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Abstract

Recent years have witnessed a tremendous progress in 2D materials photodetector. Their 
unique properties including wide photoresponse wavelength, passivated surfaces, strong 
interaction with incident light, and high mobility enable dramatical superiority in photo-
detector application. The photophysics, device structure, working mechanism, and perfor-
mance of three kinds of 2D materials photodetectors including graphene, transition metal 
dichalcogenides (TMDs), and halide perovskite are discussed in detail to give a profound 
understanding for the readers. In addition, we highlight the challenges and opportunities 
faced in studying 2D materials photodetector, and various strategies are summarized to 
help on the development of photodetection research and find ways to approach major 
problems.

Keywords: graphene, transition metal dichalcogenides, perovskite, hybrid structure, 
photodetectors, responsivity, carrier transfer

1. Introduction

Two-dimensional (2D) materials are a class of materials derived from layered van der 

Waals solids. The in-plane atoms are held together by tight covalent or ionic bonds along 

2D directions to form atomic layers, while the atomic layers are bonded together by weak 

van der Waals interactions along the out-of-plane direction [1–3]. Nicolosi et al. sum-

marized different types of layered materials, which can be grouped into diverse fami-
lies. The simplest are the atomically thin, hexagonal sheets of graphene and hexagonal 

boron nitride (h-BN). Other layered materials also include transition metal dichalcogen-

ides (TMDs), black phosphorus (BP), metal halides (such as PbI
2
 and MgBr

2
), layered 

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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distribution, and reproduction in any medium, provided the original work is properly cited.



metal oxides (such as MnO
2
 and MoO

3
), layered double hydroxides (LDHs) [such as 

Mg
6
Al

2
(OH)

16
], layered III-VIs (such as InSe and GaS), layered V-VIs (such as Bi

2
Te

3
 and 

Sb
2
Se

3
), and halide perovskites [4]. Graphene is composed of a single layer of carbon 

atoms bonded together in a hexagonal honeycomb lattice, which was firstly obtained by 
exfoliating graphite using an adhesive tape in 2004 [5]. Then graphene becomes the most 

famous 2D layered material on the basis of its appealing electronic, optical, mechanical, 

and thermal properties, and thus Geim and Novosolov were awarded the Nobel Prize in 

Physics in 2010.

2D materials have many distinctive properties including mechanical stiffness, strength 
and elasticity and high electrical and thermal conductivity. In this chapter, the optical and 

electrical properties of 2D materials are cared for photodetector application. Compared 

with traditional bulk materials, 2D materials have several superiorities as photodetec-

tors. Firstly, 2D materials are sensitive over a wide range of the electromagnetic spectrum 

including ultraviolet (UV), visible, infrared (IR), and terahertz (THz) (see Figure 1a) [6]. 

The bandgap and photoresponse range of different 2D material photodetectors are sum-

marized in Figure 1b. Graphene photodetector can sense over an ultrawide spectrum from 

UV to IR and even THz due to its zero bandgap and linear dispersion near the Dirac point 

[7, 8]. TMD photodetectors have a photoresponse over a spectrum from visible to near 

infrared [9]. The bandgap of BP can be increased from 0.3 eV of bulk to around 2 eV of 

monolayer, corresponding to near infrared and visible [10]. Halide perovskite photodetec-

tors have a photoresponse over a spectrum from UV to near infrared [11]. Secondly, the 

surfaces of 2D materials are free of dangling bonds, facilitating the construction of verti-

cal heterojunctions without the restriction of lattice matching and avoiding surface leak-

age current due to their naturally passivated surfaces, and noise current can be decreased 

to fairly small order [12]. Thirdly, 2D semiconductors with ultrathin thickness can still 

strongly interact with incident light resulting from the singularities effect near the conduc-

tion and valence band edges [13]. Therefore, 2D semiconductor films are ideal materials for 
photodetector application.

Figure 1. (a) The electromagnetic spectrum of 2D materials photodetector and (b) the gap value and detection range of 

different 2D materials [6].
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2. Graphene photodetector

Graphene is an appealing material for optoelectronic applications. The concentrations of elec-

trons and holes can be as high as 1013 cm−2, and their mobilities μ can exceed 15,000 cm2 V−1 s−1 

even under ambient conditions [14]. Due to its zero bandgap and linear dispersion near the 

Dirac point, graphene exhibits an extremely broadband absorption from UV to THz. Despite 

of the atomic layer thickness, graphene absorbs 2.3% of incident photons without significant 
wavelength dependence [6].

