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Abstract

Neural stem cell (NSC)-based therapies, such as cell transplantation, are an emerging
strategy for restoring neuronal function in Parkinson’s disease (PD), which is characte-
rized by a profound and selective loss of nigrostriatal dopaminergic (DA) neurons.
Advanced researches on the microenvironment of grafted cells will promote clinical appli-
cations of NSCs for neurological disorders. A novel cell culture model of the neurovascular
network was therefore devised to investigate autocrine, paracrine, and juxtacrine signaling
in the neurovascular unit generated by NSCs and vascular endothelial cells. Preclinical
studies using cutting-edge technologies, including cellular reprogramming, advancement
in scaffolds for brain tissue engineering, image-guided injection, and noninvasive moni-
toring of tissue regeneration will pave the way for successful clinical trials of NSC-based
therapies for PD. Once the implanted or regenerated DA neurons are integrated into the
existing nigrostriatal DA pathway, the symptoms of PD can potentially be alleviated by
reversing characteristic neurodegeneration.

Keywords: neural stem cell, Parkinson’s disease, endothelial cell, neurovascular unit,
regenerative medicine, tissue engineering, cell transplantation

1. Introduction

Parkinson’s disease (PD) is the most common neurodegenerative movement disorder, and its

prevalence reaches 0.3% of the entire population in industrialized countries [1]. PD prevalence

is increasing with age, affecting 1% of the population above 60 years and 4% in those aged over

80 [2]. Since the clinical trial of neural stem cell (NSC) transplantation therapy has shown

promising results for stroke patients [3], the NSC-based therapy could be a potential treatment
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for restoring neuronal function for PD patients. A better understanding of pathophysiology of

PD, establishment of valid and effective NSC lines, and successful clinical trials will point to a

novel neuroregeneration strategy to complement current medical treatment and deep brain

stimulation.

Advances in the pathophysiology of PD have expanded our traditional knowledge that it is

characterized by a profound and selective loss of nigrostriatal dopaminergic (DA) neurons. PD

could be considered a developmental disorder with evidence beyond neurodegeneration,

regarding relationships among deregulated neurogenesis, disease onset, and its progression.

The numbers of proliferating NSCs, for instance, have been found decreased in the PD-affected

postmortem brain [4, 5], but evidence of a link between altered proliferation of NSCs, func-

tional DA neurons, and neurological deficits remains insufficient. Besides typical motor symp-

toms, including asymmetrical bradykinesia, rigidity, postural instability, and resting tremors,

patients may have nonmotor symptoms, such as dementia, sleep disturbance, and autonomic

dysfunction. Hence, public health education and routine physical examinations are substantial

for early diagnosis and intervention.

NSCs preserve the ability to self-renew and differentiate into all neural lineage cells, and they

are regarded as a potential graft for cellular transplantation. Reducing the possibility of tumor-

igenesis has to be considered during immortalization of NSC lines which provide a consistency

of cell grafting. Furthermore, preclinical studies, such as transcranial injection of NSCs into

animal brains with adequate follow-ups, will prove the validity of its clinical application.

Independent ethical and regulatory approval, full financial support from the foundation, and

long-term follow-up of systematically collected rigorous measures are the requirements for

conducting clinical trials for NSC-based therapies in PD. Appropriately transparent processing

with governmental approval could encourage patient cooperation according to experience

from cell transplantation therapy in other diseases. In this chapter, we will provide a compre-

hensive literature review as well as the perspectives on NSC applications in PD.

2. Neuronal loss in Parkinson’s disease

The pathological diagnosis of PD has been possibly made since Frederic Lewy described

microscopic particles in affected brains as early as 1912, later named “Lewy bodies” [6]. The

characteristic pathophysiology of PD includes death of DA neurons in the substantia nigra

pars compacta (SNpc), degeneration of DA neurotransmission, and the presence of alpha-

synuclein and protein inclusions in neuronal cells that are known as Lewy bodies [7]. In

general, more than 50% of DA neurons have been lost before typical symptoms of PD develop

