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Abstract

This chapter describes the development of the soil-water budget at various spatiotempo-
ral scales, including an example of post-mining sites. This includes the formation of soil 
aggregates and porosity, the development of water retention in the soil profile, and water 
losses by runoff and evapotranspiration. It is emphasized that the development of soil-
water retention is closely linked to carbon storage in post-mining soils, which is strongly 
affected by litter quality. Plants with a high C:N ratio of litter feature most of the organic 
matter in Oe and litter layers, which results in a lower soil-water storage, whereas soil 
covered by vegetation with low litter C:N ratios produces organo-mineral aggregates 
and deeper A horizons that promote water storage. Moreover, the need for controlled 
catchment conditions to get a better understanding of how these processes on various 
spatiotemporal scales interact is emphasized.

Keywords: soil aggregates, soil profile, catchment, water retention, runoff, 
evapotranspiration

1. Introduction

Water movement in the landscape is a complex process, consisting of many connected and 

interacting processes at various spatiotemporal scales. These include processes on the level 

of soil aggregates, which affect infiltration and the ability of soil to hold water. Formation of 
macropore connectivity and surface channels, which affect surface and subsurface runoff. 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
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Bedrock weathering and transportation processes affect redistribution of clay and nutrients. 
Organic matter in the soil profile and in the landscape feeds back to water movement and 
storage in the ecosystem. Many of these processes are affected by plants and soil biota, such 
as aggregate formation, creation of a porosity network, water intake by plants, or intercep-

tion of rain by vegetation. Water enters the ecosystem by rainfall and leaves it by runoff and 
evapotranspiration. In the ecosystem, water can be stored in vegetation and in soil. The pre-

vious research shows that the ability of soil to store water is closely related to storage of 

soil organic matter (SOM) [1]. During ecosystem development, a vegetation cover develops, 

which reduces water input to the soil by interception and increases water loss by transpira-

tion, but reduces evaporation from open soil surfaces. Vegetation also produces litter and 
root exudates, which are important for the activity of soil biota. Soil biota, which mostly 
directly or indirectly feeds on plant products, affects aggregate formation, storage of SOM, 
and distribution of SOM in the soil profile. Certain types of plants promote the activity of 
specific assemblies of soil biota, which affect certain patterns of SOM storage and distribution 
in soil. Plants with a conservative growing strategy promote a soil community that causes no 
or little bioturbation, which results in a thick litter and Oe layer on the soil surface. On the 
contrary, fast-growing plants promote intensive bioturbation by soil fauna and the forma-

tion of a deep A organo-mineral soil horizon [2–5]. This affects overall SOM storage [6, 2], 

which very likely affects water storage in soil as well [1]. Plants affect water movement in the 
system also by other means, such as by a different degree of interception and fate of water 
trapped by interception or different water consumptions and transpiration rates. Although 
all of these parameters have been intensively studied, we have only little information about 
how individual plant traits that affect SOM behavior in the soil relate to various parameters 
determining water storage and movement in the ecosystem. These interactions have been 

intensively studied in terms of the relationship between soil development and SOM storage, 
and although there is a general understanding that SOM may be closely related to soil-water, 
much less is known about factors and mechanisms affecting the water regime development 
during ecosystem development.

Mining and open-cast mining cause large disturbances to ecosystems. Most of the affected 
ecosystems are completely erased, either excavated or buried under overburden, which usu-

ally substantially differs from well-developed soils. In addition to texture, the hydrophobicity 
of the substrate [7], lack of macropores, soil compaction, and sometimes salinity are factors 

that can affect soil conditions, particularly the soil-water regime [8, 9]. The study of ecosys-

tem development at these sites has a large practical impact. Post-mining sites also represent 
locations that have a great potential to study these processes. One of the reasons that make 
these sites suitable for the study of ecosystem development is the presence of sites of various 

ages, so-called chronosequences, where ecosystem development can be studied by comparing 
individual parameters or processes on sites of different ages. This approach, called also space-
for-time substitution, allows the study of long-term processes in a very short time. Despite 

its clear advantages, this type of investigation has also its limitations, as each site develops 

in a specific trajectory, which may differ from the general chronosequence pattern. Another 
reason why post-mining sites are good systems to study successional processes is that these 

sites offer a combination of parameters that may not occur elsewhere and are suitable for 
large-scale landscape manipulations, which would be technically hardly possible or ethically 

questionable elsewhere.
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The aim of this contribution is to describe processes that affect the development of the water 
regime at post-mining sites after open-cast coal mining near Sokolov based on the extensive 
study of chronosequences at these sites. In addition, the idea of constructing isolated, con-

trolled micro-catchments that would allow the investigation of these processes on various 

levels, from soil aggregates to the landscape scale, is presented.

