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Abstract

In the last two decades, heparin was widely used as an anticoagulant. Besides numerous 
advantages of heparin, some patients with heparin administration suffer from a side effect, 
the so-called heparin-induced thrombocytopenia (HIT), which can result in thromboses 
such as deep vein thrombosis, pulmonary embolism, occlusion of a limb artery, acute myo-
cardial infarct, stroke, and a systemic reaction or skin necrosis. The basic on HIT compli-
cation have been investigated and led to clinical insights. Recent studies provided detail 
mechanisms among binding partners in HIT; especially, it has been shown that not only 
heparin but also a subset of antibody induce thrombocytopenia. In this chapter, insights 
into both heparin- and antibody-induced thrombocytopenia will be discussed and the novel 
mechanism of the autoimmune HIT caused by a subset of antibodies will be introduced.

Keywords: heparin-induced thrombocytopenia, HIT, mechanism, binding force,  
PF4, antibody

1. Introduction

Heparin-induced thrombocytopenia (HIT) as a severe adverse drug effect occurs when 
patients receive heparin anticoagulant to prevent and treat thromboembolic diseases. 

Depending on the length of heparin, HIT occurs in ≤5% of patients receiving high molecu-

lar weight unfractionated heparin, whereas ≤1% of patients receiving low molecular weight 
heparin. In HIT, the immune system considers the platelet factor 4 (PF4), which is altered in 

its conformation after binding to heparin (H), to be “foreign” and the formation of anti-PF4/H 

antibodies (aPF4/P Abs) occurs. Upon binding to the PF4/H complex, these antibodies acti-

vate circulating platelets and other cells. Typically, 5–14 days after heparin exposure, platelet 
count reduces to <15–20 × 109 cells/L (or a > 50% decrease in platelet count). HIT can result 
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in thromboses such as deep vein thrombosis (DVT), pulmonary embolism (PE), occlusion 

of a limb artery, acute myocardial infarct, stroke, and a systemic reaction or skin necrosis. 

Importantly, there is also a subset of anti-PF4/Heparin antibodies (aPF4/H Abs) which, in 

the absence of heparin, can lead to symptomatic thrombocytopenia and excessive vascular 

thrombosis. The extreme sequela of the aPF4/H Abs is autoimmune HIT, in which individuals 

develop multiple vessel occlusions without drug exposure.

2. Heparin-induced thrombocytopenia

Heparin-induced thrombocytopenia (HIT) is a distinct clinicopathologic syndrome caused 

by platelet-activating antibodies that bridge between complexes of platelet factor 4-Heparin 

(PF4/H) and platelets [1, 2] or endothelial cells [3]. Human platelets are anuclear cell fragments 

with discoidal shapes of 1–2 μm, originating from the cytoplasm of bone marrow megakaryo-

cytes [4]. Platelets store PF4 (a positively charged tetramer belonging to CXC chemokine fam-

ily) in their alpha granules. Non-activated platelets release some PF4s (Figure 1A) [5]. When 

patients take anticoagulant polyanions like heparin, some of these heparins bind to PF4s form-

ing ultra large PF4/H complexes (Figure 1B). Binding of heparin to PF4 induces a conforma-

tional change in PF4s [6–8] which results in an expression of new epitopes. Some patients 

develop antibodies against these neoepitopes (Figure 1B). These human-derived antibodies 

are defined as anti-PF4/H antibodies (aPF4/P Abs). Each resulting multimolecular complex 

Figure 1. Cartoon illustrates the formation of heparin-induced thrombocytopenia (HIT). (A) Non-activated platelets 

secrete several PF4s. (B) with heparin exposure, PF4s form ultra large complexes with long heparins that induce 

conformational changes in PF4s. Some patients develop aPF4/H Abs against PF4 neoepitopes. (C) Human-derived 

aPF4/H Abs bound PF4/H complexes can adhere to platelet membrane. (D) Fc parts of the antibodies link fcγRIIa 
receptors on platelet membranes that leads to platelet aggregation/activation. Adapted from [5].
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of an aPF4/P Ab to a PF4/H complex contains two platelet binding sites, that is, one is on the 