[8]. It has been found that a 20% decrease in nigral neuronal cell density in incidental Lewy

body disease compared with controls [9]. Additionally, nigral neuronal loss could be observed

before the appearance of alpha-synuclein aggregates [9]. A negative correlation between neu-

ronal density and local alpha-synuclein burden in the substantia nigra was therefore evident in

PD patients. Most importantly, stage-dependent nigral neuronal loss and local burden of

alpha-synuclein pathological conditions are closely coupled during disease progression of PD.
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The diagnosis of PD can be made through the detection of mutations in specific genes respon-

sible for familial PD in the era of molecular biology. But only about 10% of diagnosed patients

are found carrying identifiable pathological mutations, and the majority of PD cases are

sporadic [2]. Several of the PD-associated genes are related to mitochondrial dysfunction

although most are of unknown or poorly understood function. Three of the genes associated

with a recessive, early-onset form of the disease (DJ-1, PINK1, Parkin) are directly linked to

mitochondrial function, providing a potential connection with changes associated with aging

[10]. DJ-1 is a mitochondrially enriched, redox-sensitive protein, and it is able to signal oxida-

tive challenges and potentially coordinate a variety of mitochondrial oxidative defense mech-

anisms [11, 12]. Parkin and PTEN-induced putative kinase 1 or PINK1 also have mitochondrial

roles [13, 14].

The strongest risk factor in PD is age, beyond the other three best-documented pan-cellular

factors, including genetic mutations, environmental toxins, and inflammation [2, 15]. It is

widely speculated that declining mitochondrial function is a key factor why age is such a

strong risk factor [10, 16]. However, the pattern of neuronal pathology and cell loss in PD is

difficult to explain without cell-specific factors. It has been proposed that the opening of L-type

calcium channels during autonomous pacemaking results in sustained calcium entry into the

cytoplasm of SNc DA neurons and accordingly the increase in mitochondrial oxidant stress

and susceptibility to toxins [15]. This cell-specific stress could increase the negative conse-

quences of pan-cellular factors. Therefore, antagonists for L-type calcium channels have been

proposed to complement current attempts to boost mitochondrial function in the early stages

of PD [17], but there is still lack of strong evidence in its therapeutic effects.

3. Neural stem cells and adult neurogenesis

In the adult mammalian brain, NSCs are largely restricted to two regions: the subependymal

zone (SEZ) of the lateral ventricles and the subgranular zone (SGZ) of the dentate gyrus in the

hippocampal formation [18, 19]. The NSC niche can be regarded as a specialized neurovascular

unit (NVU) because the vasculature plays an indispensable role for maintaining the stem cell

niche [20]. The NSC niche in the adult SEZ contains an extensive planar vascular plexus with

specialized properties. Within such a unique NVU, endothelial cells (ECs) exert their influence

over NSCs to regulate fate specification, differentiation, quiescence, and proliferation, through

direct contact and paracrine signaling [20]. For example, a U-shaped gradient of the soluble

factor, stromal cell-derived factor 1 (SDF-1), established by both ependymal and endothelial

cells, helps guide SEZ quiescent NSCs moving from the ependymal niche to the endothelial

niche, where they are activated [21]. Endothelial factors, including SDF-1, therefore have differ-

ential effects on neural progenitor populations. The vessels also produce a laminin-rich extra-

vascular basal lamina, which is organized into branched structures known as fractones,

regulating NSC behaviors via direct contact [22]. Interestingly, vascular pericytes in the central

nervous system (CNS) have been found to possess the ability of differentiating into vascular and

neural lineage cells [23], in addition to the originally defined functions of pericytes, such as

controlling cerebral blood flow and limiting blood flow by constricting capillaries [24, 25].
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At the interface of neural and vascular compartments in the CNS is the blood brain barrier

(BBB), which is the first barrier leading to transport limitations for both cellular and acellular

elements. Paul Ehrlich demonstrated the integrity of this barrier first in 1885 when he injected

vital dyes into the circulatory system and observed that all organs except the brain and the

spinal cord were stained [26]. The integrity of this barrier was attributed to ECs and could be

examined with an electron microscope demonstrating the tight junctions [27]. The barrier

function of endothelium is considered a hallmark feature when validating models of the BBB.