2.1. The physical mechanisms

The physical mechanisms of graphene photodetector including the photoconductive effect, 
the photovoltaic effect, the photo-thermoelectric effect, the bolometric effect, the photogat-
ing effect, and the plasma-wave-assisted mechanism (also called Dyakonov-Shur mechanism) 
have been reported (Figure 2) [15]. Based on the sensing mechanism, photodetectors can be 

divided into two categories: photon detectors and thermal detectors. Photodetectors that oper-

ate via the photovoltaic effect are usually called photodiodes. A photodiode photodetector 
can function at two modes under illumination: the photovoltaic mode at zero bias and the 

photoconductive mode under reverse bias [3, 16]. The charge-separation mechanism is shown 

in Figure 3. Photovoltaic effect is based on the separation of photogenerated electron-hole 
pairs by a built-in electric field at junctions, and electrons and holes are collected at opposite 
electrodes, which generates a considerable photocurrent (short-circuit current). A photodi-

ode working in photovoltaic mode has the lowest dark current, and an improved detectivity 

can be obtained. In photoconductive mode, the external electric field with a moderate biasing 
voltage has the same direction as the built-in one, which increases the separation efficiency 
of the electron-hole pairs, as well as the response speed due to reduced carrier transit time 

and lowered diode capacitance. The photo-thermoelectric effect is also called Seebeck effect. 
Pronounced thermoelectric photocurrent can be generated in graphene by hot carriers, and the 

temperature differences between carriers are able to produce a significant photoresponse [17]. 

The bolometric effect is associated with the resistance change produced by heating associated 
with the incident photons. Instead of generating photocurrent under zero bias, it only modi-

fies the conductance of graphene under high external bias [18–19]. A d.c. voltage is generated 

Figure 2. Schematic of the four kinds of graphene photodetection mechanisms [15].
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in a field-effect transistor in response to a THz radiation oscillation field through plasma-wave 
rectification, which was first proposed by Dyakonov and Shur [20]. The graphene photodetec-

tor based on plasma-wave-assisted mechanism can be used to integrate with silicon photonics.

2.2. The structure and performance

Here, all graphene photodetectors are based on the photoconductor and photovoltaic effects. 
The external bias voltage is not desired for graphene photodetectors because a large dark 

current can be generated as graphene has high conductivity. The built-in electric fields can be 
introduced by constructing a homogeneous p-n junction, a metal-graphene Schottky junction, 
or a tunneling barrier junction. Surface chemical modification methods can be adopted for the 
controllable n- or p-type doping in graphene. Liu et al. fabricated a graphene p-n junction pho-

todiode photodetector through a selected-area chemical doping process, showing its IR detec-

tion ability [21]. A metal-graphene-metal (MGM) photodetector can be achieved by taking 

advantage of the work-function difference between graphene and a contacting metal. In 2009, 
Xia et al. reported the first graphene photodetector with a 40 GHz bandwidth and a 0.5 mA W−1 

photoresponsivity (Figure 4(a, b)) [22]. Then they fabricated a MGM photodetector with asym-

metric electrodes (Ti and Pd) to extend the operation region, and a photoresponsivity of 6.1 mA 

W−1, a bandwidth of 16 GHz, and a data rate of 10 Gbit s−1 were obtained (Figure 4 (c, d)) [23].  

In this device, photocurrent is generated by local illumination of one of the metal/graphene 

interfaces of a back-gated graphene FET. The field arises from charge transfer from the respec-

tive contact metal to graphene, and it can be adjusted by choosing proper metal. A graphene 
double-layer tunneling barrier junction can be used to achieve ultra-broadband and high-
sensitivity photodetection. The device is composed of two graphene layers sandwiching a 

Figure 3. (a) The current-voltage curve of photodiode, and (b) the energy-band diagram of photovoltaic mode and 

photoconductor mode.
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5-nm-thick Ta
2
O

5
 tunnel barrier (Figure 5) [24]. The top and bottom graphene layer exhibit 

shifted Fermi levels about 0.12 eV due to the different extents of interaction with substrates. 
Under illumination, photogenerated hot carriers in the top graphene tunnel into the bottom 
layer, leading to a charge build-up on the gate. The devices demonstrated room-temperature 

photodetection from the visible to the mid-infrared range, with mid-infrared responsivity 

higher than 1 A/W. Under low excitation power, the device shows a remarkable responsivity 

of greater than 1000 A/W at 1 V, suggesting the built-in amplification mechanism.

Figure 4. The metal-graphene Schottky junction photodetectors: (a, b) symmetric electrodes and (c, d) asymmetric 
electrodes [22–23].

Figure 5. Graphene double-layer tunneling barrier junction photodetectors: (a) schematic of device structure, (b) I-V
g
 

characteristics of the photodetector under different laser powers, and (c) photoresponsivity versus illumination power 
[24].

