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Abstract

Heavy metal-contaminated soil and water is a major environmental issue in the mining 
areas. However, as the heavy metals migrate frequently, the traditional method of esti-
mating the soil’s heavy metal content by field sampling and laboratory chemical analy-
sis followed by interpolation is time-consuming and expensive. This chapter intends to 
use field hyperspectra to estimate the heavy metals in the soil in Bai-ma, De-sheng and 
YuanBaoshan mining areas, Miyi County, Sichuan Province. By analyzing the spectra of 
soil, the spectral features derived from the spectra of the soils can be found to build the 
models between these features and the contents of Mn and Co in the soil by using the 
linear regression method. The spectral features of Mn are 2142 and 2296 nm. The spectral 
features of Co are 1918, 1922 and 2205 nm. With these feature spectra, the best models to 
estimate the heavy metals in the study area can be built according to the maximal deter-
mination coefficients (R2). The determination coefficients (R2) of the models of retrieving 
Mn and Co in the soil are 0.645 and 0.8, respectively. The model significant indexes of 
Mn and Co are 2.04507E-05 and 7.73E-06. These results show that it is feasible to predict 
contaminated heavy metals in the soils during mining activities for soil remediation and 
ecological restoration by using the rapid and cost-effective field spectroscopy.

Keywords: contaminated heavy metals in the soils, spectral measured, spectral analysis

1. Introduction

Due to the development of industries in recent decades, the demand for mineral resources is 
also growing. However, the mining and post-processing of mineral resources will increase the 
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heavy metals that permeate and accumulate in the soil. These heavy metals are in abundance, 
in terms of persistence and toxicity, which can inhibit soil functions and increase the soil pol-
lution [1–3]. And when accumulated to harmful levels, the heavy metals in soil may pose an 
environmental risk and threaten human health through contaminating the food chain, water 

and air [4–6]. Thus, the pollution of soil by heavy metals is considered as one of the major 
environmental problems, and the monitoring of heavy metal content is very important for 
environment management in mining areas.

The traditional method for estimating the heavy metal contents involves the field data mea-

sure and laboratory analysis of soil samples. Although direct sampling can provide an accu-

rate measurement of both the intensity and diversity of soil contaminants at specific sites, 
however, these procedures are often time-consuming and costly, and it can only analyze the 
point samples [7–9]. So rapid, periodic monitoring of heavy metals in the areas vulnerable to 
pollution is important. The development of remote-sensing technology, especially hyperspec-

tral, provides a possibility for the rapid and large-scale distribution of heavy metals, which 
can acquire the continuous spectrum of the target. Many studies have shown that the spectral 
curves of heavy metal-contaminated soil and the spectral curves of uncontaminated soil have 
a difference [10, 11]. Although soil heavy metals are spectrally inactive, their relationships 
with spectrally active soil properties, such as clay and Fe oxides, may allow for their visible 

and near-infrared diffuse reflectance spectroscopy (VNIRS) prediction [12]. Thus, the rela-

tionship between heavy metal content and soil spectrum was used to establish heavy metal 
retrieval model to predict and map the heavy metal content in the relevant areas [11, 13–15].

In this chapter, the spectral sampling of soil samples was obtained by ASD Fieldspec III spec-

troradiometer and the contents of Mn and Co were measured by chemical analysis. Then, 
the feature spectra can be obtained from the results of spectroscopic analysis to establish the 
heavy metals’ retrieval models. Then, the parameters of these models can used to explore the 
feasibility of using hyperspectral data to retrieve soil heavy metals for soil remediation and 
ecological restoration.