It is also important to assess the barrier function while culturing ECs with other types of cells

comprising the NVU in order to investigate adult neurogenesis [28].

The CNS endothelium is not only the inner lining of the blood vessel, but also an active

participant inmany signaling pathways. Brain-derived neurotrophic factor (BDNF), for instance,

is one of the endothelium-secreted factors affecting the behaviors of NSCs [29, 30]. Blood

capillaries may regulate NSCs through interactions via collagen IV and laminin in the basal

lamina [31]. Blood vessels also provide an access to circulate systemic factors, including gluco-

corticoids, sex hormones, and prolactins. The barrier properties of the BBB allow only certain

molecules to cross the endothelium. The BBB is maintained when endothelium has a prevalence

of tight junctions and specific transport proteins. The BBB is characterized by an organ-specific

high transendothelial electrical resistance (TEER, up to 5000 ohm�cm2; in contrast with placental

TEER 20–50 ohm�cm2) [32, 33]. The BBB is the major site for the exchange of molecules between

the blood and the CNS, given the small diffusion distance to neurons. Proximity of the finest

branches of brain capillaries to individual neurons is typically 8–25 μm [34].

In the neurogenic niche of the mouse brain, the basal processes of NSCs contact the vascula-

ture, and at these sites of contact, a modified BBB exists that lacks astrocytic endfeet and

pericytic coverage [20]. Direct physical contact between the brain capillary ECs and the NSCs

reflects their intimate relationships. Juxtacrine signaling is therefore essential for devising a

NVUmodel using ECs and NSCs. A NVUwith direct contact between NSCs and ECs provides

a neurovascular network, where the concentration of soluble factors recently released from

nearby cells can remain high locally, and this cannot be observed using the transwell co-culture

system. Furthermore, extracellular matrix (ECM) molecules produced by ECs and NSCs,

which mediate cell differentiation and tissue morphogenesis, are involved in contact-

dependent signaling between NSCs and ECs. The firm adhesion of cells to an ECM is indis-

pensable to a cell culture model of three-dimensional cytoarchitecture for investigating NSCs

and adult neurogenesis within a specific NVU.

4. Paracrine and juxtacrine signaling in the neurovascular unit

To devise an advanced NVU model and to promote NSC-based therapies may benefit from

studies on the neurovascular development. Accumulating evidence shows that shared mole-

cules and coordinated cellular mechanisms regulate the development of vascular and neuronal

systems [35, 36]. Neurogenesis and angiogenesis are also found co-regulated in both embryonic
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and adult brains, as well as damaged brains. To date, most of this evidence has been obtained

from in vivo experiments [37, 38]. Transgenic animal models were commonly used for these

studies because relevant human material was still limited. A major technical difficulty in using

these primary tissues is that numerous types of cells interact with each other in a very thin

compartment. The ECs, for example, are not easily isolated for both qualitative and quantita-

tive biochemical analysis.

Alternatively, ex vivo organotypic NVUmodel systems consisting of the slice of brain and brain

ECs have been applied to experiments studying crucial BBB parameters such as TEER and

transport mechanisms [39]. Researchers using cortical organotypic slice cultures or SEZ whole

mounts [40] are able to observe the cellular interactions within a relatively complete but

complicated system. In contrast, experiments using in vitro cell culture models of the NVU

provide a useful tool in order to disentangle intercellular paracrine, autocrine, and juxtacrine

signaling.

4.1. Paracrine signaling

Paracrine signaling is a form of cell-to-cell communication in which the target cell is close to

the signaling cell and the secreted and diffusible signal molecule affects only nearby target

cells. During CNS development, common signaling molecules guide vascular and axonal

outgrowth via paracrine mechanisms, and these factors may have to be considered in NSC-

based therapies in PD. For example, growth cones of axons project numerous filopodia that

actively extend and retract in response to four families of extracellular guidance cues: ephrins,

semaphorins, netrins, and slits [41]. Guidance cues can be divided into attractive or repulsive

signals. These cues are cell-membrane-bound acting on nearby axons or secreted forming

gradients that influence the trajectories of extending axons [41].