Graphene, Transition Metal Dichalcogenides, and Perovskite Photodetectors
http://dx.doi.org/10.5772/intechopen.74021

5



3. TMD photodetector

2D transition metal dichalcogenides (TMDs) include MX
2
 (M = Mo, W; X = S, Se, Te) which 

is formed by covalently bonded X-M-X 2D hexagonal trilayers, and neighboring layers bond 

with each other via weakly van der Waals forces [25]. Bulk TMDs possess an indirect band 

gap of 0.9–1.4 eV. Only monolayer TMDs have direct band gap, and the indirect band gap of 

TMDs is thickness dependent resulting from strong interlayer coupling and quantum con-

finement effect, contributing to efficient light absorption and emission [26]. The absorption 

spectrum of TMDs is well matched to the solar spectrum, and the absorption coefficient is 
typically on the order of 104–106 cm−1 so that more than 95% of the sunlight is absorbed for 

TMD films with sub-micrometer thickness. The mobility of TMDs increases with the num-

ber of layers, typically ranging from 0.2 to 34,000 cm2 V−1 s−1 [27]. The charge-carrier density 

depends on the doping levels and recombination centers, and the typical value is 1012 cm−2 

[28]. Moreover, monolayer TMDs have long-lived excitons because of high binding energies, 

such as 320 meV for excitons in WS
2
 and 20 meV for trions in MoS

2
, which are several times 

higher than those in bulk [29, 30].

3.1. MoS
2
 photodetector

Monolayer MoS
2
 has a direct bandgap of 1.8 eV, large carrier mobility above 200 cm2 V−1 s−1, 

strong photoluminescence, good chemical stability and mechanical flexibility, and so on [3]. 

MoS
2
-based photodetectors are always in the form of a FET configuration. In 2012, Yin et al. 

developed a mechanically exfoliated monolayer MoS
2
 phototransistor, which has a photores-

ponsivity of 7.5 mA/W for 750 nm light and a response time of 50 ms [31]. As shown in Figure 6a,  

the cut-off wavelength of photodetector is at ≈670 nm, which agrees well with the bandgap 
of the monolayer MoS

2
. After that, several factors have been investigated to explore how they 

affect the photoresponse performance. First, the charge trapping in MoS
2
 or at the MoS

2
/sub-

strate interface plays a key role in the photoresponse process. Lopez-Sanchez et al. obtained a 

high responsivity up to 880 A/W from a monolayer MoS
2
 phototransistor (Figure 6b), but the 

response time can be several seconds, which is influenced by the surroundings of MoS
2
 [32]. 

This is a specific example to demonstrate the effect of trap states on responsivity and response 
time. Second, the responsivity and response speed are highly dependent on the layer number 

of MoS
2
. Khan et al. reported an increased responsivity and response speed with increasing 

numbers of MoS
2
 layers. They also demonstrated that responsivity is significantly enhanced 

in N
2
 gas environment compared with that in atmospheric environment, indicating that the 

charge-carrier density can be affected by the oxygen (Figure 6c, d) [33]. Third, the preparation 

methods including mechanically exfoliated, chemical vapor deposition (CVD), liquid exfo-

liation, and solution synthesis can have a significant effect on photoresponse (Figure 6e, f). 

Similar performance has been reported for mechanically exfoliated and CVD methods, while 

inferior performance is obtained for solution-processed MoS
2
. Besides, electrode contact and 

surface modification are also reported to affect the performance of MoS
2
 photodetector, and 

several strategies are employed to enhance the photoresponse performance [32, 34, 35]. The 

photodetector with low Schottky barrier exhibits a very high photo gain, but response speed is 
slow. On the contrary, a very short response time can be obtained for the photodetector with 

high Schottky-contact barrier, but the gain decreases by several orders of magnitude [36].
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3.2. WS
2
 photodetector

Monolayer WS
2
 has a direct bandgap of 1.98 eV instead of an indirect bandgap of 1.4 eV in the 

bulk, but its carrier mobility of 0.2 cm2 V−1 s−1 is lower than bulk and it also has strong photolu-

minescence due to high exciton binding energy [26]. WS
2
 is also reported to have much smaller 

effective electron mass, providing better transistor performance than Si as well as MoS
2
 [37]. 

Besides, WS
2
 as a potential electronic material is inert, nontoxic, and environmentally friendly. 

The photoresponse performance of WS
2
 photodetector is also affected by the same factors as MoS

2
 

including the charge trapping induced by substrate and atmosphere environment, the layer 

number, the preparation methods, electrode contact, and surface modification. Perea-López 
et al. have studied the photoresponse of CVD-grown few-layer WS

2
 photodetector (Figure 7a).  

