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Abstract

Response optimization and exploration are the challenging task in front of experimenter. The
cause and effect of input variables on the responses can be found out after doing experiments
in proper sequence. Generally relationship between response of interest y and predictor vari-
ables x1, x2, x3, … xk is formed after carefully designing of experimentation. For examples y
might be biodiesel production from crude ‘Mahua’ and x1, x2 and x3 might be reaction
temperature, reaction time and the catalyst feed rate in the process. In the present book
chapter, design of experiment is discussed based on predictor variables for conducting exper-
iments with the aim of building relationship between response and variables. Subsequently a
case study is also discussed for demonstration of design of experiments for predicting surface
roughness in the machining of titanium alloys based on response surface methodology.

Keywords: design of experiments, response surface methodology, optimization, ANOVA

1. Introduction

Researchers found the unknown solutions by conducting experiments with the help of varying

two or more inputs factors [1]. Typical solutions are obtained from experiments are:

• Effect of input variables over the solutions or responses

• Which combination of input variables will give best solution?

• What are ranges of variables suitable for experiments?

• Under what condition should we operate our plant?

Experiments help us to direct compare among treatments of interest. Design of experiments

minimizes bias in the comparison which helps in reducing error [2]. One of the advantages in

design of experiments that we can control the experiments which allows us to make decision

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



about influence of input variables over the response. Explicitly, one can make conclusion about

causation.

An experiment consists of treatments, experimental unit, responses and a method to assign

treatments to unit. Mosteller and Tukey [3] describes three concepts for the development of

relationship between variables and responses namely consistency responsiveness and mecha-

nisms. Proper design of experiments should avoid systematic error, should be precise, allows

estimation of errors and have broad validity.

Some important terms and concepts used in design of experiments are listed below

1.1. Treatment

It defines as are the diverse actions for equate. Amount of fertilizers in agronomy, different

long distance rate structure in marketing or different temperatures in reactor vessel in chemical

engineering are examples of treatments.

1.2. Experimental units

These are units in which treatments are applied. Graph are plotted for to see variation of these

units over response.

1.3. Responses

These are the outputs we measures during experiments. These responses define the mecha-

nism of the process during experiments. Responses for examples might be fatty acid ethyl ester

nitrogen content in biodiesel production or combustion performance biodiesel biomass of corn

plants, profit by production, or yield and quality of the product per ton of raw material.

1.4. Randomization

It is distribution of variables within the range with recognized, defined probabilistic mecha-

nism for the assignment of treatments to units.

1.5. Experimental error

It is defined as variation present in all experimentally measured responses. Experiments runs

on different range of variables will give different results for responses. Moreover conducting

experiments at the same range of variables over and over again will give different results in

different trials. It should be noted that experimental errors within acceptable range does not

indicate conducting wrong experiments.

1.6. Measurement units

It is the unit of measured responses for example combustion pressure in different % blend of

biodiesel. These may differ from the experimental units. For example Fertilizer is applied to a

plot of land containing corn plants, some of which will be harvested and measured. The plot is

the experimental unit and the plants are the measurement units. Ingots of steel are given

Statistical Approaches With Emphasis on Design of Experiments Applied to Chemical Processes6



different heat treatments, and each ingot is punched in four locations to measure its hardness.

Ingots are the experimental units and locations on the ingot are measurement units.

2. Design of experiments

An experiment can be defined as a test or series of runs in which purposeful changes are made

to the input variables of a system or process so that changes in the output response variable

may be observed and the reasons for the same may be identified [4–6]. Some process variables

x1, x2, … xp are controllable, whereas other variables z1, z2, … zq may be uncontrollable. An

experiment serves the following purposes:

a. Determine which variables x1, x2,… xp are most influential on response y.

b. Determine where to set the influential x’s so that y is always near to the desired nominal

value.

c. Determine where to set the influential x’s so that variability in y is minimized.

d. Determine where to set the influential x’s so that effects of uncontrolled variables are

minimized.

Design of Experiments refers to the process of planning, designing and analyzing the experi-

ment so that valid and objective conclusions can be drawn effectively and efficiently [7]. In

order to draw statistically sound conclusions from the experiment, it is necessary to integrate

simple and powerful statistical methods into the experimental design methodology [8]. The

success of any industrially designed experiment depends on sound planning, appropriate

choice of design and statistical analysis of data and teamwork skills.

