, navigation, observability, optimization

1. Introduction

As the most similar planet to the Earth in the Solar system, Mars is considered as an ideal

target for planetary exploration [1, 2]. Since the 1960s, humans have investigated the Mars

exploration missions in the near distance. With the development of aerospace science and

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



technology, the manner of Mars exploration has shifted from flyby/orbiting to landing and

roving explorations. Considering scientific returns and exploration capabilities, Mars landing

exploration is also essential and is one of the most popular tasks of human deep space

exploration in the near future. The representative Mars landing missions including NASA’s

Viking 1 and 2, Mars Pathfinder (MPF), Mars Exploration Rovers (MER, including the Spirit

and Opportunity rovers), Phoenix, Mars Science Laboratory (MSL, including the Curiosity

rover), and ESA’s Mars Express/Beagle 2 mission. All of these greatly inspire the development

of advanced guidance, navigation, and control (GNC) technologies.

During the past 50 years of Mars exploration, 46 Mars exploration spacecraft have been

launched. The overall success rate is only 41.3% though. Furthermore, among the 20 Mars

landing attempts, only 7 robotic rovers were successful. The success rate for Mars landing

missions is only 35%. Among the failed landing missions, most failures occur during the

landing phase. The pinpoint landing has to be based on the precise autonomous navigation

technology.

In the entry phase of a Mars landing, the lander is covered by a heat shield which blocks the

optical sensor measurement, causing that all landers relied on the Inertial Measurement Unit

(IMU) recursion. The initial errors of the lander cannot be corrected by IMU data. Even worse,

the recursion errors using IMU are accumulated due to the sensor bias and noise. To overcome

the incapability of IMU, the Mars Network-based Mars entry navigation is developed based on

high frequency radio communication between the lander with ground or orbiting radio bea-

cons [3–5]. Involving the radio measurement date into a navigation filter, the position and

velocity of the lander can be optimally estimated.

The Mars Network-based Mars entry navigation is faced with two challenging. One is that

the geometric configuration of the radio beacons affects the navigation performance. The

other is that the available beacons at present are very limited. Considering these two factors,

effort should be devoted to optimizing the configuration of radio beacons to maximize the

function of the limited beacons. In [7], the navigation accuracy from the Extend Kalman

Filter (EKF) by processing the radio measurements is analyzed, and the optimal configura-

tion of ground beacons is selected among potential beacon position. Yu focused on the

navigation observability and take it as a performance index to optimize the configuration of

radio beacons [8]. The research on ground beacons, to some extent, inspired the future Mars

landing navigation. However, the practice application of ground beacon-based navigation is

hardly applied in practice. The first concern is that no ground beacon is available. Even if

several beacons are distributed on Mars surface, it’s still a tough job to place them exactly at

the optimal locations. Moreover, the accurate positions of the beacons are hardly obtained

accurately. Considering the immovability of ground beacons, the potential location areas are

constrained by the line-of-sight visibility, resulting in an unsatisfactory beacon configuration

during the entry phase.

As a substitution of ground radio beacons, the Mars orbiters which can also serve as beacons

for Mars Network-Based Navigation are of more practice value. Currently, the operational

orbiter around Mars includes 2001 Mars Odyssey and 2005 Mars Reconnaissance Orbiter. With

another forthcoming spacecraft Mars Atmosphere and Volatile Evolution (MAVEN) [9], the
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capability of Mars network can be further increased. Focusing on how to fulfill the function of

a Mars network, Ely firstly established the basic principle to design a constellation for naviga-

tion [10]. Then, taking the Mean of the Position Accuracy Response Time (MPART) as the

performance index, the constellation configuration was optimized [11]. In [12], the number of

orbiters and the coverage was considered to design the Martian navigation constellations

envisaged in the ESA’s Martian Constellation for Precise Object Location program. The opti-

mization method of the above researches is inherited from the Global Positioning System

(GPS). The global navigation performance was emphasized. For the limited amount of Mars

orbiters, global coverage is difficult to realized, and local navigation performance should be

investigated thoroughly for specific missions. Moreover, the effect of geometric configuration

of the Mars network on the navigation performance should be revealed clearly. Inspired by

these requirements, Yu et al. optimized the orbits of Mars orbiters in the observability point of

view, and tried to explain the relationship between the configuration of beacons and orbiters

and the navigation capability [13, 14].

To optimize the configuration of the radio beacons, a performance index should be firstly

setup. The observability of the navigation system is selected as the performance index since it

reflects the navigation capability directly. A lot of work has investigated the observability of

linear and nonlinear dynamic systems [6, 15–17]. However, the analytic relationship between

geometric configuration and observability has never been revealed. According to Cramér-Rao

inequality [18], the inverse of the Fisher Information Matrix (FIM) estimates the lower bound

of the estimation error. Therefore, FIM can be used to quantify the observability of the naviga-

tion system [19–21]. In this circumstance, some valuable analytic conclusions about the navi-

gation design can thus be obtained.