The responsivity is highly dependent on the excitation wavelength, and the highest photo-

response wavelength is 647 nm. The device shows a maximum photocurrent of 0.6 μA, a 

responsivity of 92 μA W−1, and a fast response speed of ≈5 ms. The low responsivity is attrib-

uted to the high resistances ranging between 109 and 1012 Ω resulting from the low mobility 
[38]. Lee et al. reported a mechanically exfoliated WS

2
 photodetector with a photoresponsiv-

ity of 0.27 A/W and an on/off ratio of 102–103 [37]. Huo et al. reported that the responsivity 

of mechanically exfoliated WS
2
 photodetector can increase from 5.7 A W−1 in vacuum to a 

maximum of 884 A W−1 in an NH
3
 atmosphere (Figure 7b). The high sensitivity on the sur-

rounding environment can be ascribed to the electron transfer to absorbed gas molecules, 

demonstrating the role of charge trapping [39]. As shown in Figure 7c, Yao et al. prepared 

Figure 6. MoS
2
 photodetectors based on FET configuration. (a) The dependence of I

ds
 of a single-layer MoS

2
 phototransistor 

on excitation wavelength. Inset shows an optical image of single-layer MoS
2
 photodetector device [31] and (b) responsivity 

of a monolayer MoS
2
 phototransistor as a function of incident power. Inset shows the structure and photocurrent spatial 

map of the MoS
2
 photodetector [32]; (c) photoresponsivity of single-layer, bilayer, and multilayer MoS

2
 photodetectors 

as a function of V
ds

; and (d) time-dependent photoresponse in atmospheric and N
2
 environments. (e) Schematic of MoS

2
 

photodetector prepared by CVD method. (f) Optical images of single layer and multilayer of MoS
2
 [33].
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multilayer WS
2
 films with the size of cm2 by pulsed-laser deposition method. Benefiting from 

the large optical absorbance and high carrier mobility (31 cm2 V−1 s−1), the responsivity of the 

device approaches a high value of 0.51 A W−1 in an ambient environment, and it can be further 

enhanced to 0.7 A W−1 in a vacuum environment [40].

4. Perovskite photodetector

Recent years have witnessed the rapid development of the organic-inorganic hybrid halide 

perovskites. Their exceptional properties including an adjustable spectral absorption range, 
high carrier mobility, long diffusion lengths, and the affordability of fabrication render them 
one of the most exceptional optoelectronic materials for photoelectrical device applications 

especially in photodetectors [41]. Organic-inorganic hybrid halide perovskites have the same 

chemical formula ABX
3
. The A cation can be organic species including CH

3
CH

2
NH

3
+ (EA), 

HC(NH
2
)

2
+ (FA), and CH

3
NH

3
 (MA) or inorganic species such as Cs, Rb, K, and Na, and their 

ionic radiuses decrease gradually. The A cation is thought no direct contribution toward elec-

tronic properties, but its size can alter the degree of distortion that in turn affects electronic 
properties [42]. The B metal cation can be group IV metal such as Pb2+, Sn2+, and Ge2+ in a diva-

lent oxidation state, and the Pb2+ has superior stability than Sn2+ and Ge2+. The halide anion can 

be the most effectively varied component. In general, with increasing ionic radius, a narrower 
bandgap can be obtained, resulting in that absorption spectra shift to longer wavelengths. 

Figure 7. The photoresponse performance of WS
2
 photodetectors. (a) IV curve acquired with different laser power 

irradiation. Inset shows schematic of a few-layered WS
2
 photodetector [38], (b) AFM image of the multilayer WS

2
 

nanoflakes, (c) the relationship between the light intensity and photoresponsivity under various gas atmospheres [39], 

(d) AFM image and photographs of a large-area multilayered WS
2
 film on a 1 × 1 cm2 Si substrate, (e) power-dependent 

photocurrent, and (f) temporal photoresponse of the WS
2
 photoresistor [40].

Two-dimensional Materials for Photodetector8



Perovskites have a large absorption coefficient, so strong optical absorbance across the entire 
visible spectrum can be achieved for a thin thickness less than 500 nm, facilitating the collec-

tion of charge carriers [43]. Moreover, MAPbI
3
 has been reported with the carrier diffusion 

lengths up to 100 nm for both electrons and holes, and exceeding 1 μm has been reported in 

the MAPbI3 − xCl
x
, resulting from long carrier lifetime and large carrier mobility [44, 45]. So 

far, perovskite photodetectors have been widely reported from different aspects including 
composition engineering such as the organic-inorganic hybrid MAPbX

3
 (X = Cl, Br, I) and all-

inorganic CsPbX
3
 (X = Cl, Br, I) perovskites, morphology such as compact polycrystalline films 

and nanocrystal films (quantum dots, nanocubes, nanowires, nanoplatelets, and nanosheets), 
device structure such as photoconductor and photodiode, and so on. Compared with organic-

inorganic perovskite, all-inorganic perovskite exhibits better air stability.