PF4/H complexes, and another one is on the Fc part of the IgG which binds to FcγRIIa recep-

tors [9, 10] on platelet membranes (Figure 1C). Cross-linking of the platelet Fc receptor results 

in platelet activation that releases more PF4s and facilitates formation additional ultra large 

immune complexes. These complexes rapidly recruit other platelets into the prothrombotic 

process (Figure 1D). Activation of platelets leads to the loss of platelets, massive platelet acti-

vation and even triggers clotting cascade that results in thrombin generation and increases the 
risk for vessel occlusions such as venous thrombosis, myocardial infarction or stroke [7, 11, 12].  

The binding strength of a blood thrombus has major biological importance. A recent study 

could determine directly the binding strength between two platelets at single platelet level 

[13]. The binding force increases proportionally to the degree of platelet activation but reduces 

with blockade of specific platelet receptors. The method provides major perspectives for testing 
and improving the biocompatibility of new materials, quantifying the effect of drugs on plate-

let function, and assessing the mechanical characteristics of acquired/inherited platelet defects.

Heparins are the glycosaminoglycans (GAGs) containing glucosamine residues with a high 

degree of sulfation that dictates their biological activities [6, 14, 15]. GAGs play an important 

role in the sequestration of plasmodium falciparum-infected red blood cells in the microvascular 

endothelium of different tissues [16, 17]. Their pharmacologic activity is mediated by a chemi-

cally unique pentasaccharide sequence present in about 30% of all heparin molecules. Heparin 
behaves like simple entropic spring forces, which is produced by sugar rings of heparin flip-

ping to more energetic and more extended conformations [18, 19]. Both low and high molecu-

lar weight heparins are available. The source of high molecular weight unfractionated heparin 

(UFH) influences the risk of HIT, i.e. bovine UFH is more likely to cause HIT than porcine UFH 
[20–22]. Besides UFH, the low molecular weight heparins (LMWH) produced from UFH by 

chemical fractionation, are widely used in clinical practice [23–27]. Due to their shorter chain 

length, LMWHs show less strong interaction with PF4. UFH and PF4 form ultra large complexes 

(ULCs) when both are present approximately at an optimal 1:1 ratio. Comparing with UFH, 
LMWHs form smaller complexes with PF4. ULCs showed a greater capacity to promote platelet 

activation than small complexes [28]. These differences in complex formation between UFH and 
LMWHs translate into their risk for inducing HIT in patients. LMWHs induce HIT about 10 times 
less frequent than UFH, but HIT still randomly occurs during treatment with LMWHs [29–32].

2.1. Boundary between antigenic and non-antigenic heparin

PF4/heparin (or polyanions) complexes can become antigenic or not depend on heparin (or 

polyanion) characteristics. To expose neoepitopes on PF4s relevant for HIT, at least three bonds 

between the polyanion and PF4 in the PF4/polyanion complex should be formed [33]. These 

neoepitopes on the PF4/polyanion complexes then allow binding of the aPF4/H Abs. The bind-

ing strength of the single sulfate groups on the polyanion with the PF4 does not differ among 
polyanions with a different degree of sulfation [33]. The quantity and resulting density of sulfate 

groups on the polyanion chain determine their molecular effects on PF4 [33]. In particular, the 

polyanions which bind to PF4 tetramer with less than three sulfate bonds are unable to expose 

the neoepitope [6, 34]. The results suggest an existence of a boundary between antigenic (risk 

for HIT) and non-antigenic heparins (non-risk for HIT). This boundary has been determined by 
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applying multiple techniques such as atomic force microscopy-based atomic force microscopy 

(AFS) [35], isothermal titration calorimetry (ITC) [6], or circular dichroism (CD) spectroscopy in 

combination with enzyme-linked immunosorbent assay (ELISA) [7] (Figure 2).