4.1.1. NSC paracrine signaling to EC

The brain vascular system develops from the cephalic mesenchyme through the sprouting of

capillaries into the brain parenchyma. This process is regarded primarily as angiogenesis

which refers to the de novo formation of blood vessels by the sprouting and splitting of vessels

already established by vasculogenesis [42]. Vascular endothelial growth factor (VEGF) has

been implicated in the control of CNS angiogenesis. The temporal and spatial expression of

VEGF is consistent with the hypothesis that VEGF is synthesized and released by the ventric-

ular neuroectoderm and may induce the ingrowth of capillaries from the perineural vascular

plexus [43]. Upon entering the CNS parenchyma, blood vessels migrate along a preformed

latticework of neuroepithelia and radial glia, which are NSCs and neural progenitors that give

rise to differentiated neurons and astrocytes [44].

VEGF is strongly expressed by NSCs in the ventricular zone. VEGF is a key signal orchestrat-

ing vascularization of the neuroectoderm [45]. At the tips of vascular sprouts, the leading

endothelial tip cells extend filopodia toward hypoxic regions where higher VEGF is produced

[46]. Tip cells react to VEGF via VEGF receptor 2 (VEGFR2) expressed on filopodia. Tip cells
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produce high levels of the Notch ligand delta-like 4 (Dll4) that activates Notch signaling

on adjacent ECs. These ECs then differentiate into stalk cells, which form the stalk of the

sprouting vessel with a lumen that allows for blood flow and tissue oxygenation [47]. Stalk

cells down-regulate expression of VEGFR2 and VEGFR3 and increase levels of the decoy

receptor VEGFR1, thus becoming less sensitive to VEGF [48]. These studies suggest that

VEGF/VEGFR2 is one of the signaling pathways involved in angiogenesis and is also impor-

tant for neurogenesis during CNS development.

4.1.2. EC paracrine signaling to NSC

Vascular-derived neurotrophic factors, such as BDNF, are key factors in the co-ordination of

vascular and neural development [49]. In a co-culture experiment using transwell inserts,

mouse ECs released soluble factors that stimulated the self-renewal of mouse NSCs and

inhibited their differentiation [50]. Depending on the culture condition, mouse ECs may favor

maintenance of the progenitor phenotype of mouse NSCs through the production of soluble

factors or to promote neuronal differentiation through direct contact [51].

4.2. Autocrine signaling

Autocrine signaling is a form of cell signaling in which a cell secretes a substance that binds to

its own surface receptors, leading to changes within the cell. Initially discovered for their role

in axon guidance during vessel formation, VEGFs and their high-affinity tyrosine kinase VEGF

receptors are now implicated in the development of the CNS [52]. In embryonic mouse

forebrain and embryonic cortical neurons grown in vitro, VEGF acts as an autocrine survival

factor for VEGFR2-expressing postmitotic neurons [53]. In the adult rat brain, VEGFR2 is

expressed by neuronal progenitors in the SEZ, and intracerebral administration of VEGF-A

stimulates both neurogenesis and angiogenesis in the SEZ and hippocampus [54].

4.3. Juxtacrine signaling

Juxtacrine is a type of cell-to-cell or cell-to-ECM signaling that requires close contact. This

stands in contrast to autocrine or paracrine signaling, where a signaling molecule is released

and diffused into extracellular space [55]. Cell-to-cell communication between blood vessels

and glia cells in the NVU occurs primarily via intervening vascular basement membranes that

contain a variety of growth factors and ECM proteins [56].

Juxtacrine signaling is indispensable for neuroblasts migrating along blood vessels as neuroblasts

primarily interact with the ECM surrounding astrocyte endfeet in a vasophilic migration model

in the mouse brain [57]. In the SEZ neurogenic niche, NSCs differentiate into neural progenitors

(NPCs) which have a limited proliferative ability and does not exhibit self-renewal. The relatively

quiescent NPCs give rise to rapidly dividing transit-amplifying cells which further differentiate

into neuroblasts. These neuroblasts sense microenvironmental cues and migrate tangentially

from the SEZ to the olfactory bulb along rostral migratory stream (RMS).
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5. Restoration of the disrupted neurovascular microenvironment by

tissue and cell transplantation

Tissue regeneration or cell replacement for loss of DA neurons is a potential approach for PD.