4.1. 2D perovskite photodetector

2D halide perovskites with different morphologies including microdisks, nanoplatelets, and 
nanosheets (NSs) have been synthesized via both CVD and colloidal chemistry methods. Many 

features including high photoluminescence (PL) quantum yield, quantum confinement effect, 
increased exciton binding energy, and long electron diffusion length have been demonstrated. 
In 2015, Jang et al. synthesized MAPbBr

3
 nanoplatelets with the length of 70 nm and the thick-

ness of 15 nm by colloidal chemistry method, and mixed halide perovskite (MAPbBr3 − xCl
x
 and 

MAPbBr3 − xIx
) nanoplatelets were obtained by anion-exchange reaction in solution. The full-

range band gap tuning over a wide range (1.6–3 eV) was demonstrated in Figure 8a [46]. By 

comparing photoresponse performance in Figure 8b and c, MAPbBrI
2
 has a larger photocur-

rent than MAPbBr
3
 under the same irradiation condition, which may result from its stronger 

light absorption. Next, Liu et al. synthesized triangle 2D MAPbI
3
 NSs with thinner thickness 

of several nanometers and larger lateral sizes of several micrometers based on two-step CVD 

method. A photoconductor photodetector was fabricated in the form of a FET configuration 
(Figure 8d and e). High responsivities of 22 12 A W−1 at 1 V bias voltage were obtained under 

irradiations of 405 nm laser with 0.07 mW cm−2. The response or recovery time was shorter 

than 20 or 40 ms upon 405 nm irradiation (Figure 8f and g) [47]. The excellent photoresponse 

properties make this 2D perovskite promise for photodetection applications.

2D all-inorganic perovskites are also reported to fabricate high-performance photodetectors. 

In particular, CsPbBr
3
 NSs has been widely studied on synthesis, photophysics, electrical 

property, and device application due to its high air stability. 2D CsPbBr
3
 perovskite is formed 

by incorporating Cs+ cations into a 2D sheet of PbBr
4
2− octahedra of which six Br atoms sur-

round each Pb atom and four in-plane Br atoms are being shared by two octahedrons [11]. 

Bulk CsPbBr
3
 has been reported to possess a thermodynamically orthorhombic structure 

at room temperature, and it can transform to tetragonal and cubic phases at 88 and 130°C, 

respectively [48]. However, the cubic phase could be preserved at room temperature owing to 

a large number of surfaces. Both cubic and orthorhombic phases are reported for CsPbBr
3
 NSs 

by different groups [49, 50]. In terms of well-controlled synthesis, Akkerman et al. synthesized 

few-layer CsPbBr
3
 NSs with monolayer-level thickness control [51]. Shamsi et al. synthesized 

few-layer CsPbBr
3
 NSs with lateral dimensions up to a micrometer size. [52] For photophysics, 

Li et al. measured PL decay time of 2 ns and exciton binding energy of 120 meV for CsPbBr
3
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nanoplates with a thickness of 3.4 nm and the lateral dimensions of 20.2 nm [53]. Our group 

reported a larger exciton binding energy of 231.6 meV for CsPbBr
3
 NSs with larger lateral 

dimensions of 700 nm and a thickness of 1.8 nm based on the absorption spectrum fitting with 
a quantum-well absorption model (Figure 9a–c). At the same time, high carrier mobility of 

77.9 cm2 V−1 s−1 was obtained by the Hall effect and transient photoconductivity measurements 
[54]. There are some reports on 2D CsPbBr

3
 NSs photodetector application. In 2016, Song et al. 

fabricated flexible CsPbBr
3
 NS film visible-light photodetectors with a light on/off ratio of 

>103, a R of 0.64 A W−1, and an EQE of 54% under 442 nm light at a power of 0.35 mW cm−2.  

The response and recovery time were measured to be 0.019 or 0.025 ms, respectively. A high 

stability and outstanding flexibility (>10,000 cycles) were also obtained [55]. This work demon-

strates that all-inorganic perovskite CsPbBr
3
 NSs have a great potential in photodetector appli-

cation. Next, Lv et al. reported a similar result on CsPbBr
3
 NSs photodetectors [56]. Then, our 

group reported that the responsivity could be improved by the annealing, which was demon-

strated to increase coupling energy but decrease exciton binding energy resulting from ligand 

rearrangement. Tunneling instead of resonant energy transfer as a dominant way of exciton 

dissociation contributed to a high charge transfer rate. This exciton dissociation mechanism 

was proposed based on microscopic KPFM results (Figure 9d). As shown in Figure 9e and f, 

the response and recovery time were short, and the largest responsivity of 0.53 A W−1 could be 

obtained under the 525 nm irradiation with the intensity of 0.009 mW cm−2 [54].