Based on the requirement of the navigation optimization for Mars pinpoint landing, this

chapter discusses the design and optimization of the Mars Networks-based navigation dur-

ing Mars entry phase. Firstly, the Mars Networks-based navigation scheme is introduced,

and the dynamic model and the observation model are given. Based on the navigation

system, the observability of the Mars entry navigation analysis, and the analysis methods

based on the quadratic approximation and Fisher information matrix are proposed. The

relationship between the observability and the beacon configuration is derived, and the

theoretically optimal configuration is given. Considering the constraints of Mars entry sce-

nario, the ground beacons and the orbit of Mars orbiters are optimized based on observabil-

ity based on an entry trajectory. The simulations also indicate the improved navigation

performance.

2. Mars networks-based navigation scheme

2.1. Dynamic model of Mars entry phase

In the dynamical model with respect to a stationary atmosphere of a rotating planet, the 6

dimensional states x of the entry vehicle include r (radius from the center of Mars to the
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vehicle’s center of mass), θ (longitude), ϕ (latitude), V (relative velocity), γ (flight path angle),

and Ψ (heading angle, with Ψ = 0 as due east). The motion of the entry vehicle is governed by

the following state equations:

_r ¼ Vsinγ

_θ ¼ VcosγcosΨ= rcosϕ
� �

_ϕ ¼ VcosγsinΨ=r

_V ¼ �d� gsinγ

_γ ¼ lcosσ� g� V2=r
� �

cosγ
� �

=V þ 2ω tanγsinΨcosϕ� sinϕ
� �

_Ψ ¼ � lsinσþ V2cos2γcosΨ tanϕ=r
� �

= Vcosγð Þ þ 2ωcosΨcosϕ

(1)

In the equation, σ is the banking angle, which is fixed at 0 in the following analysis. ω refers to

the rotation rate of Mars. For simplicity, the second order terms of ω are neglected, which is

feasible because the value of ω is quite small. Then the gravity acceleration g, lift and drag

accelerations l and d are given by

g ¼ μ=r2 (2)

l ¼ 0:5rV2ClS=m (3)

d ¼ 0:5rV2CdS=m (4)

where μ is the Martian gravitational constant. S and m denotes the reference area and mass of

the entry vehicle, and Cl and Cd are the lift and drag coefficients respectively. Furthermore, the

Mars atmospheric density r is approximated by the conventional exponential model

r ¼ r0exp r0 � rð Þ=hs½ � (5)

where r0 ¼ 2� 10�4 kg/m3 is the reference density, r0 ¼ 3437:2 km is the reference radial

position, and hs ¼ 7500 m refers to the atmospheric scale height. The dynamical model of the

entry vehicle is abbreviated as _x ¼ f xð Þ.

2.2. Observation model

The radio ranging and velocity data between the lander and the radio beacon can be measured

through radio communication, given by

yRi
¼ Ri þ εiR

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xiB � x
� �2

þ yiB � y
� �2

þ ziB � z
� �2

q

þ εiR

x ¼ r cosϕcosθ, y ¼ r cosϕsinθ, z ¼ r sinϕ

(6)

where Ri is the real range between the lander and the ith beacon, xiB, y
i
B, and ziB represent

respectively the triaxial position components of the beacon, and εiR is the radio ranging measure-

ment noise.
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The relative velocity model is given by

yV i
¼ V i þ ε

i
V ¼ dRi=dtþ ε

i
V (7)

where V i is the real line-of-sight relative velocity between the lander and the ith radio beacon,

and ε
i
V is the velocity measurement noise.

With different radio beacons come different navigation scenarios. Without losing the generality,

the observation model can be summarized as y ¼ h xð Þ. Obviously, both radio measurements in

Eqs. (6) and (7) are nonlinear. Moreover, the navigation performance is closely related to the

geometric configuration of radio beacons. Therefore, the beacon configuration needs to be opti-

mized based on the observability analysis.

3. Observability of the navigation system

3.1. Observability analysis based on the quadratic approximation

Consider the following nonlinear system:

Σ :
_x ¼ f xð Þ

y ¼ h xð Þ

�

(8)

where x∈Rn is the n-dimensional state vector and y∈Rm is the m-dimensional observation

vector. Define h : R
n ! R

m as the nonlinear measurement operator.

The Lie algebra is an efficient tool for observability analysis. For the kth order Lie derivative of the

jth measurement function, which can be expressed as Lkf hj, the k + 1th order Lie derivative Lkþ1
f hj

with respect to the state equation f can be computed as:

Lkþ1
f hj ¼

X

n

i¼1

∂Lkf hj

∂xi
f i ¼ ∇Lkf hjf ,

k ¼ 0, 1,⋯ j ¼ 1, 2⋯, m

(9)

The differential of Lkf hj is defined as

∇Lkf hj ¼
∂Lkf hj

∂x1
, ⋯,

∂Lkf hj

∂xn

" #

(10)

Regarding the zero-order Lie derivative of the jth measurement function hj as hj itself, the

matrix∇Lkfh is given as

∇Lkfh ¼ ∇Lkf h1

� 	T
, ⋯, ∇Lkf hm

� 	T

 �T

(11)
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It is proven that the dynamical system Σ at state x0 is locally observable if the observability

matrix OΣ given below has the rank of n.