2. Water regime development in chronosequence studies across 

various spatiotemporal scales

As already explained, the development of a water regime can be divided into two parts: the 
development of soil, which stores water in the ecosystem, and the development of vegetation, 

which is an important consumer of water. However, vegetation also determines many trans-

portation processes, which affect movement of soil between ecosystem compartments and 
surroundings, and directly or indirectly determines soil-forming processes. In this chapter, 
we will follow the formation of soil aggregates and their role in water retention, followed by 

the development of the whole soil profile and, finally, the development of vegetation and its 
role in soil profile development.

2.1. Microscale processes of aggregate formation and porosity

Soil aggregates are secondary particles formed through the rearrangement and cementation 
of primary mineral particles with SOM [10]. They are often grouped by size into macroaggre-

gates (250–2000 μm) and microaggregates (53–250 μm) [11–13]. A highly influential model on 
the formation of aggregates was published by Tisdall and Oades [14] that was later modified 
by Oades [15]. Based on these models, it is now commonly accepted that macroaggregates 

form first, mainly by the entanglement of particles by fungal hyphae and roots (temporary 
binding agents) and around fresh particulate organic matter (POM) inputs. When these tem-

porary binding agents and the POM in macroaggregates decompose into fragments, coated 
with mucilage produced during decomposition, they become encrusted with clay particles 

and thus form the nucleus for microaggregates within macroaggregates [11]. As a conse-

quence of this “aggregate hierarchy,” macroaggregates contain more C and higher amounts 
of labile C as compared to microaggregates, where SOM is more processed and regarded as 
relatively stable over longer periods of time. However, because of the higher lability of mac-

roaggregates, the stability of microaggregates (contained within macroaggregates) depends 
to some extent on the turnover of macroaggregates. Apart from the earlier mentioned roots 

and fungal hyphae, factors generally positively influencing the formation and stability of 
aggregates are soil bacteria, producing extracellular polymeric substances, thereby cement-

ing soil particles predominantly in microaggregates [14, 15], and the soil fauna, especially 

earthworms, forming stable casts and exerting pressure on the walls of their burrows, thereby 

compacting the soil [13, 16]. At initial post-mining sites, the clay content is another crucial fac-

tor as it forms the backbone of stable microaggregates [16]. At post-mining sites, overburden 

can be formed by clastic material, such as sand or gravel, but often it is deposited in the form 

of less consolidated material, such as shales, madstones, or stones [17, 18]. Weathering of 

this material and a gradual increase of the clay content is an important step in soil aggregate 
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formation [19]. At many post-mining sites, aggregates are formed from clay or organic mat-

ter that serve as cementing material and fine pieces of weathered consolidated material [20].

Soil fauna can also promote aggregate formation and enhance water-holding capacity by 
transformation of organic matter. Analyzing soil cores filled with leaf litter and bibionid fly 
larvae revealed that even litter-feeding fauna can increase the ability of soil to hold water 
just by turning litter into fecal pellets, which increase water field capacity manifold. Litter 
transformation into fecal pellets causes fragmentation of the leaf, breaking the cell walls, and 

opens these capillary surfaces to be accessible to soil-water. Moreover, compaction of material 
inside the fecal pellet creates additional capillary pores by compacting consumed litter. These 
holo-organic aggregates can, in some soils, form layers (Oe layer) in several centimeters thick 
[1, 21–23]. Even more important is the formation of soil aggregates by earthworms [24–27], 

which can also contribute significantly to the greater ability of soil to hold water [22, 28].  

Increased water-holding capacity is, however, in both cases mentioned above accompanied 
by an increase in wilting point. Nevertheless, in both cases we can conclude that the soil 
fauna enhanced the ability of soil to hold water, which was then potentially available for 

plants as increase in water field capacity was in both cases higher than the increase in wilting 
point (Figure 1). Earthworm-created aggregates may also promote formation of larger soil 
pores between aggregates, which can enhance infiltration and decrease runoff and erosion. 
However, some other soil biota, namely, ants, might accumulate unconsolidated soil at the 

surface, which can be easily removed by erosion and in fact increase erosion loss of soil from 

the plot [29].

Besides aggregate formation, soil macropore development is important in post-mining soils. 

Several studies indicate a gradual increase of porosity in aging post-mining soils [19, 30]. 