4.2. Perovskite/graphene hybrid photodetector

Despite that the perovskites with different compositions, morphologies, and structures have 
been reported as photodetectors with high performance, their responsivity can be further 

Figure 8. (a) Schematic for MAPbX
3
 NSs synthesized by anion-exchange reaction. I−V characteristics of (b) MAPbBr

3
 and 

(c) MAPbBrI
2
 NSs film under different irradiation and dark conditions, (d) schematic of the 2D MAPbI

3
 NSs photodetector 

[46], (e) AFM images of MAPbI
3
 NSs with different thicknesses, (f) time-dependent photocurrent measurement, and  

(g) photocurrent and photoresponsivity versus optical illumination power under the 405 nm irradiation [47].

Two-dimensional Materials for Photodetector10



improved by constructing hybrid structure. A promising strategy is based on hybrid phototran-

sistors, where light is efficiently absorbed by perovskite layer while photogenerated carriers can 
transfer into conducting layer such as graphene, and high gain can be obtained from one carrier 

that recirculate many times within the lifetimes of the opposite charges [3]. For this hybrid photo-

detector, graphene is firstly transferred on the FET configuration substrate, and then perovskites 
including polycrystalline film or nanocrystal can be deposited on the graphene. In 2015, Lee 
et al. fabricated the MAPbI

3
/graphene hybrid photodetector, and a dramatic PL quenching was 

observed for hybrid film resulting from effective charge-carrier transfer through π-π interac-

tion between perovskite and sp2 hybridized graphene (Figure 10a, b). The device exhibited a 

broad spectral photoresponsivity across the visible range. The photoresponsivity and effective 
quantum efficiency (EQE) were 180 A/W and 5 × 104% at a relatively high illumination power of 

1 μW, respectively (Figure 10c). The device also exhibited good on-off switching, and response 
and recovery times were 87 and 540 ms (Figure 10d) [57]. The success of this novel perovskite/

graphene hybrid photodetector is a powerful evidence to demonstrate efficient hybrid structure. 
Instead of compact polycrystalline perovskite film, Wang et al. reported a high-performance 
perovskite/graphene hybrid photodetector consisting of graphene covered with a layer of dis-

persive MAPbBr
2
I islands. A photoconductive gain of 109, a responsivity of 6.0 × 105 A W−1, and 

a broadband detection across UV-visible are obtained. The photoresponse mechanism was dis-

cussed deeply. Under illumination, electron-hole pairs were generated in perovskite and then 

separated at the heterojunction interface. The holes were transferred to graphene sheets, and 
electrons were trapped in perovskite with a quite long lifetime, inducing a photogating effect 
[58]. Then, Qian et al. fabricated a nitrogen-doped graphene quantum dots (NGQDs)-MAPbI

3
/

reduced graphene oxide (rGO) transistor, exhibiting a high responsivity of 1.92 × 104 A/W and  

Figure 9. (a) Scanning electron microscope (SEM) image, (b) transmission electron microscopy (TEM) image, and  

(c) small-angle X-ray scattering (SAXS) patterns of CsPbBr
3
 NSs, (d) Kelvin probe force microscopy (KPFM) surface 

potential mapping, (e) transient photoresponse curves, and (f) the wavelength-dependent photocurrent and responsivity 

curves of CsPbBr
3
 NS film photodetector [54].
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a short response and recovery time of 10 ms. The outstanding performance was attributed to 
that NGQDs offer an effective path for electron transfer from perovskite to the rGO [59]. Despite 

high responsivity, perovskite/graphene hybrid photodetectors suffer from a large dark current 
about mA order because of ultrahigh conductivity of bottom graphene layer, resulting in high 
noise level.