Since the late 1980s, over 300–400 PD patients worldwide have received transplants of human

fetal ventral mesencephalic (VM) tissue, which is rich in postmitotic DA neurons [58]. Two

double-blind, placebo-controlled trials of VM transplants for PD patients, however, showed

variable efficacy and occurrence of side effects, such as “off-medication” and “graft-induced

dyskinesias” (GIDs) [59, 60]. It was observed that the PD pathologic process might propagate

from host to grafted cells, and the presence of Lewy bodies in grafted neurons suggests host-

to-graft disease propagation [61]. Implanted neurons could be affected by the disease process

and did not function normally. Parkinson’s pathogenesis or GIDs therefore could propagate

from host to grafted cells although recipients had experienced long-term symptomatic relief

with the majority of grafted cells functioning unimpaired. On the other hand, CNS involve-

ment of graft versus host disease (GvHD) has been found as a cause of CNS disorders after

allogeneic hematopoietic stem cell transplantation (allo-HSCT) which is administered system-

ically [62]. Although transplantation of fetal tissue or stem cells was conducted transcranially

instead for PD patients, the rare heterogeneous chronic CNS GvHD symptoms might happen

with cerebrovascular manifestations, demyelinating disease, or immune-mediated encephali-

tis. GvHD could be prevented or treated with immunosuppressant such as corticosteroids, but

CNS-related GvHD after allo-HSCT is associated with a poor prognosis.

GIDs could be serious side effects after transplantation of fetal VM tissue for PD patients.

Clinical pattern and risk factors for dyskinesias following fetal nigral transplantation in PD

have been investigated [63]. On-medication dyskinesias are typically generalized and chorei-

form. In contrast, off-medication dyskinesias are usually repetitive, stereotypic movements in

the lower extremities with residual Parkinsonism in other body regions. Off-medication dys-

kinesias are common following transplantation and may represent a prolonged form of dipha-

sic dyskinesias which are associated with partial or incomplete dopaminergic reinnervation of

the striatum [63]. The pathophysiological mechanism underlying GIDs can be partially attrib-

uted to excessive serotonergic innervation in the grafted striatum of patients who developed

off-medication dyskinesias later following the initial improvement of motor symptoms after

transplantation. It has been realized that the dyskinesias can be markedly attenuated by

systemic administration of a serotonin [5-hydroxytryptamine (5-HT)] receptor (5-HT1A) ago-

nist [64]. A recent study demonstrated a mechanistic link between serotonin 5-HT6 receptor or

a cyclic adenosine monophosphate (cAMP)-linked designer receptors exclusively activated by

designer drugs (DREADD), intracellular cAMP, and GIDs since exclusive activation of seroto-

nin 5-HT6 receptor, located on the grafted DA neurons, is sufficient to induce GIDs [65]. GIDs

resulting from cell therapies for PD with fetal tissue or stem cells are therefore possibly

avoided and treated with serotonin receptor agonists.

The TRNSEURO (NCT01898390), a multicenter European initiative on PD transplantation

using fetal VM tissue, has been conducted since 2012, in an attempt to overcome obstacles

such as inconsistent methods between the previous trials [66]. The issues on administration of
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immunosuppressant and anticonvulsant, the method of graft preparation, and the precise site

of graft placement will be further resolved. However, heterogeneous compositions of the graft,

difficulties in standardization of cellular material, and ethical concerns are limitations in these

trials using fetal VM tissue. In addition, complications associated with procedures of trans-

plantation, such as subdural hematoma, have to be prevented [59].

NSCs preserve the ability to self-renew and differentiate into all neural lineage cells, including

neurons, astrocytes, and oligodendrocytes, and they are therefore a source of potential graft for

cellular transplantation in neurological disorders. Together with ECs and pericytes, NSC can

constitute the functional NVU for tissue restoration in PD. Since neurons are integrated into the

neurovascular network with other cellular and acellular compositions in the NVU, combined

transplantation of NSCs with other types of cells or biomaterials may be more efficacious for

tissue replacement. Local factors within the microenvironment of transplanted NSCs affect the

fate of the cells, as measured by survival, proliferation, differentiation, and neurogenesis [67].