AFS shows that both numbers of specific rupture events and magnitude of rupture forces rise 
with an increase of heparin length, suggesting that long heparins form with PF4 more bonds 

than short ones [35]. A larger variation of the rupture forces for long heparins ≥8-mer com-

pared with short heparins ≤6-mer was observed (Figure 3A). The enthalpy obtained by ITC 

rises with the increase of heparin length and reaches maximal values at ~11-mer (Figure 3B) 

[36]. Combining the results obtained by AFS and ITC, the boundary between non-antigenic 

and antigenic heparin is determined between 8- to 11-mer. This boundary is further clarified 
by CD spectroscopy which is sensitive to the secondary structure and folding properties of 

proteins [37]. For PF4/H interactions, the change in β-sheet content was found to be ≤30% for 
short heparin and >30% for long heparins (Figure 3C). By ELISA, optical density (OD) was 

≤0.5 for short heparin, while OD was >0.5 for longer heparins (>8-mer) (Figure 3C). The OD 

of 0.5 is the threshold to determine whether a heparin used in the ELISA was able to support 
binding of aPF4/H Abs. The combination of β-sheet content and OD values show clearly a 
dissimilar behavior between short and long heparins (Figure 3C).

Figure 2. Determination of the boundary between antigenic and non-antigenic heparins. (A) Rupture force histograms 

fitted by Gaussian distributions show narrow widths (green arrows) for heparins ≤6-mer (HO05, HO06) and wider 
widths for longer heparins ≥8-mer (HO08, HO012, HO016). (B) ITC demonstrates lower enthalpy for short heparins 
(black dotted box) and higher enthalpy for long heparins (red-dotted box), while a saturation is found at ~11-mer. (C) 
Combination of CD spectroscopy and EIA shows that a boundary between short and long heparins is at ~30% ß-sheet 
contents and OD ~0.5. Overall, the boundary is determined between 8- and 11-mer. Adapted from [8, 35, 48].
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Linking together all the results from AFS, ITC, CD spectroscopy and ELISA, the bound-

ary between antigenic and non-antigenic heparin has been proved between 8- and 11-mer. 
These findings are particularly important to understand PF4-Heparin binding processes 
and to develop new heparin-derived drugs with reduced risk for adverse immune reactions. 

Combination of these techniques allows better characterizing heparin boundary.

2.2. Kinetic properties and binding model of PF4/H complexes

Thermodynamic and kinetic parameters of the ligand-receptor interactions can be obtained 

by applying the Bell-Evans [38] or the Friddle [39, 40] models. The models show that the faster 

the molecule is pulled, the higher the rupture force will be measured. For simple ligand-

receptor interaction in which multiple interactions are not involved, the rupture force (F) 

increases proportionally to the logarithmic loading rate. Even though there is some variation 

in the parameters obtained by these two models, Bell-Evans model is still a powerful tool to 

determine the kinetics of ligand-receptor interactions [41, 42]. For the PF4/H system, the PF4 

tetramer is considered as one antigen or the interaction between heparin and PF4 is formed 

by a single bond, and therefore, applicable to the Bell-Evans model [35]. Short heparins show 

higher koff values than long heparins, indicating that PF4/long heparin complexes are more 

stable than PF4/short heparin complexes (Table 1). With binding affinity (K
A
) measured by 

ITC [6], the thermal on-rate (k
on

 = koff. K
A
) of PF4/H complexes is calculated. The short hepa-

rins bind to PF4s with ~10–20 times faster than long heparins [35].

PF4-Heparins interaction is more complex than general ligand-receptor interactions which 

are attributed to the electrostatic attraction. Based on special features in force-distance curves 
and the magnitude of PF4/H binding forces, it has been proved that long heparin bound PF4s 

creating additional PF4-PF4 bonds [35]. Long heparins form two types of bonds with PFs, i.e. 