OΣ ¼ ∇L0f h
� 	T

, ∇L1f h
� 	T

, ⋯, ∇Ln�1
f h

� 	T

 �T

�

�

�

�

�

x¼x0

(12)

It’s a heavy burden to calculate the observability matrix in Eq. (12) due to the existence of high

order differential, especially for the 6-dimensional dynamics of Mars entry phase which

requires the calculation of 5th order Lie derivatives. Next, a quadratic approximation method

is developed to simplify the computation of the observability matrix.

First of all, the quadratic approximation of the kth order Lie derivative Lkf hj is given as

Lkf hj ≈ L
k
f hj0 þ JkLj x� x0ð Þ þ

1

2
x� x0ð ÞTHk

Lj x� x0ð Þ (13)

where Lkf hj0 is the value of Lkf hj at x0, and JkLand Hk
L refer to, respectively, the Jacobian and

Hessian matrix of Lkf hj at x0. The linearized state equation is given by

f ≈ f 0 þ Jf x� x0ð Þ (14)

in which f 0 refers to the value of f at x0, and Jf is the Jacobi matrix of f at x0.

According to Eq. (9) and Eq. (13), the relationship between the kth and k + 1th order Lie

derivative can be rewritten as

Lkþ1
f hj ¼ ∇Lkf hj � f

¼ JkLj þ
1

2
x� x0ð ÞT Hk

Lj þ Hk
Lj

� 	T
 �
 �

f 0 þ Jf x� x0ð Þ
h i

¼ JkLjf 0

þ JkLjJf þ
1

2
Hk

Lj þ Hk
Lj

� 	T

 �

f 0

 �T
" #

x� x0ð Þ þ
1

2
x� x0ð ÞT Hk

Lj þ Hk
Lj

� 	T

 �

Jf x� x0ð Þ

¼ Lkþ1
f hj0 þ Jkþ1

Lj x� x0ð Þ þ x� x0ð ÞTHkþ1
Lj x� x0ð Þ

(15)

This leads to

Lkþ1
f hj0 ¼ JkLjf 0

Jkþ1
Lj ¼ JkLjJf þ

1

2
Hk

Lj þ Hk
Lj

� 	T

 �

f 0

 �T

Hkþ1
Lj ¼

1

2
Hk

Lj þ Hk
Lj

� 	T

 �

Jf

(16)

The observability matrix can be computed as
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OΣ ¼ ∇L0f h
� 	T

, ∇L1f h
� 	T

, ⋯, ∇Ln�1
f h

� 	T

 �T

�

�

�

�

�

x¼x0

¼ J0L
� �T

, J1L
� �T

, ⋯, Jn�1
L

� �T
h iT

(17)

where JkL ¼ JkL1
� �T

, ⋯, JkLm
� �T

h iT
.

Obtaining J0Lj and H0
Lj, the observability matrix can be iteratively calculated. Only 2nd order

differential of h is needed here to compute the Jacobian and Hessian matrices, reducing largely

the computation cost.

Linearize the dynamical and observation model by first-order approximation

f ≈ f 0 þ Jf x� x0ð Þ

h ≈h0 þ Jh x� x0ð Þ
(18)

Construct the observability matrix according to the linear system theory

Ol
Σ
¼ Jhð ÞT , JhJf

� 	T
, ⋯, Jn�1

h Jf

� 	T

 �T

(19)

The Hessian matrix is involved in the quadratic approximation, improving the accuracy of

observability analysis compared with the linearized observability analysis. However, the

higher order terms of x� x0 may appear when computing Lkþ1
f hj in Eq. (9) if the state equation

is approximated to a higher order. In this case, the predetermined presentation form in Eq. (13)

is no longer valid. One way to defeat this case is to increase the approximation order of Lie

derivatives. Note that tensor calculus can be involved and the computation complexity is

increased. Thus, the trade between accuracy and computation cost is balanced by the quadratic

approximation of Lie derivatives and the linearization of state equation.

In the optimization of observability, the condition number of observability matrix is selected as

the performance index, given by

cond Mð Þ ¼
σmax Mð Þ

σmin Mð Þ
(20)

where σmax and σmin are, respectively, the maximum and minimum singular value of the matrix.

The condition number measures the singularity of the matrix. A larger condition number means

a more singular matrix. Here we take the inverse of the condition number to quantify the system

observability.

δ ¼
1

cond OΣð Þ
¼

σmin OΣð Þ

σmax OΣð Þ
(21)
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Obviously, the observability degree δ is in the interval [0, 1]. When δ ¼ 0, the observability

matrix is rank defect, and the navigation system is locally unobservable. When δ > 0, the

observability is full rank, indicating an observable navigation system.