Besides the lateral photoconductor structure, a vertical graphene/perovskite/graphene 

(GPG) photodetector has also been fabricated, and higher responsivity is achieved due to 

its shorter carrier extraction length. Duan’s group fabricated a series of single 2D material 

heterojunction. Wang et al. reported a graphene/CsPbBr
3
 microplate/graphene sandwiched 

vertical photodetector by growing CsPbBr
3
 microplates on an exfoliated graphene flake, fol-

lowed by the dry transfer of a second layer of graphene (Figure 11a). As shown in Figure 11b,  

the photocurrent rapidly increased with the light power, and the photocurrent versus 

bias curves were nonlinear, indicating the presence of a contact barrier. The responsivity 

decreases with the increasing light power density, and the maximum responsivity exceeds 

105 A/W (Figure 11c) [60]. Besides, Cheng et al. fabricated a graphene/MAPbI
3
/graphene 

photodetector, delivering a high responsivity of 950 A W−1 and a high photoconductive gain 

of 2200 at 1 V bias under a 1.52 nW irradiation of 532 nm laser (Figure 11d and e). It also 

exhibited good and reproducible photo-switching behavior with response and recovery 

time of 22 and 37 ms. The photocurrent mapping showed uniformly contribution from the 

overlapping area, indicating that the majority of photoinduced carriers travel in vertical 
direction (Figure 11f) [61].

4.3. Perovskite/TMDs hybrid photodetector

Compared with perovskite/graphene hybrid photodetector, perovskite/TMD hybrid photo-

detector has a significant lower dark current. TMD layer serves as both light absorbers and 
carrier transport layer, while perovskite as sensitized layer can enhance light absorbance and 

extend the detection range. The heterojunction formed between perovskite and TMD layer 

Figure 10. Graphene/MAPbI
3
 hybrid photodetector. (a) Schematic diagram of the device, (b) PL spectra of the pristine 

MAPbI
3
 and graphene/MAPbI

3
 hybrid films upon excitation at 532 nm, and (c) responsivity and EQE vs. illumination 

power at 520 nm wavelength. The inset shows the photodetectivity vs. illumination power, (d) Photo-switching 

characteristics of the photodetector under alternating dark and light illumination (500 μW, 520 nm). The gate and drain 

voltages were 0 and 0.1 V, respectively [57].
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can promote the carrier transfer, contributing to a high responsivity and fast response speed. 

In 2016, Ma et al. fabricated a hybrid perovskite MAPbI
3
 and TMDs material WS

2
 planar pho-

toconductor detector for the first time. Both MAPbI
3
 and WS

2
 layers contacted with Au elec-

trodes, which could transport photocarriers as parallel channels (Figure 12a). From the band 

structures of hybrid bilayer in Figure 12b, photogenerated charges were separated at the inter-

face due to the Fermi level difference, which reduced the charge recombination and enhanced 
the carrier separation. The significant PL quenching for both MAPbI

3
 and WS

2
 was observed, 

indicating efficient charge transfer at the interface and exciton dissociation (Figure 12d).  

Furthermore, they proposed the photoresponse mechanism. In dark, the charge transfer at 

the interface lowers (raises) the Fermi level of WS
2
 (perovskite), leading to the formation 

of depletion regions, suppressing the dark current. Under the light illumination, excitons 

are generated in the perovskite film, and electrons are transferred to WS
2
 film, which raises 

(lowers) the Fermi level of WS
2
 (perovskite) and reduces the Schottky barriers at contacts, 

resulting in the high photocurrent (Figure 12c). The device exhibited a high on/off ratios of 
≈105 and a high responsivity of ≈17 A W−1. Owing to the high mobility of the WS

2
 monolayer 

and the efficient interfacial charge separation, the response speed of the hybrid photodetector 
was enhanced by four orders of magnitude compared to the reference perovskite single layer 

(Figure 12e and f) [62].

Figure 11. Graphene/CsPbBr
3
 microplate/graphene photodetector. (a) Optical microscope image of a vertical hete-

rostructure. The inset shows a device schematic, (b) photocurrent versus bias in the dark and under different illumination 
light power densities, (c) power density dependence of the photocurrent and responsivity [60], graphene/MAPbI

3
 

nanoflakes/graphene photodetector, (d) device schematic, (e) photo-switching characteristics of the photodetector under 
alternating dark and light illumination, and (f) the corresponding photocurrent mapping [61].
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Figure 13. MoS
2
/MAPbI

3
 hybrid photodetector. (a) Schematic device structure and energy-band diagram, (b) schematic 

device structure and energy-band diagram of photodetector under 5 V bias voltage and laser exposure, (c) PL spectra 

of perovskite and perovskite/MoS
2
 hybrid bilayer, (d) IV characteristics of MoS

2
 and perovskite/MoS

2
 photodetectors 

under both dark and illuminated conditions, (e) photoresponsivity as a function of the incidence wavelength, and  

(f) photo-switching characteristics [63].