2. Materials and methods

2.1. Study area

Miyi Country (26°42ˊ–27°10ˊ N, 101°44ˊ–102°15ˊ E) is located in the north of Panzhihua City, 
the southwest of Sichuan Province. The terrain is high in the south and low in the north. 
In this chapter, the Bai-ma, De-sheng and Yuan Bao-shan mining areas in Miyi County are 
selected as the study areas, as shown in Figure 1. The study area is located in the east of the 
Yalong River and northwest of the Anning River. The environment in the mining area and 
surroundings have been contaminated by heavy metals which can enter into the soil through 

discharge and infiltration and which exist in the waste residue and waste liquor generated in 
the mining process, especially Mn and Co.
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2.2. Data collection

The spectra of 55 soil samples were collected in June 2015; the locations of the sample points 
are shown in Figure 1. Meanwhile, 32 out of the 55 soil samples had been chemically ana-

lyzed for the Mn and Co contents by conventional digestion methods using inductively 
coupled plasma mass spectrometer (ICP-MS). The ICP-MS is the most popular ion source 
in analytical chemistry for elemental mass spectrometry. In ICP-MS, a mass spectrometer 
is coupled to an ICP torch by an interface including sampler and skimmer cones so that 
representative samples of the plasma can be transmitted through its orifices to the mass 
analyzer [16].

The soil sample’s spectrum was obtained from a high spectral resolution ASD Fieldspec 
III spectroradiometer, which covers the visible and near-infrared (350–2500 nm) region 
and offers a spectral resolution between 3 and 10 nm, interpolated to 1 nm. Illumination 
was provided by an ASD high-reflectance probe when collecting soil spectra in the field, 
while a halogen bulb was used as the light source while collecting water spectra in the 
laboratory. Each sample was measured three times and the average value was calculated 
afterwards [11].

Figure 1. The study area locations of sampling points.
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2.3. Spectral pre-processing

The soil spectra may contain noise or error that was introduced by operating in situ measure-

ment instruments improperly or using an in situ measurement instrument that is not calibrated 
properly [17]. And, heavy metals are spectrally featureless in the visible and near-infrared parts 
of the electromagnetic spectrum. Thus, a serious predicament is observed while dealing with 
the analysis of overlapping bands of the analytes and interferences which make the extrac-

tion of qualitative and quantitative data difficult [18]. Pre-processing of the spectrum is often 
required to reduce the effect of noise and enhance the spectral signature. Meanwhile, Savitzky–
Golay differentiation is a commonly used spectral pre-treatment method, and in practice the 
first and second derivatives eliminate the interference of the baseline or background, improve 
sensitivity and detect and enhance minor or subtle spectral features [18, 19]. Obtained spectra 
were continuum removed and normalized to enhance the spectral absorption features. The con-

tinuum that is a convex hull of straight-line segments is fitted over a reflectance spectrum and 
subsequently removed by division or ratioing relative to the complete reflectance spectrum [8].

2.4. Spectral analysis and model development

In view of the weak relationship between soil spectroscopy and heavy metals, the logarithmic 
treatment of feature bands can be used to enhance their relationship [8]. In this chapter, the 
reflectivity of all bands is extracted to create a single-band reflectivity matrix. The band reflectiv-

ity from the second band to the last band was selected as the outer loop and the first band to the 
penultimate band was selected as the inner loop. Then, the band ratio matrix can be obtained 
when the outer loop is divided by the inner loop, and the band normalization matrix can be 
obtained by the difference of reflectivity divided by the summation between the outer loop 
band reflectance and the inner loop, and the multivariate analysis matrix of two bands and three 
bands can be obtained by combining two or three output feature bands randomly. Then, these 
matrices were used for Pearson correlation analysis with the soil heavy metal content matrices. 
The Pearson correlation coefficient is a measure of the linear dependence (correlation) between 
two variables X and Y, the greater the absolute value of the correlation coefficient, the greater 
the correlation between the two variables [20, 21]. Thus, it is possible to predict heavy metal con-

tents in the soil with the high correlation between heavy metal content and soil spectrum [22].

In this chapter, the methods of smoothed, the first derivative, the second derivative and the 
continuum removal of the spectral data were performed by the View Spec Pro and ENVI to 
eliminate background noise and enhance the spectral feature. The methods of ratio, normaliza-

tion and multivariate analysis are used to enhance the correlation between heavy metal con-

tent and feature spectra. Finally, the IBM SPSS software was used to establish retrieval model.