3.2. Observability analysis based on the fisher information matrix

Without loss of generality, we will consider the nonlinear observation models

yi ¼ hi xð Þ þ εi, i ¼ 1,⋯, N (22)

This equation may describe the measurement of relative range and range-rate according to

Eq. (6) and (7). Meanwhile, in order to investigate the impact of different measurement

methods on the observability of position and velocity of the entry vehicle separately, the

3-dimensional state x may be r or v of the entry vehicle. The likelihood function of x is defined

as the joint probability density function of multiple measurements given by

L y1;⋯; y3jx
� �

¼
Y

N

i¼1

1
ffiffiffiffiffiffi

2π
p

σi

exp � 1

2
σ
�2
i yi � hi xð Þ
�

�

�

�

2
 �

(23)

Then, take the negative of the natural log of Eq. (23) and omitting the terms not related to x,

and the loss function can be derived as

J xð Þ ¼ 1

2

X

N

i¼1

σ
�2
i yi � hi xð Þ
�

�

�

�

2
(24)

Find a state vector to minimize J xð Þ and the state vector is the optimal estimation of the

lander’s states. The FIM of the state is given by

F ¼ E
∂
2

∂x∂xT
J xð Þ

� �

¼
X

N

i¼1

σ
�2
i

∂hi xð Þ
∂x

∂hi xð Þ
∂x

 �T

(25)

The estimate error covariance and FIM satisfy the following equation

P ≥F
�1 (26)

where P is the estimate error covariance, and “ ≥ ” means that (P� F
�1) is positive semidefinite.

According to Eq. (26), the FIM can be used to evaluate the lower bound of the estimation error

covariance, and further the system observability. Give the trace of F�1 in Eq. (27).

tr F
�1

� �

¼
X

3

i¼1

1

λi
(27)

where λi i ¼ 1; 2; 3ð Þ are the eigenvalues of F. It’s illustrated from Eq. (27) that larger eigen-

values of the FIM leads to smaller trace of estimation error covariance and stronger system
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observability. Quantify the observability by the determinant of FIM det Fð Þ ¼
Q

3

i¼1

λi. The follow-

ing relationship can be obtained.

tr Pð Þ ≥ tr F
�1

� �

¼
X

3

i¼1

1

λi
>

3

P

3

i¼1

λi

¼
3

tr Fð Þ
(28)

Eq. (28) means that the trace of FIM measures the lower bound of estimation errors.

4. Observability analysis of Mars networks-based navigation

4.1. Observability analysis using only range measurements

In this subsection, the system observability using only range measurements between the lander

and ground beacons is analyzed. Since no velocity information is included in Eq. (6), only the

observability of the position vector is studied. The cases with different amount of beacons are

studied.

4.2. One-beacon case

In this case, the FIM is given by

F1 ¼ σ
�2
R1

∂R1 rð Þ

∂r

∂R1 rð Þ

∂r

 �T

¼ σ
�2
R1n1n

T
1 � σ

�2
R1N1 (29)

The rank of the matrix N1is only one. Solving the following equation

det λI3�3 �N1ð Þ ¼ 0 (30)

Clearly, the eigenvalues of N1 are given by twice repeated 0 and n21x þ n21y þ n21z ¼ 1. Therefore,

the eigenvalues of F1 are given by λ1 ¼ λ2 ¼ 0, λ3 ¼ σ
�2
R1 .

Next, we have the eigenvector corresponding to λ3

w3 ¼
1

n1z
n1x, n1y , n1z

� �T
¼

1

n1z
n1 (31)

The vector w3 corresponds to the observable state combination, and means that only the state

component along the vector n1 can be observable.

According to Eq. (28), the lower bound of estimation errors can be obtained as

3

tr F1ð Þ
¼ 3σ2R1 (32)
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Eq. (32) means the lower bound of estimation errors is higher than the estimation accuracy. In

another word, the estimation accuracy cannot be higher than the measurement accuracy. Note

that, even if multiple beacons are involved in the navigation system, the observability is still

deteriorated if the beacons are located in similar direction.

4.3. Two-beacon case

Assume two non-collinear beacons, the FIM in Eq. (25) is derived by

F2 ¼
X

2

i¼1

σ
�2
Ri

∂Ri rð Þ

∂r

∂Ri rð Þ

∂r

 �T

¼
X

2

i¼1

σ
�2
Ri nin

T
i (33)

Involving one more measurement, the rank of F2 is increased to two. The observable state

combinations can be obtained by solving the eigenvalue and eigenvector. In this case, the

eigenvalues of F2 are given by λ1 ¼ λ2 6¼ 0, λ3 ¼ 0. The eigenvector corresponding to the zero

eigenvalue is obtained as

w3 ¼
n1yn2z�n1zn2y
n1xn2y�n1yn2x

,
n1zn2x�n1xn2z
n1xn2y�n1yn2x

, 1
h iT

¼
1

n1xn2y � n1yn2x
n1 � n2 (34)

The vector w3 gives the unobservable state component which is in the direction perpendicular

to the plane constructed by n1 and n2. From an opposite view, all state components in plane are

observable.