Figure 12. WS
2
/MAPbI

3
 hybrid photodetector. (a) Schematic device structure; (b) band structures of hybrid bilayer;  

(c) working mechanism of hybrid photodetector; (d) PL spectra of WS
2
, perovskite, and hybrid bilayer upon excitation at 

532 nm; (e) bias dependence of the on/off ratios; and (f) time-dependent photoresponse [62].
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At the same time, Kang et al. developed an ultrahigh-performance MoS
2
/MAPbI

3
 hybrid pho-

todetector by using mechanically exfoliated 25-nm-thick MoS
2
 nanoflakes [63]. Similar with 

the WS
2
/MAPbI

3
 hybrid bilayer, the photogenerated electrons in perovskite are thought to 

reach the MoS
2
 layer through diffusion (Figure 13a). The significant PL quenching for hybrid 

bilayer was also observed, indicating the charge transfer at the interface (Figure 13c). Under 

the bias voltage and laser illumination, electron-hole pairs generated in perovskite were sepa-

rated based on the ambipolar charge transport property of the perovskite and diffuse into 
the MoS

2
 region, followed by the carrier collection step caused by the electric field in the 

Ti-MoS
2
 junctions (Figure 13b). The photocurrent of hybrid photodetector has increased by 

one order than MoS
2
 photodetector when V

G
 was −30 V(Figure 13d). The photoresponsivity of 

the hybrid photodetector and their ratios as a function of wavelength is shown in Figure 13e.  

In the case of the 520 nm laser, the photoresponsivity was highly enhanced by factors of 7.7 

(from 636 to 4.9 × 103 A W−1). The response and recovery time were also decreased for hybrid 

photodetector, but they are quite long compared with WS
2
/MAPbI

3
 hybrid photodetector 

(Figure 13f). Then, Lu et al. reported a WSe
2
/MAPbI

3
 hybrid photodetector with a photore-

sponsivity of 110 A W−1, a high EQE of 2.5 × 104%, and a high D* of 2.2 × 1011 Jones [64]. In 

all, the outstanding photoresponse performance of perovskite/TMDs hybrid photodetector 

demonstrates this strategy as an efficient route to improve the performance of 2D material 
photodetector.

5. Summary and outlook

The distinctive optical and electrical properties enable 2D materials as an ideal and power-

ful candidate in photodetector application. The superiorities of 2D materials include a wide 

range of photoresponse wavelength (graphene is from UV to THz, TMDs is from visible to 

near infrared, halide perovskite is from UV to near infrared), facilitating the construction of 

vertical heterojunctions due to their naturally passivated surfaces, and the strong interaction 
with incident light resulting from the singularities effect near the conduction and valence 
band edges. This chapter has introduced the photophysics, device structure, working mecha-

nism, and performance of three kinds of 2D materials photodetectors including graphene, 

TMDs, and halide perovskite. For graphene photodetector, four kinds of physical mecha-

nisms are discussed, and the graphene p-n junction and metal-graphene Schottky junction are 
based on photovoltaic and photoconductor effects, respectively. These two effects also work 
for most of the 2D materials photodetectors. Generally, graphene photodetector has a wide 

sensitive wavelength and fast response speed, but it also suffers from a low responsivity and 
a high dark current. For TMD photodetector, there are the same performance influence fac-

tors, such as the charge trapping induced by substrate and atmosphere environment, the layer 

number, the preparation methods, electrode contact, and surface modification. However, the 
photoresponse performance is also determined by the photophysical parameters including 

mobility and absorption coefficient. For example, MoS
2
 photodetector has a higher responsiv-

ity than WS
2
 because of its high mobility. For 2D halide photodetector, the high absorption 

and mobility promote the high photoresponse performance of MAPbBr
3
 nanoplatelets and 

CsPbBr
3
 nanosheets. Furthermore, both the perovskite/graphene and perovskite/TMD hybrid 
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structures are employed to enhance the photoresponse based on reduced the charge recom-

bination and enhanced the carrier separation due to band difference. In summary, the 2D 
materials show their unique superiority in photodetector application.

In spite of the great success for 2D materials photodetectors, it is admitted that lots of chal-
lenges still remain. The dark current of graphene photodetector is too large, resulting in a 

high noise. The sensitive to environment such as oxygen and water is an unfavorable fac-

tor to TMDs and perovskite photodetectors, which is the origin of the device instability. To 

solve these problems, the novel 2D materials, approaches, and hybrid structure should be 

developed to meet the requirement for practical applications. First, the responsivity and 

response speed can be enhanced by exploring novel 2D materials with controllable prepara-

tion method. Second, novel approaches for chemical doping and surface treatment should 

be investigated, which has been proved as a feasible strategy for improving or manipulating 

device performance. Third, new hybrid photodetectors should be focused to demonstrate the 

increased responsivity resulting from efficient carriers transfer. Both materials engineering 
and device structure design are important to achieve high and reliable photoresponse perfor-

mance for pursuing practical application of 2D materials photodetectors in the future.
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