2.1. Approaches for experimentation

The approach to planning and conducting the experiment is called the strategy of experimen-

tation [9]. The best guess approach is the most common and uses guesswork to arbitrarily

select a combination of input factors for testing. However, this is unscientific and one cannot

confirm whether a better response obtained is indeed the best solution.

Another approach is the ‘one factor at a time’ (OFAT) in which one factor is sequentially varied

at a time by different levels and all other factors are kept constant. The levels may be quanti-

tative (such as temperature or voltage) or qualitative (such as presence of coolant). The main

effect of the factor is the change in response produced by a change in the level of the factor.

However, OFAT approach can show only one causal effect and many a times, the causal effect

of multiple factors is not additive, meaning there is interaction between them. An interaction is

the failure of one factor to produce the same effect on the response at different levels of another

factor. OFAT approach cannot give interaction effects as all other factors are kept constant

when a factor is varied.

The scientific approach therefore is to vary several factors together at a time so that both main

effects as well as interaction effects of factors on the response variable may be identified and

studied. This is called factorial experimental design and this is the only way to discover
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interactions between variables. In factorial experiments, factors contain discrete values (levels),

and the number of factor levels influences design of experimental runs. When all possible

combinations of the levels of the factors are investigated, then it is called a full factorial

experiment. In contrast, a fractional factorial experiment is a variation of the full factorial

design in which only a subset of the runs is used.

Various other kinds of experimental designs are in place such as Plackett-Burman design, Taguchi

method, response surface methodology, mixed response design and Latin hypercube design [10].

Each of these designs uses different techniques to generate experimental runs. Of these, response

surface methodology is of particular interest as it takes three levels of factors to generate an

experimental design sequence and uses a quadratic polynomial model for conducting analysis.

The three principles of experimental design such as randomization, replication and blocking

are used in industrial experiments in order to improve the efficiency of experimentation.

Randomization is the random ordering of experiments to ensure all levels of a factor have

equal chance of being affected by noise factors (unwanted sources of variability) such as

temperature or power fluctuation. Replication is the process of repeating all or a part of

experiment runs in a random sequence to allow more precise estimation of experimental error

as well as main and interaction effects. Blocking is the process of arranging similar experimen-

tal runs into blocks (or groups) to distribute the effect of change in blocking factors such as

batch, machine, time of day, etc. across the experiments and avoid confounding (confusion

whether the output change is due to change in block or change in factor level).

For statistical analysis under design of experiments (DOE), the factor level numbers are

considered instead of the actual value of the factor at that level. In other words, the factors are

represented by coded variables instead of natural or uncoded variables. In case of categorical

variables, the levels are represented in natural numbers as 1, 2,… l. Quantitative variables can

also expressed in this manner in many experimental design methods.

Let xi andwi be the coded and uncoded values respectively for a level i of a control variable having

li levels. Then wlow and whigh refer to the uncoded values of the factor at the lowermost and

uppermost levels respectively. For categorical variables, xi and wi are expressed as Eqs. (1) and (2).

xi ¼
wi

whigh � wlow

� �

= li � 1ð Þ
(1)

and

wi ¼ xi
whigh � wlow

� �

2
(2)

In case of response surface methodology, the number of levels for all quantitative variables is

odd, and the middle level is given the value 0. Thus the remaining levels get equally distrib-

uted on both sides of the middle level, for example, �2, �1, 0, +1, +2. Then, xi and wi would be

expressed as Eqs. (3) and (4).

xi ¼
wi � whigh þ wlow

� �

=2

whigh � wlow

� �

=2
(3)
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and

wi ¼
whigh þ wlow

� �

2
þ xi

whigh � wlow

� �

2
(4)

3. Response surface methodology

Response surface methodology or RSM is a collection of mathematical and statistical tech-

niques used for the modeling and analysis of problems in which a response of interest is

influenced by several variables and the objective is to optimize the response. The method was

introduced by G. E. P. Box and K. B. Wilson in 1951. It uses a sequence of designed experi-

ments to obtain an optimal response and uses a second-degree polynomial model to achieve

this.