Since, in this case, the observability matrix is still zero, the navigation system is unobservable.

According to Eq. (28), the lower bound of the estimation errors can be obtained as

3

tr F2ð Þ
¼

3

P

2

i¼1

σ�2
Ri n2ix þ n2iy þ n2iz

� 	

¼
3

P

2

i¼1

σ�2
Ri

≥
3σ2Rmin

2
(35)

where σRmin is the smaller standard deviation among σR1 and σR2. It’s known by comparing

Eqs. (32) and (35) that the estimation accuracy can be improved by using one more radio

beacon.

4.4. More-than-two-beacon case

In this case, the FIM is given by

FN ¼
X

N

i¼1

σ
�2
Ri

∂Ri rð Þ

∂r

∂Ri rð Þ

∂r

 �T

¼
X

N

i¼1

σ
�2
Ri nin

T
i , N ≥ 3 (36)

The matrix FN has a full rank, indicating an observable system. The determinant of FN is given

in Eq. (37).
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det FNð Þ ¼
X

1 ≤ k3<k2<k1 ≤N

σ
�2
Rk1

σ
�2
Rk2

σ
�2
Rk3

nk1 � nk2 � nk3ð Þ½ �2 (37)

The detailed derivation can be found in Ref. [14]. From Eq. (7), we can know that more radio

beacons, no matter where they are, increase the determinant of the FIM, thus increase the

system observability. To analyze the maximum value of det FNð Þ, Eq. (37) is reorganized as

det FNð Þ ≤σ�6
Rmin

X

1 ≤ k3<k2<k1 ≤N

nk1 � nk2 � nk3ð Þ½ �2 (38)

where σRmin is the minimum value among σRi. The selection of the direction of radio beacons to

maximize the observability can be described by the following optimization problem

max
X

1 ≤ k3<k2<k1 ≤N

nk1 � nk2 � nk3ð Þ½ �2

subject to nik k ¼ 1, i ¼ 1,⋯, N

(39)

Note that the locations of radio beacons are not constrained. In cases with three beacons, the

determinant of F3 is maximized if and only if n1, n2, and n3 are orthogonal to each other.

However, no analytic results can be obtained when there are more than three beacons. Thus,

a Genetic Algorithm is exploited to solve the optimization problem. The maximum determi-

nants are listed in Table 1.

According to the results in Table 1, the relationship between the maximum determinant and

the number of beacons can be induced by an exponential formulation, given by

det FNð Þmax ¼
N

3σ�2
Rmin

 �3

(40)

The lower bound of estimation errors is derived as

3

tr FNð Þ
¼

3

P

N

i¼1

σ
�2
Ri n2ix þ n2iy þ n2iz

� 	

≥
3σ2Rmin

N
(41)

The change of lower bound of estimation errors with number of beacons is shown in Figure 1.

It’s shown that with more beacons comes more accurate estimation. However, the increasing

rate of accuracy is slowed down, indicating that the navigation accuracy cannot be improved

endlessly by only increasing the number of beacons.

4.5. Observability analysis of the navigation using range-rate measurements

4.5.1. Observability analysis of vehicle’s velocity

The FIM of vehicle’s velocity using range-rate data is given by

Mars Networks-Based Navigation: Observability and Optimization
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FN ¼
X

N

i¼1

σ
�2
Vi

∂V i r; vð Þ

∂v

∂V i r; vð Þ

∂v

 �T

¼
X

N

i¼1

σ
�2
Vi nin

T
i , N ≥ 1 (42)

Eq. (42) has a similar form with Eq. (36) which describes the FIM of position. The only

difference lies in the measurement deviation. Hence the same conclusion of the observability

of velocity can be obtained as that in Section 4.1. The detailed analysis is omitted here.

4.6. Observability analysis of vehicle’s position

Using the range-rate measurements, the FIM of the lander’s position is derived as

FN ¼
X

N

i¼1

σ
�2
Vi

∂V i r; vð Þ

∂r

∂V i r; vð Þ

∂r

 �T

¼
X

N

i¼1

σ
�2
Vi Livv

T
L
T
i , N ≥ 1 (43)

where Li is given by

Figure 1. Lower bound of estimation errors with beacon number.

Number of beacons Maximum determinant of FIM

3 1.000 σ�6
Rmin

4 2.3704 σ�6
Rmin

5 4.6296 σ�6
Rmin

6 8.0000 σ�6
Rmin

7 12.7037 σ�6
Rmin

8 18.9630 σ�6
Rmin

Table 1. Maximum determinants of FIM related to different number of beacons.
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Li ¼
1

Ri

n2iy þ n2iz �nixniy �nixniz

�niynix n2iz þ n2ix �niyniz
�niznix �nizniy n2ix þ n2iy

2

6

4

3

7

5
(44)

The FIM here is much more complicated than that in Section 4.1 due to the involvement of both

range and velocity information in FIM. Define V i ¼ Liv, the following equation can be obtained.