3. Results

3.1. Geochemical analysis

Mn and Co are the predominant heavy metals in mining waste in the study area, so they were 
selected as indicators of the environmental impacts from mining activity. The chemical  analysis 
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results of soil samples are shown in Table 1. From Table 1, we can see that the contents of Mn 
made a great difference with the contents of Co in soil. The standard deviation (SD) of Mn in 
the soil was relatively high (773.6), which indicates that its concentrations are of little great dif-
ference, while the contents of Co in the soil is of small difference.

3.2. Spectral analysis

The visual inspection of the measured soil spectra with different pre-treatment methods 
showed a significant difference. The original spectral curve and the curves pre-processed by 
the first derivative, the second derivative and the continuum removal method of soil samplings 
in the study area are shown in Figure 2. The feature spectra can be obtained from these spec-

trum curves, as shown in Table 2. From Figure 2, we can see that only 12 feature spectra can 
be selected as the feature bands from the original soil spectral curve at 473, 791, 1395, 1413, 
1926 nm and so on; however, more feature spectra can be selected as feature bands from the soil 
spectral curves after pre-processing at 584, 1382, 1396, 1403, 1421, 1452, 1890, 1906 nm and so on.

Max Min Mean SD

Mn 4114.0 531.3 1536.1 773.6

Co 111.9 6.00 43.5 25.87

Table 1. Content of heavy metals in soil statistics (unit: mg/kg).

Figure 2. Reflectance spectra of soil samples. (a) Raw reflectance spectral, (b) first-derivative reflectance spectral, (c) 
second-derivative reflectance spectral, (d) continuum removed reflectance spectral.
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3.3. Model development

The spectral features selected from the reflectance spectra are used for spectral analysis and 
the band combination with the maximum Pearson correlation coefficient (R) is selected as the 
feature band to build the inversion models of heavy metals. And the regression equations of 

heavy metals’ concentrations in the soil are presented in Table 3. For the heavy metal in the 
soil, the determination coefficients (R2) of the regression equations are Mn: 0.645 and Co: 0.8. 
And the determination coefficient (R2) of the regression equations indicates that the measured 

heavy metals have a strong relationship with spectral features. Specifically, the ratio of bands 
at 2124 and 2296 nm has a strong relationship with the contents of Mn, and the bands at 1918, 
1922 and 2205 nm have strong relationships with the contents of Co. And the significance 
indexes of these regression equations are less than 0.05.

The relationship of the measured and predicted concentrations of Mn and Co in soil is shown 
in Figure 3. From the scatter diagrams, we can see that there is a good linear relationship 
between the measured and predicted concentrations of Mn and Co.

The contents of 12 test soil samples of Mn and Co can be calculated by these regression equa-

tions. Then the F-test was carried out to validate the feasibility of these regression models for 
predicting heavy metal contents, as shown in Table 4. From the statistics, we can see that the 
difference of the mean values of Mn and Co is smaller and the P-value of the F-test between 
measured and predicted values of Co and Mn in the soil is less than 0.05. This indicates that 
the models can be used to predict the heavy metal contents in the study area.

Feature bands (nm) R2 Regression equations Significance F

Mn 2142, 2296 0.645 Y = −33749.8 + 34703.04X 2.04507E − 05

Co 1918, 1922, 2205 0.800 Y = −235.03–7507.17X1 + 7452.81X2 + 333.65X3 7.73E − 06

Note: X corresponding to R2142/R2296; X1, X2, X3 corresponding to R2121, R2234, R2398, respectively.

Table 3. Spectra parameters and regression equation of Mn and Co.