Let a process contain n input variables x1, x2…, xn. Then the response y is given by Eq. (5)

y ¼ f x1; x2;…; xnð Þ þ ε (5)

Where, ε is the error or noise observed in the response. If the expected response is denoted by

E y
� �

¼ f x1; x2;…; xnð Þ ¼ η, then the response surface is represented by Eq. (6)

η ¼ f x1; x2;…; xnð Þ (6)

The response can be represented graphically, either in the three-dimensional space or as

contour plots that help visualize the shape of the response surface. Contours are curves of

constant response drawn in the xi, xj plane keeping all other variables fixed. Each contour

corresponds to a particular height of the response surface. RSM also explores relationships the

response variables and several input variables. If the response is modeled by a linear function

of the independent variables, then the approximating function is the following linear model

shown by Eq. (7).

y ¼ β0 þ β1x1 þ β2x2 þ…þ βnxn þ ε (7)

If there is curvature in the system, then a polynomial of higher degree must be used. Most of

the industrial problems can be modeled with sufficient accuracy by using a second-degree

polynomial, which yields the following second order model shown by Eq. (8)

y ¼ β0 þ
X

n

i¼1

βixi þ
X

n

i¼1

βiixi
2 þ

X

n�1

i¼1

X

n

j¼iþ1

βijxixj þ ε (8)

The method of least square chooses β’s in Eq. (8) so that the sum of the squares of the errors ε,

are minimized. The least squares function is shown by Eq. (9)

L ¼
X

n

i¼1

εi
2 (9)
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By putting value of εi from above equation and differentiating equation with respect to

coefficient β, regression coefficient can be obtained.

3.1. Response surface designs

Response surface designs are those experimental designs which are used for fitting response

surfaces and generally contain three factor levels [11]. Two types of response surface designs

are used namely, central composite design and Box-Behnken design.

3.1.1. Central composite design

This consists of a factorial design (the corners of a cube), center and axial (or star) points that

allow for estimation of second-order effects [12]. The addition of axial points practically

increases the number of levels to five as shown in Figure 1. This may create problems if the

axial points cannot be run due to technical or safety reasons. For a design having k factors, the

distance of the axial point from the design center is α ¼ 2k=4.

A central composite design containing axial points with the calculated value α is called

circumscribed central composite design. If it is not possible to use this value of α, then a

provision exists in which α can be taken equal to 1 in order to obtain what is called as face

centered central composite design.

3.1.2. Box-Behnken design

This design overcomes some loopholes of central composite design by avoiding axial points and

corner points of the design space (or bypassing extreme factor combinations) and by taking only

Figure 1. Central composite design for three factors.
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three factor levels as shown in Figure 2. The design ensures that all factors are never set to high

levels simultaneously and thus ensures design points within safe operating limits.

Also, this design is fully rotatable, meaning that it provides the desirable property of constant

prediction variance at all points that are equidistant from the design center. Compared to

central composite design, this design gives lesser number of experiment runs for the same

number of factors. Hence, it can be seen that Box-Behnken designs have several advantages

over central composite designs.

3.2. Analysis of variance (ANOVA)

The analysis of variance (ANOVA) established by Ronald Fisher in 1918, is a statistical tool

used to analyze variation among and between groups. ANOVA is used to see the significant

and insignificant parameters of the predicted model. This procedure involves checking indi-

vidually variability of variable over the response [13]. It is based on the concept of two

hypotheses namely H0 (means all the regressions coefficients are zero) and H1 (mean at least

one of the regression coefficient is non-zero). If H0 is false then it suggests that one or more of

the variable contribute significantly to the developed model for response [14]. In this test

procedure, sums of square of regression and errors are calculated. To verify hypothesis F value

is calculated as ratio of mean of square (regression) to mean of square (error) is calculated.