FN ¼
X

N

i¼1

σ
�2
Vi V iV i

T , N ≥ 1 (45)

When there are one or two beacons, the FIM is rank defect, and the navigation system is also

unobservable. With three or more beacons comes the full-rank FIM. In this section, only the

observable cases are focused on.

It is also concluded that the determinant of FIM will be zero if only one or two beacons is used,

which indicates that the position of entry vehicle will be observable if more than two beacons

are used. Furthermore, we focus on three-beacon and more-than-three beacon cases. Compare

Eq. (46) with Eq. (36), we can find that the determinant of FIM for range-rate measurement

cases has a similar format as Eq. (37)

det FNð Þ ¼
X

1 ≤ k3<k2<k1 ≤N

σ
�2
Vk1

σ
�2
Vk2

σ
�2
Vk3

Vk1 � Vk2 � Vk3ð Þ½ �2 ≤ σ�6
Vmin

X

1 ≤ k3<k2<k1 ≤N

Vk1 � Vk2 � Vk3ð Þ½ �2, N ≥ 3 (46)

It’s shown that Eq. (46) has the similar format with Eq. (37). Thus, the change of the observability

with the number of radio beacons is similar with the results in Table 1. However, due to involving

relative range and velocity information, the optimal geometric configuration is different with the

cases using only range measurements.

The lower bound of estimation errors in this case is evaluated by

3

tr FNð Þ
¼

3

X

N

i¼1

σ
�2
Vi V i

T
V i

¼
3

X

N

i¼1

σ
�2
Vi

R2
i

vx n2iy þ n2iz

� 	

� vynixniy � vznixniz

h i2
þ �vxnixniy þ vy n2ix þ n2iz

� �

� vzniyniz
� �2

þ

�vxnixniz � vyniyniz þ vz n2ix þ n2iy

� 	h i2

8

>

<

>

:
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>

=

>
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�2
Vi

R2
i

vx 1þ
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2
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� 	

 �
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1

2
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� �

 �
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2
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� 	

 �
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>
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X

N
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σ
�2
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vx þ vy þ vz
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X
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i¼1

σ
�2
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(47)
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where v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2x þ v2y þ v2z

q

is the lander’s velocity value. Obviously, more radio beacons lead to

more accurate estimation. Since the value of relative range is much bigger than relative velocity,

the lower bound of estimation errors using range-rate date is larger than that using range data.

Besides, it’s concluded that more accurate range-rate measurement, closer relative range, and

slower velocity can realizer more accurate position estimation.

5. Orbit optimization based on observability analysis

5.1. Optimization of navigation using ground beacons

The configuration radio beacons is expressed by the following set

C ¼ piB
�

�i ¼ 1;⋯; l
� �

(48)

where piB ¼ xiB , yiB , ziB
� �T

is the position of the ith beacon. Considering the time-varying

observability, the minimum value of the observability in the entry phase is taken as the optimi-

zation performance index.

D Cð Þ ¼ min
x∈Tx

δ (49)

To realize the Mars network-based navigation, the visibility of the beacons to the lander should

be guaranteed. Define two unit vectors as follows

nBi ¼
xiB, yiB , ziB

� �T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xiB
� �2

þ yiB
� �2

þ ziB
� �2

q , nC ¼
~x ,~y ,~z½ �T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~x2 þ ~y2 þ ~z2
p (50)

where ~x,~y ,~z½ �T is the relative position vector from the lander to the radio beacon, obtained as

~x ,~y ,~z½ �T ¼ x, y, z½ �T � xiB, yiB , ziB
� �T

(51)

To guarantee the visibility, the two vectors in Eq. (50) should satisfy

arc cos nBi � nCð Þ <
π

2
, x∈Tx (52)

The schematic of visibility is shown in Figure 2.

The optimization problem of beacon configuration is given as

max D Cð Þ

s:t: piB ∈Ω, i ¼ 1,⋯, l
(53)
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whereΩ is the set of the areas of radio beacons that satisfy the visibility during the whole entry

phase. In this optimization problem, the global optimization algorithm is selected to obtain the

optimal beacon configuration.

The initial states of the lander are listed in Table 2.

It is assumed that the Mars entry phase lasts approximately 240 seconds. The entry trajectory

and the corresponding visible area are shown in Figure 3.

Three radio ranging measurements at a certain time can geometrically determine the position

of the lander. Thus the navigation scenario with three beacons is first analyzed with respect to

the observability. The optimal locations of beacons are displayed in Figure 4.

The optimal three beacons are located close to the edge of both sides of the visible area. The

beacon on the east side is almost along the entry trajectory, while the west two beacons are

separated on the north and south side of the entry trajectory. The observability degree in this

situation calculated by different methods is illustrated in Figure 5, and the computation time

for each method is listed in Table 3.