Several groups have studied modulation of stem cells or DA cells with combined cellular trans-

plantation in animal models of PD (Table 1) [68]. Besides the attempt to replace damaged tissues,

it was shown that grafted cells may promote endogenous vasculogenesis and neurogenesis in the

neighboring tissues [69].

To administer cell transplantation therapies, NSCs can be delivered transcranially through the

needle into deep targets, such as putamen for PD. This approach minimizes the problem that

BBB could be a barrier preventing intravascularly transplanted cells from crossing the vessel

wall into brain tissue [70]. It has been proposed that 100,000 surviving DA neurons per

Type of transplanted cells Animal

model

Significance Ref.

Mouse fetal

DA neurons

Mouse mesencephalic NSCs

overexpressing human glial-derived

neurotrophic factor (GDNF-mNSCs)

6-OHDA

rat

Apomorphine-induced rotation was reduced

by co-transplantation of fetal DA neurons

with mNSCs genetically modified to

overexpress GDNF, which supports

differentiation into DA cells and their

survival.

[72]

Human

embryonic

NSC

Macaque autologous Schwann cells

(SCs)

6-OHDA

macaque

Gomez-Mancilla dyskinesia score in the

group of co-transplantation with SCs and

NSCs was significantly lower than the control

group. SCs harvested from the autologous

peripheral nerves can avoid rejection.

[89]

Human

umbilical

cord-derived

MSCs

Human dermal fibroblasts MPTP rat Fibroblasts may be common cell contaminants

affecting purity of MSC preparations and

clinical outcome in stem cell therapy

protocols.

[90]

Rat

embryonic

DA neurons

Rat Schwann cells (SCs)

overexpressing basic fibroblast growth

factor (FGF-2)

6-OHDA

rat

Co-transplantation of DA neurons and FGF-2

overexpressing SCs differentially affects

survival and reinnervation. Behavioral

recovery underlines the necessity of direct

contact between FGF-2 and DA neurons.

[91]

Table 1. Modulation of stem cells or dopaminergic (DA) cells with combined cellular transplantation in PD (adopted

from “Potential of Neural Stem Cell-Based Therapy for Parkinson’s Disease” [68]).

Parkinson's Disease - Understanding Pathophysiology and Developing Therapeutic Strategies84



putamen is the minimum required for a successful outcome following intracranial transplan-

tation [71]. Bilateral injection targeting putamen is favored more than unilateral transplanta-

tion although there seems to be no consensus yet.

It is reasonable to optimize the microenvironment surrounding the transplanted NSCs or DA

neurons in order to support differentiation into DA cells and their survival in vivo. A recent

study demonstrates that co-transplantation of fetal DA neurons with mouse NSCs, genetically

modified to overexpress human glial-derived neurotrophic factor (GDNF), mitigates motor

symptoms in a rat model of PD [72]. To optimize survival and guide appropriate differentia-

tion of grafted NSCs, ECs have been combined with NSCs for transplantation into animal

brains with stroke but not yet in brains with PD [73].

6. Application of stem cells in Parkinson’s disease

Technically DA neurons could be derived from embryonic stem cells (ESCs), mesenchymal

stem cells (MSCs), umbilical cord blood hematopoietic stem cells (HSCs), and induced-

pluripotent stem cells (iPSCs) generated from adult somatic cells, as well as directly from

NSCs [74]. Several factors including the long-term survival and phenotype stability of stem

cell-derived neurons or glial cells in the graft following transplantation, the purity of

populations of cells derived from NSCs, and safety issues related to the risk of tumorigenesis

have to be evaluated in greater depth [75]. An appropriate cell culture model for investigating,

paracrine, autocrine, and juxtacrine signaling pathways within the neurovascular environment

can provide a platform for characterizing cells with various origins and for selecting the

optimal cells for transplantation [76].