Besides physical processes and roots, earthworms, ants, and also termites in tropical and 

subtropical parts of the world are most commonly mentioned in this context [31–35]; how-

ever, a much larger diversity of soil invertebrates, such as solitary bees or wasps, spiders 

[36], coleoptera [37], orthoptera, and even crayfish [38], significantly contribute to biopore 
formation. These macropores can differ substantially in size and shape and in how they 

Figure 1. Carbon content in bulk soil C and in proportion of C bound in aggregates from total soil mass (POC bound) 
in soil aggregates created by soil fauna (specifically by earthworms) and other aggregates (based on data from [20]) 
(a), water field capacity (WFC), and difference between WFC and wilting point (WFC-WP) (b), for clay post-mining 
substrate closed in a macrocosm with and without access of soil fauna for 3 years based on data from [22]. *significant 
difference between fauna-accessible and fauna-non-accessible treatments (t-test, p < 0.05).
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are formed. Roots basically push themselves in the soil with the help of lubrication effect 
of root exudates. Similarly, earthworms burrow themselves into the soil by pushing soil to 
the side, forming a layer of more compacted soil along the burrow wall, which is covered 

by earthworm mucus. The area in which earthworms actively burrow is called the drilo-

sphere. Ants and most other arthropods commonly dig into the soil, and excavated soil can 

be transported out from the hole, used to fill unused cavities, or partly spread on the walls 
to form a ceiling; various other ceilings such as spider net can be used in biopores [33, 36]. 

Despite the fact that this large variability in biopore construction is well known, a deeper 

understanding of how individual “construction patterns” affect the function of biopores in 
soil is still lacking.

2.2. Upscaling small-scale processes to whole soil profile development

Here, we now explore how the small-scale processes described above transfer to the devel-

opment of the whole soil profile. We use an example of two 20-year-old soils developing 
de novo at two adjacent locations. The first site is reclaimed leveled and planted with alder 
(Alnus glutinosa) seedlings. Alder is a nitrogen-fixing tree which provides litter with low 
C:N ratio. Consequently, there were abundant macrofauna community with a high density 
of earthworms, Lumbricus rubellus and Aporrectodea caliginosa, in alder site. In contrast, the 
second site is unreclaimed and keeps its wavelike character created by heaping; it is vege-

tated by a spontaneous regrowth dominated by willow, birch, and aspen (Salix caprea, Betula 

pendula, and Populus tremula) and had a less abundant macrofauna, and earthworm species 
that mix litter with soil are missing. The consequence of this absence of mixing earthworms 
on spontaneous regrowth was a thick fermentation layer on the soil surface. In the contrary, 
in the alder plantation, a litter has been immediately fragmented and mixed into the soil, 
forming an organo-mineral layer [23]. Previous micromorphological observations showed 
that worm casts can contribute about half of the solid fraction of soil [23]. Intensive mixing 
of litter into mineral soil can be, under suitable conditions (under trees producing easily 
available litter such as alder or lime), a reason for fast formation of organo-mineral A layer 
which can up to 15 cm thick after 40 years of development in some soils. Looking at various 
soils developing on the same post-mining heap, we can see that the ability to hold water 

closely connected with organic matter accumulation in these soils (Figure 2). As has been 
shown previously, accumulation of organic matter in mineral soil closely corresponds with 
bioturbation caused by soil fauna, primarily earthworms [6]. The highest water field capac-

ity was observed at alder stands, which produces easily decomposable litter and is subject 
to intensive bioturbation by earthworms. In contrast, a lower water field capacity was found 
in coniferous species with very limited soil faunal activity (Figure 2). However, as already 
mentioned, at the level of individual soil aggregates and also in the level of bulk soil, the 

wilting point correlates with water field capacity. This means that alder sites have higher 
water field capacity but also higher wilting point as compared to regrowth sites (Figure 2).  
The water regime at both sites after 30 years of development was basically similar, but 
higher moisture and consequently higher soil-water storage were found at the alder planta-

tion (Figure 3), which is consistent with the already reported high water field capacity at 
these sites [12, 30, 39].

Changes of Water Budget during Ecosystem Development in Post-Mining Sites at Various…
http://dx.doi.org/10.5772/intechopen.74238

99



2.3. Vegetation development and its role in the water regime

With increasing succession age, plant cover increases. Dynamics of this increase may certainly 

vary between various types of vegetation. For example, Frouz et al. [40] investigating reclaimed 

alder plantations and unreclaimed post-mining sites, found that biomass of reclaimed sites 

Figure 2. Water field capacity (WFC) of 30-year-old post-mining soils developing on the same clay soils under various 
tree species in relation to soil carbon content in particular sites based on data from [3].

Figure 3. Monthly water budget of unreclaimed mean sites without any technical reclamation spontaneously covered 
by natural regrowth dominated by Salix caprea and Betula pendula (left) and reclaimed sites planted by alder (right) 
both sites about 30 years old, based on data from [39]. Data are monthly mean flows during vegetation season/outside 
vegetation season in mm or average stock in vegetation season/outside vegetation season.
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increased faster early after reclamation, but later on, differences between reclaimed and unre-

claimed sites decrease, and older unreclaimed sites show even higher biomass that reclaimed ones. 