Figure 5 shows a huge undulation in observability degree during the Marts entry phase. The

maximum and minimum value are 1:413� 10-8 and 2:945� 10-7 respectively. Considering the

machine precision, the navigation system is observable only if the observability exceeds

Figure 2. Principle of the line-of-sight visibility.

Initial state r 0ð Þkm θ 0ð Þdeg φ 0ð Þdeg V 0ð Þm/s γ 0ð Þdeg ψ 0ð Þdeg

Value 3518.2 �89.872 �28.02 5515 �11.8 5.156

Table 2. Initial states of the lander.

Mars Networks-Based Navigation: Observability and Optimization
http://dx.doi.org/10.5772/intechopen.73605

133



1� 10-16. The observability degree during the entire entry phase passes through the threshold,

and thus, the navigation system is observable. The minimum degree of observability occurs at

the beginning of the entry phase when the entry vehicle is at its greatest distance from radio

beacons, while the maximum degree of observability occurs when the entry vehicle approaches

two beacons on the west side. In order to explain the evolution of the degree of observability. An

Figure 3. Entry trajectory and the visible area.

Figure 4. Optimal configuration for the scenario with three beacons.
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index related to the geometric configuration of the lander and radio beacons is given in Eq. (54)

to explain the evolution of the degree of observability.

I ¼
X

1 ≤ i<j<k ≤N

ni � nj � nk

� �� �2
(54)

where ni, nj, and nk are the unit vectors from the beacon to the lander, N is the number of

beacons. The evolution of index I is displayed in Figure 6, showing an identical variation trend

with observability degree and backing up the observability analysis conclusion.

The observability degree obtained from the three methods is quite close to each other. How-

ever, the method based on Lie algebra consumes the most time. The linearization method

provides the largest deviations, especially at the peak time, indicating a relatively low accu-

racy. The proposed quadratic approximation method achieves a performance balance in accu-

racy and complexity. To analyze the navigation accuracy, the Extended Kalman Filter (EKF) is

Figure 5. Degree of observability for the optimal scenario with three beacons.

Analysis approach Computation time, s

Method with Lie algebra >10,000

Linearization method 1.3987

Method based on quadratic approximation 2.1558

Table 3. Computation time for each approach.
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used to estimate the lander’s states. The range measurement error is assumed to be Gaussian

white noise with a standard deviation of 100 m. The initial errors are listed in Table 4. The

estimation errors and the 1-sigma uncertainty bounds are depicted in Figure 7.

It’s illustrated that θ and ϕ have the most accurate estimation and the fastest convergence. The

convergence of the states V, γ, and Ψ is relatively slow at the beginning of the Mars entry phase

due to the weak observability. With the increase of the observability degree comes the rapid

convergence of the uncertainty bounds and the state estimation errors from about 90 to

115 seconds. The max deceleration of the lander also contributes to the rapid convergence.

5.2. Optimization of navigation using Mars orbiters

Compared with ground beacons, the Mars obiters are constrained by the orbital dynamics,

which is considered to be two-body dynamics here. In this subsection, the initial states of the

Mars orbiters are considered as the optimized variables. Furthermore, assuming that the Mars

orbiters moves in a circular orbit, the variables to be optimized are simplified as inclination i,

longitude of ascending node Ω, and the true anomaly f. The initial states of the orbiter can be

expressed by the optimized variables, given by

Figure 6. The value of I for the optimal scenario with three beacons.

Initial state r 0ð Þm θ 0ð Þdeg φ 0ð Þdeg V 0ð Þm/s γ 0ð Þdeg ψ 0ð Þdeg

Error 1000 0.2 0.2 10 0.2 0.2

Table 4. Errors of initial states.
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rBi0 ¼ RM þ aið Þcosf iPi þ RM þ aið Þsinf iQi

vBi0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ= RM þ aið Þ
p

sin f iPi þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ= RM þ aið Þ
p

cos f iQi

(

(55)

where RM is the radius of Mars, ai is the orbit altitude, and Pi and Qi are given by

Pi ¼ cosΩi , sinΩi , 0½ �T

Qi ¼ �sinΩicosii, cosΩicosii , sinii½ �T

(

(56)

Given the initial states of the Mars obiter, the subsequent states can be obtained by propagat-

ing the two-body dynamics. Likewise, the trajectory of the lander can be also obtained by

propagating the entry dynamics. To evaluate the overall performance of the observability of

the entry phase, the integration of the observability is taken as the performance index, given by

I eð Þ ¼

ð

tf

t¼0

O tð Þdt (57)

Figure 7. Navigation results for the optimal scenario with three beacons.
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where tf is the final time of entry phase, e ¼ e1, ⋯, enf g, ei ¼ Ωi , ii , f i
� �T

denotes the

optimization variables. Similar to ground beacon-based navigation, the visibility between the

lander and the Mars obiters should be also guaranteed. Define two angles as follows:

θ0 ¼ arccos
RM

rk k

 �

θ1i ¼ arccos
RM

r
B
i

�

�

�

�

 !