Larger values of F suggest that model is significant. Alternatively, p value is the probability of

the predicted model shows its significance in terms of statistics. If p value is less than 0.05

model terms are significant and p value greater than 0.05 indicates that model terms are not

significant. Similarly the value of R2 (correlation coefficient) is calculated as ratio of sum of

square of regression to the total sum of square. The correlation coefficient (R2) value suggests a

satisfactory representation of process by model and good correlation between experimental

and theoretical values provided by the model equation. For goodness of fit of the model, R2

(correlation coefficient) should be at least 0.80. However, a large value of R2 does not necessar-

ily imply that the regression model is good one. Adding a variable to the model will always

Figure 2. Box-Behnken design for three factors.
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increase R2, regardless of whether the additional variable is statistically significant or not. Thus

it is possible for models that have large values of R2 to yield poor predictions of new observa-

tions or estimates of the mean response. Therefore sometimes it is beneficial to calculate

adjusted correlation coefficient (R2
adj) which is calculated as (1 � sum of square (error)/sum

of square (total)). Once R2 and R2
adj are different affectedly, there is a decent probability that

non-significant terms have been included in the model.

3.3. Backward elimination approach for developed model evaluation

After developing a model, its adequacy is checked by F test and p value [15]. For a model term

to be significant it should have high F value and low p value. Insignificant model terms do not

affect the response therefore can be removed from the model. In order to avoid insignificant

terms in the model such that modified model clarifies the response, the backward regression

elimination method (also known as stepwise deletion) is used. In the stepwise deletion

method, t test or F test for significance of design variable is performed with sequence begin

with full model. Insignificant variables with the highest p value (e.g. p > 0.05) are removed

from the full model. Stepwise regression procedure details are as follow:

Step 1:

Initially the model can be written as shown in Eq. (10)

y ¼ β0 þ β1x1 þ :……þ βn�1xn�1 þ ε: (10)

Then, the following n�1 tests are carried out, for null hypothesis Hoj: βj = 0. The lowest partial

F-test value Fl corresponding to Hoj: βj = 0 or t-test value tl is compared with the preselected

significance values F0 and t0. One of two possible steps (step 2a and step 2b) can be taken.

Step 2a:

For eliminating any variable say xl, it should satisfy the following case Fl < F0 or tl < t0. Now the

modified model can be written as equation

y ¼ β0 þ β1X1 þ⋯þ βl�1Xl�1 þ βlþ1Xlþ1 þ⋯þ βn�1Xn�1 þ ε (11)

Step 2b:

If Fl > F0 or tl > t0, the original model is the model we should choose.

The procedure will automatically stop when no variable in the new original model can be

removed and all the next best candidate cannot be retained in the new original model. Then,

the new original model is our selected model.

In the present thesis, measured responses after machining are analyzed using responses surface

methodology with cutting parameters as input variables. Initially RSMmodels are developed for

each response. Significance of each variable is confirmed through ANOVA analysis then insig-

nificant terms are removed using backward elimination approach. Analysis of machining

responses is discussed in above sections.

Statistical Approaches With Emphasis on Design of Experiments Applied to Chemical Processes12



4. Case study for using design of experiments in machining operation

Surface roughness is most widely used indicator to quantify surface integrity of machined part

[16, 17]. It directly gives quality of surface finish and has been used by many researchers.

Surface roughness is influenced by several factors such as - cutting speed, feed, depth of cut,

tool geometry, tool wear, etc. [17–20]. Therefore in the present work surface roughness is taken

as response.

In the present case study, design of experiments with central composite design was performed

based on response surface methodology. This is constructed as factorial design (the corners of a

cube), center and axial (or star) points that allow for estimation of second-order effects [21].

The addition of axial points practically increases the number of levels to five. This may create

problems if the axial points cannot be run due to technical or safety reasons. For a design

having k factors, the distance of the axial point from the design center is α = 2k/4 as shown in

Figure 3. If it is not possible to use this value of α, then a provision exists in which α can be

taken equal to 1 in order to obtain what is called as face cantered central composite design. In

the present case study, based on input factors and their levels as shown in, 20 set of experi-

ments were performed, each for turning and milling operations. The design of experiments

Figure 3. Design of experiment using central composite design.