With increasing vegetation cover, water consumption by transpiration also increased [30, 39].  

This can be ascribed to an increased temperature buffering. In a study [41] the difference 
between morning and afternoon temperatures was assumed as a measure of the temperature 

buffering ability of the ecosystem, which is proportional to the amount of water transpired by 
evapotranspiration. Buffering increased with increasing plant cover measured as NDVI but 
also depended on the type of vegetation; reclaimed sites had significantly higher buffering 
than unreclaimed sites. This indicates a higher water transpiration at reclaimed alder planta-

tions than at unreclaimed woody regrowth sites [41]. A slightly higher water consumption at 

reclaimed alder plantations compared to unreclaimed plots has been indicated also by a com-

plete water budget on these plots [39].

3. Potential of using controlled catchments in the study of water 

regime development at post-mining sites

What has been mentioned above opens many potential hypotheses about the development 

of the water regime in post-mining soils. It seems that soil-water storage is closely linked 
with SOM storage. Similarly, as proposed by Cejpek et al. [39], plants with a fast-growing 

strategy, which tend to store more SOM in mineral soil [3, 6], also tend to produce soil 

aggregates with more bound OM [20] and, consequently, soils store more water [19, 22, 

30, 39]. This concept opens many other questions, such as how these parameters relate to 
the water balance (e.g., to runoff and evapotranspiration), how historical changes in soil 
carbon storage and water retention affect subsequent ecosystem development, and many 
others. Answering these questions may be interesting not only for a better understanding of 
ecosystem development at post-mining sites but also may have more general implication. 

However, answering these questions faces also many methodical challenges. With common 
instrumentation we are not able to follow that part of the landscape with woody vegetation 

that would realistically allow the measurement of all the water movement, including sur-

face and subsurface runoff. In order to answer these and other questions, we plan to build 
small hydrologically isolated micro-catchments on a heap (similar to rainy hill of Chicken 
creek catchments [42]) in a way that the installed devices allow comprehensive monitoring 
of the flow of water and nutrients through the ecosystem as well as the exchange of gases 
between the ecosystem and the surrounding atmosphere. In particular, we will measure 
the rain water input, including dry and wet deposition, surface and subsurface runoff, the 
content of key elements of the discharge, water movement in the soil profile, total radiation, 
carbon exchange (CO

2
) between the atmosphere and the whole ecosystem, and also between 

soil and atmosphere. The area itself will be divided into four micro-catchments with an 

area of about 0.25 ha each, two of which will be planted with alder and the other two will 

be left uncultivated. For each pair of areas (reclaimed and uncultivated), one eddy covari-
ance tower will be located in the direction of the predominant winds. The area will then be 

equipped with container lysimeters and access shafts allowing for the easy implementation 
of additional ad hoc experiments.
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The main component of the entire experimental catchments will be the monitoring of the water 

flow. For separation of surface and subsurface runoff, the underground clay layers will be com-

pacted at a depth of 2 m to create an impermeable layer. This impervious layer will lead into a 

collecting channel fitted with a specific overflow and a subsurface drainage monitoring device. 
Another specific collecting trough fitted with a further measuring overflow and measuring equip-

ment will then be placed on the surface of the terrain. This will allow a separate observation of sur-

face and subsurface runoff. The flow monitoring devices will also take samples of water to measure 
flows, which will then allow the calculation of the balance of substances moving with the water.

The water input into the catchment area will be monitored by a set of rain gauges that will 

both monitor rainfall dynamics and capture rainwater for subsequent chemical analysis.

In addition to the water flow and gas exchange facilities, access shafts will be located in the 
catchment area. These are plastic shafts equipped with observation windows and preset 
points where additional accessories can be installed. This will allow the installation of any 

instrument to monitor the development of soil and nutrient flow during the operation of the 
experimental basin without the need for further disturbance, which is key to the function of 

the river basin. The area will also include container lysimeters to monitor soil development 

and to perform manipulation experiments. Those will be particularly valuable in an experi-

ment aiming at upscaling processes from the soil aggregate level to the whole soil profile.

4. Conclusions

Large-scale hydrological parameters that determine water movement in the landscape level 
can be tracked in small-scale processes on the level of individual aggregates or soil pores. This 

tracking indicates that both of these processes can be driven by growth strategy of plants. 

Experiments in controlled conditions where both macro- and microscopic processes can be 

studied in more details are needed for better understanding of these interactions.
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