8

>

>

>

>

<

>

>

>

>

:

(58)

The angle between the position vectors r and r
B
i is given by

θi ¼ arccos
r
B
i � r

r
B
i

�

�

�

�

rk k

 !

(59)

The visibility requires that

θi < θ0 þ θ1i, t∈ 0, tf
� �

(60)

The schematic of the visibility is illustrated in Figure 8. The gray part represents the area in

which the Mars orbiter is invisible to the lander.

Then the orbit optimization problem is given by

max I eð Þ ¼

ð

tf

t¼0

O tð Þdt

subject to θi < θ0 þ θ1i, t∈ 0, tf
� �

, i ¼ 1,⋯, n

(61)

In the optimization problem, the performance index cannot be expressed explicitly by the

optimization variables, and the gradient cannot be obtained. Thus, the heuristic global optimi-

zation algorithm is chosen to solve the optimization problem. The lander’s initial states are

listed in Table 5 with the assumption of a ballistic entry having a banking angle of zero. The

duration of entry phase is setup as 240 seconds.

Figure 8. The schematic of the visibility.
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The navigation scenario with three Mars orbiters is analyzed. The nominal orbit altitude of the

three orbiters is 725 km. The observability is quantified by

O ¼ det N3ð Þ ¼ n1 � n2 � n3ð Þ½ �2 (62)

At a certain epoch, the maximum value of O is 1 when and only when three unit vectors n1, n2,

and n3 are orthogonal to each other. Considering the overall observability of the entry phase,

the orbits of the Mars orbiters are optimized and shown in Figure 9, and the optimal initial

elements are listed in Table 6.

It’s shown that the three orbiters keep a relatively stable configuration, and stays orthogonal

approximately to each other. The value of maximized performance index is 237.963. The

observability almost reaches the maximum value all the time during the Mars entry phase.

The comparison of Mars obiters-based navigation and ground beacon-based navigation is

performed. The observability degree of these two scenarios is shown in Figure 10.

The fixed ground beacons have limited locations due to the visibility constrain and the geo-

metric configuration cannot remain optimal during the entry phase. Thus, the observability is

undulated to a large extent. The Mars orbiters overcome this defect with its moving property.

To show straightforward the geometric configuration., the observability degree is close to

maximum value at each epoch during the Mars entry phase. The angles between the vectors

n1, n2, and n3 are depicted in Figure 11.

It’s shown that, using the ground beacons, the angles between the three vectors change

dramatically in the entry phase. The optimal configuration can be met only at the epoch of

75 s. However, for the orbiter-based navigation scheme, n1, n2, and n3 are almost orthogonal

throughout the entry phase. The advantages of orbiter-based navigation scheme in the config-

uration and observability performance improve the navigation capability.

Next, 500-time Monte Carlo simulations of navigation systems based on EKF are carried out.

The initial position and velocity have standard deviations of 1 km and 0.5 m/s respectively. The

measurement error is set to be 50 m, and considered as Gaussian white noise. The simulation

results are shown in Figure 12.

Since no information of entry vehicle’s velocity is provided from range measurements, the

convergence of velocity estimation is not as quick as position estimation. A much better

navigation performance can be achieved by the Mars orbiter-based navigation. It can be

State Value Unit

x �3.92 km

y �3103.37 km

z �1665.41 km

vx 5775.31 m/s

vy 1124.27 m/s

vz 1175.48 m/s

Table 5. Initial states of the lander.
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Figure 9. The optimal orbits of three orbiters.

Orbit element Obiter 1 Orbiter 2 Orbiter 3

Ω (deg) 49.329 16.136 36.562

i (deg) 24.209 35.889 18.901

f (deg) 240.219 256.141 229.294

Table 6. Initial orbit elements of three orbiters.

Figure 10. Degree of observability in two navigation schemes.
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Figure 11. Angles between three unit vectors in two navigation schemes.

Figure 12. 1σ error bounds of states in two navigation schemes.
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concluded that the configuration of orbiters is a main contributor to the navigation perfor-

mance. The Mars orbiter-based navigation, which can achieve a better configuration, is more

practical for Mars entry navigation.

6. Conclusions

This chapter introduced the Mars Networks-based navigation for the Mars entry phase. Based

on the navigation scheme, the observability of the navigation system was analyzed using the

proposed two novel observability analysis methods. Furthermore, the beacon configuration was

optimized based on observability considering the line-of-sight constraints were concluded that

the beacon configuration is a main contributor to the Mars Networks-based navigation. The

observability analysis showed that an improved behavior of observability and more flexibility

of beacon configuration determination can be achieved using more beacons. Navigation also

demonstrated this conclusion. Meanwhile, compared with the ground beacons, Mars orbiters

may be a better choice as Mars Network which gives a more accurate navigation result.
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