Level -> Lowest Low Center High Highest

Coded value (x) �1.682 �1 0 1 1.682

Cutting speed Vc (m/min) turning 69.9 90.4 120 150 171.4

Feed rate f (mm/min) turning 55.6 72 96 120.6 136.6

Depth of cut ap (mm) milling 1.83 2.0 2.5 2 2.67

Table 1. Level of cutting parameters used for central composite design.
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was performed using MINITAB 17 statistical software. For the present work, based on number

of input factor k, the value of α was taken as 1.682. The coded and natural levels of the

independent variables for design of experiments are presented in Table 1. Five levels of cutting

parameters were calculated in central composite design using Eq. (12) shown above. After

defining levels of cutting parameters, sequence of experiments were generated using

MINITAB 17 statistical software using central composite design for turning and milling oper-

ations. Table 2 shows the 20 sets of experiment in terms of coded values of cutting parameters

sequenced according to run order. The number of experiments was generated based on num-

ber of input factors and their levels.

x1 ¼
Vc � Vcmax þ Vcminð Þ=2

Vcmax � Vcminð Þ=2
; x2 ¼

f � fmax þ fmin

� �

=2

fmax � fmin

� �

=2
; x3 ¼

ap � apmax þ apmin

� �

=2

apmax � apmin

� �

=2
(12)

Where x is coded value of level of individual cutting parameter, Vc is cutting speed in m/min, f

is feed rate in mm/rev, ap = depth of cut in mm.

Std order Run order Pt type Blocks Cutting speed Feed rate Depth of cut

5 1 1 1 �1 �1 1

6 2 1 1 1 �1 1

4 3 1 1 1 1 �1

14 4 �1 1 0 0 1.681793

1 5 1 1 �1 �1 �1

2 6 1 1 1 �1 �1

19 7 0 1 0 0 0

20 8 0 1 0 0 0

7 9 1 1 �1 1 1

3 10 1 1 �1 1 �1

9 11 �1 1 �1.68179 0 0

10 12 �1 1 1.681793 0 0

8 13 1 1 1 1 1

17 14 0 1 0 0 0

11 15 �1 1 0 �1.68179 0

18 16 0 1 0 0 0

15 17 0 1 0 0 0

16 18 0 1 0 0 0

13 19 �1 1 0 0 �1.68179

12 20 �1 1 0 1.681793 0

Table 2. Sequence of experiments obtained using MINITAB.
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In the present case study, minimization of surface roughness is done for turning and milling

operations. Surface roughness was measured for each machining operation. In order to com-

pensate measuring error, surface roughness was measured at three locations on the machined

surface and average value is taken. Table 3 show the list of experiments and corresponding

surface roughness in turning operations.

Second order models are developed for surface roughness in turning using RSM. After devel-

oping models, ANOVA analysis is done to see significant and insignificant terms in the models

as shown in Table 4. Insignificant terms are identified and eliminated using backward elimi-

nation procedure. In Table 4, the variable for which the value of ‘p’ is less than 0.05 indicates

that the term in the model has a significant effect on the response.

The ANOVA results shown in Table 4 demonstrate that the model is highly significant, and the

lack of fit is non-significant. Model showed a correlation coefficient (R2) of 93.13% for turning

which means more than 90% of the data can be explained by these models. Furthermore, the

significance of each coefficient in the full model was examined by the F-values and p-values.

Larger values of “F” and smaller values of p (p < 0.1) indicate that the corresponding variable

Run type Cutting speed Vc (m/min) Feed rate f (mm/min) Depth of cut ap (mm) Surface roughness Ra (μm)

Center 120.6 96 1.5 0.541

Center 120.6 96 1.5 0.559

Axial 69.9 96 1.5 0.819

Factorial 150.8 72 1 0.457

Axial 120.6 96 2.34 0.608

Factorial 90.4 120 1 0.766

Factorial 150.8 120 1 0.483

Center 120.6 96 1.5 0.592

Center 120.6 96 1.5 0.592

Factorial 150.8 72 1 0.404

Factorial 150.8 120 2 0.474

Axial 120.6 136.4 1.5 0.602

Center 120.6 96 1.5 0.583

Axial 120.6 96 0.66 0.533

Factorial 90.4 72 2 0.747

Factorial 90.4 120 2 0.844

Center 120.6 96 1.5 0.582

Axial 120.6 55.6 1.5 0.554

Axial 171.4 96 1.5 0.386

Factorial 90.4 72 1 0.747

Table 3. Surface roughness measurement after turning operation.