NSCs derived from the whole ganglionic eminence and the ventral mesencephalon region of

human fetuses have been immortalized using the technique of c-mycER transduction, and

these NSC lines have been induced and differentiated to neurons potentially producing tyro-

sine hydroxylase (TH), a critical enzyme involved in dopamine synthesis [77, 78]. A recently

devised cell culture model combined human adult brain ECs with fetal-derived NSCs which

retain the ability of differentiating and further integrate together with ECs into the

neurovascular tissue [79]. In this system, a distinctive neurovascular cytoarchitecture com-

prised of NSCs and ECs was observed. It simulates several features of the neurovascular niche,

such as diffusible proteins, an extensive matrix, and expression of receptors, and genes unique

to each cell type [76]. Moreover, complex multi-stage angiogenic processes can be studied by

modulating the contact and soluble factor-mediated signaling pathways [76]. Studies using

this NVU model will promote the best regimen for NSC-based therapies in PD [80].

Appropriate cell-to-matrix interactions are required for neurovascular tissue regeneration by

NSCs and ECs. It is therefore important to investigate contact-dependent factors, including

ECM components which are involved in NSC-mediated endothelial morphogenesis and

vasculature shaping. ECM molecules are differentially expressed within the NVU [76] and

they may have inhibitory and excitatory bioactivities. Astrocyte-derived thrombospondins,

for example, have been shown to induce presynaptic differentiation in the CNS [81], but
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conversely, thrombospondin-1 functions as a negative regulator of angiogenesis [82]. The

functions of these ECM molecules are associated with expression of their respective receptors,

such as integrins. Most integrins recognize several ECMmolecules, and most matrix molecules

bind to more than one integrin. Consequently, various ECM molecules compete to bind

specific integrins [83]. When studying neurovascular regeneration for NSC-based therapies in

PD, an ideal in vitro NVU model should provide a system for investigating not only

intercellular, but also cell-to-matrix interactions [76, 79].

7. Perspectives on the neural stem cell-based therapy for Parkinson’s

disease

Researches on pathophysiology of PD and establishment of valid and effective NSC lines will

benefit from development of advanced cell culture models of the NVU. Patients with PD will

have the opportunity to be treated with the cells if DA neuronal differentiation can be guided

appropriately. Preclinical studies on image-guided injection and noninvasive monitoring of

tissue regeneration in animal models of PD will provide the optimal therapeutic window, cell

dose, and delivery route for cell transplantation [80]. Finally, appropriate patient selection and

clinical follow-ups are required as a precondition for successful clinical translation of NSC-

based therapies.

Recently, a preclinical study using a primate model suggests that human iPSC-derived DA

progenitors are clinically applicable for the treatment of patients with PD. It was demonstrated

that human iPSC-derived DA progenitor cells survived and functioned as midbrain DA neu-

rons in a primate model of PD (Macacafascicularis) treated with the neurotoxin MPTP

(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) [84]. The therapeutic effect was consistent

regardless of the origins of the cells either derived from PD patients or healthy individuals,

and there was no tumor found in the brains for 2 years.

Alternatively, using parthenogenetic stem cells as a source of donor tissue have raised hopes

for PD patients [85]. The parthenogenetic cells are derived from unfertilized oocytes through

suppression of the second meiotic division, leading to a pluripotent diploid cell line containing

exclusively maternal chromosomes [86]. They are therefore different from other pluripotent

cell sources such as ESCs or iPSCs and may overcome obstacles such as the possibility of

tumorigenesis. However, their lack of paternal imprinting may be associated with unique

challenges in their adoption clinically as this could affect their cell cycle and differentiation

capacity [87]. Notably, preparation of these cells and the transplantation procedure has to be

produced under Good Manufacturing Practice (GMP) conditions, the established guidelines

and safety regulations [88].

In conclusion, combined with cutting-edge technologies, including cellular reprogramming,

advancement in scaffolds for brain tissue engineering, image-guided injection, and noninva-

sive monitoring of tissue regeneration, NSC-based therapies will alleviate symptoms of PD

patients in upcoming clinical trials of cell replacement therapy once the implanted or

regenerated DA neurons are integrated into the existing nigrostriatal DA pathway.
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