Original 

spectra

1st spectra 2nd spectra Continuum removed 

spectra

Feature spectra 473, 791,

1395, 1413,

1854, 1926,

2136, 2170,

2208, 2243,

2259, 2320,

439, 465, 549, 584,

1382, 1396, 1403,

1421, 1452, 1482,

1766, 1890, 1926,

1993, 2121, 2151,

2172, 2200, 2215,

2234, 2280, 2361,

2375, 2398

550, 590, 625, 995, 1006, 1374, 1393,

1403, 1411, 1425,

1466, 1883, 1906,

2138, 2163, 2196,

2209, 2220, 2240,

2291, 2368, 2387

452, 486, 627, 765,

810, 962, 1029,

1285, 1414, 1698,

1786, 1835, 1918,

1922, 2142, 2205,

2236, 2267, 2296,

2342, 2371, 2386,

2411

Table 2. Feature spectra of four kinds of curves (unit: nm).
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Figure 3. Scatter plots of the measured values and predicted values: (a) Mn and (b) Co.

Measurement Prediction P(F ≤ f)

Max Min Mean Max Min Mean

Mn 4114 531.3 1871.6 2290.1 924.9 1474.7 0.003

Co 111.9 13.1 44.0 82.2 22.1 48.4 0.008

Table 4. Summary statistics of measured and predicted heavy metal concentration and F-test (concentration unit: mg/kg).

Figure 4. Predicted content of Mn and Co. (a) The predicted content of Mn and (b) the predicted content of Co.
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The results of the predicted content of Mn and Co in soil are shown in Figure 4. From the 
content distribution of the test samplings, we can see that the sampling sites are mainly 
distributed along the Anning River area. From Figure 4(a), we can see that the content of 

Mn in the vicinity of Yakou Town is the largest, and it is decreased with the water that flows 
southward. This indicates that the water has a great influence on the distribution of the con-

tent of Mn. From Figure 4(b), we can see that the contents of Co are high in Yuanbaoshan 

county and Desheng mining area. This indicates that the water has a poor influence on the 
distribution of the content of Co. The reasons of the high content of Co are (1) the leak-

age of minerals and slag during transportation and (2) the combustion of Co which is not  
complete.

4. Discussion

The roughness of soil surface, molecular vibration and electron transition can be changed 
by the particles of heavy metals adsorbed by the soil organic matter, which makes it is pos-

sible to use the soil spectrum to invert the soil heavy metals. The quantitative relationship 
between the spectrum and the heavy metal content was established by using spectral analy-

sis and chemical analysis of the soil samples. Then the heavy metal content of Co and Mn 
can be obtained to provide prediction data for regional soil quality research and treatment. 
From Figure 4, we can see that the content distribution of each heavy metal is irregular in the 

study area for the influences of the river, vegetation and mineral transportation. The flow of 
river could help transform gradients to the location and extent of heavy metal pollution. The 
absorption of vegetation could reduce the heavy metal pollution in the soil and the mineral 
transportation could lead to the jumping change of heavy metal pollution.

Compared to traditional methods, the field of hyperspectral method has many advantages 
such as fast, efficient, wide coverage and nondestructive to estimate the heavy metals’ con-

tents. It can provide predictive data for mine environment monitoring to improve the effi-

ciency of monitoring and management of mine area and protect the surrounding residents’ 
normal life quality. But it still needs much time to collect spectral data and build models, and 
the monitoring area is limited, and the field sample collection and spectral measurements 
may contain errors. Therefore, the following research work is to (1) consider the influence 
of temperature, altitude, weather and other factors on the spectrum to improve the accuracy 
of the model, (2) obtain the spectral data at the same time when the field data collection is 
obtained and (3) acquire the Hyperion or AVIRIS imagery of the study area but considering 
the influence of vegetation, rock and atmosphere on soil spectrum.

5. Conclusions

In this chapter, a fast and convenient method to get the heavy metals’ contents in the soils of 
the study area is described, which can provide a prediction for the eco-remediation of heavy 
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metals in the mining area, leading to assign the human and other resources properly. So the 
time of remediating the heavy metals contaminated soils can be shortened and prevent the 
further spread of heavy metals in the soils.
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