Design of Experiments Applied to Industrial Process
http://dx.doi.org/10.5772/intechopen.73558

15



is highly significant. Hence, the results given in Table 4, suggest that the influence of f2 (square

of feed rate), ap
2 (square of depth of cut), Vc � f (cutting speed � feed rate), Vc � ap (cutting

speed � depth of cut), and f � ap (feed rate � depth of cut) are non-significant and therefore,

can be removed from the full model to further improve the mode as shown in Eq. (13).

Ra ¼ 1:27686� 0:000897964� Vc þ 0:0008937� f þ 0:036303� ap þ 1:69203e� 7� Vc
2 (13)

4.1. Validation of developed model for surface roughness in turning operation

In order to verify the adequacy of the model developed, five validation experiments were

performed as depicted in Table 5. The conditions were those which have not been used

previously but are within the range of the levels defined previously. The predicted values from

Source Sum of square DF Mean of square F value p value

Prob > F

Model 0.31 9 0.035 29.64 <0.0001

Vc 0.30 1 0.30 253.51 <0.0001

f 6.283e-3 1 6.283e-3 5.36 0.0432

ap 4.499e-3 1 4.499e-3 3.84 0.0786

Vc � f 4.572e-5 1 4.572e-5 0.039 0.8474

Vc � ap 1.591e-4 1 1.591e-4 0.14 0.7203

ap � f 2.841e-5 1 2.841e-5 0.024 0.8794

Vc
2 3.859e-3 1 3.859e-3 3.29 0.0998

f2 8.258e-4 1 8.258e-4 0.70 0.4211

ap
2 3.612e-4 1 3.612e-4 0.31 0.5912

Residual 0.012 10 1.173e-3

Lack of fit 9.587e-3 5 1.917e-3 4.47 0.629

Pure error 2.143e-3 5 4.286e-4

Core total 0.32 19

Table 4. ANOVA analysis for surface roughness as response and cutting parameters as variables in turning operation.

Parameters Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

Cutting speed (m/min) 72.5 95.0 110.0 130.0 160.0

Feed rate (mm/min) 60 80 100 125 140

Depth of cut (mm) 0.8 0.9 1.4 1.6 1.8

Predicted Ra (μm) 0.797 0.681 0.634 0.565 0.464

Actual Ra (μm) 0.772 0.748 0.721 0.6325 0.501

% Error �3.18 9.96 13.69 11.95 8

Table 5. Confirmation experiments for validating surface roughness model for turning operation.
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the equation developed for surface roughness and the actual experimental value were com-

pared. The percentage errors were calculated. All these values are presented in Table 5. The

percentage error range between the actual and predicted value is �3.18 to 13.69% which is

acceptable. Residual from the least square fit is defined by ei = yi � y* for i = 1, 2,….20 where yi
is the observed response (Surface roughness) and y* is the predicted response. A check of the

normality assumption may be made by constructing a normal probability plot of the residuals.

If the residuals plot is approximately along a straight line, then the normality assumption is

satisfied. Figure 4 presents a plot of residuals ei versus the predicted response y* and it reveals

no apparent problem with normality.

From the confirmation experiments and normal probability plot of residual, it is observed that

the developed model can predict the surface roughness in turning operation. Figure 5 shows the

Figure 4. Normal probability plot of residual for surface roughness in turning operation.

Figure 5. Response surface plots.
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response surface plots give a graphical display of these quantities. Typically, the variance of the

prediction is also of interest, because this is a direct measure of the likely error associated with

the point estimate produced by the model.

From the response surface plots also, it is observed that interaction of cutting speed/feed rate is

strongly affecting the surface roughness value whereas interaction of feed/ doc and cutting

speed/doc has negligible effect over surface roughness [22, 23].

5. Summary

From the above study it can be concluded that experimenter can predict the response using

proper design of experiment where proper underlying mechanism of the process is not fully

understood. Proper fitting of response from experimental data can be done by design of

experiment, regression modeling technique, statistical analysis and optimization. Following

conclusions can be made based on the case study:

• Design of experiments is a very structured methodology for planning and designing a

sequence of experiments.

• Analysis of variance (ANOVA) was used to identify significant input variables for partic-

ular response.

• Prediction model can be developed for a response with correlation coefficient more than

90% which confirm that the models properly explain the experimental data.

• The developed predictive model can help industries in achieving appropriate output for

improving productivity.
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