Figure 3. Model describing different binding pathways between short and long heparins when interacting with PF4 
tetramers. (A) Depending on heparin length, short heparin can bind to one PF4 tetramer, (B) whereas long heparin 

bridges two PF4s and forces them closer to each other at a distance l < L, merging two hydrophobic surfaces of PF4s 

(green shaded area). Adapted from [35].

Parameter HO06 HO12 HO16

koff (s−1) 1.64 1.40 × 10−2 1.10 × 10−4

k
on

(M−1 s−1) 0.41 × 105 0.32 × 104 0.55 × 103

ΔE (k
B
T) −0.49 4.27 9.12

Table 1. Thermodynamic and kinetic parameters of PF4/heparin interactions [35].
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(i) PF4-Heparin and (ii) PF4-PF4 bond, whereas short heparins form only one PF4-Heparin 

bond. Even though the concept of the PF4-PF4 bond, in general, cannot be accepted because 

PF4s are highly positive proteins, and therefore, strongly repel each other. However, when 

forming a complex with a highly negative charged heparin, the positive-charged PF4 is prob-

ably neutralized that results in a mergence of two hydrophobic PF4 surfaces [34]. Based on 

these findings, a model for PF4-heparin interaction has been proposed (Figure 3). Due to their 

sizes, the short heparins simply bind to a single PF4 tetramer (Figure 3A), whereas the long 

heparins neutralize positive charges on PF4 tetramers and switch the charges between two 

PF4 tetramers from a repulsion to an attraction. Heparin reacts as a catalyst that forces two 
PF4 molecules close to each other within a distance l (l < L), resulting in two merged hydro-

phobic PF4 surfaces (Figure 3B). This way of interacting results in the extremely stable PF4/H 

complexes, especially for long heparins.

A sequence in the formation of PF4/heparin complexes has been identified. When a long hep-

arin comes closely to PF4s, heparin forms first bonds with positively charged clusters on PF4s 
and then it pulls closely PF4s together to form PF4-PF4 bonds [35].

Based on bond energy (ΔE), quantitative information of bond transitions can be calcu-

lated following the study of Wang et al. [43]. The bond transitions of short heparin from 

the weak positive-charged area on PF4 release energy, whereasPF4-PF4 bonds consume 

energy [35]. In contrast to short heparin, the bond transitions of long heparins in both 

cases release energy, while their interactions with the positively charged clusters consume 

energy (Table 1). Based on energy level, PF4-PF4 interaction is attributed to be stron-

ger than the bonds between heparin and non-clusters of positive-charged areas on PF4. 

However, PF4-PF4 interaction is weaker than the interaction between heparin and clusters 

of positive charges on PF4.

3. Antibody-induced thrombocytopenia

Immunocomplexes composed of aPF4/P Abs and PF4/polyanion (PF4/P) complexes on the 

platelet surface induce platelet aggregation via cross-linking FcγRIIA receptors [9, 10]. They 

also bind to the surface of endothelial cells and monocytes [44–46], inducing procoagulant 

activity [44, 47]. Heparin-induced thrombocytopenia has been well understood. Recent stud-

ies reported that a subset of human-derived autoantibodies in some patients also can induce 

thrombocytopenia in a heparin-similar manner.

3.1. Human-derived HIT antibodies

All aPF4/P Abs bind to immobilized PF4/P complexes in ELISA [48], but only some of them 

activate platelets in functional assays, e.g. the heparin-induced platelet activation assay (HIPA) 

[48] or the serotonin release assay (SRA) [49, 50]. Human-derived aPF4/P Abs compose of three 

groups, i.e. the antibodies do not activate platelets in HIPA test (group-1 Abs); the antibodies 
activate platelets in HIPA but require heparin (group-2 Abs); the antibodies activate platelets 
even without heparin (group-3 Abs) (Figure 4). Group-3 Abs developed from patients who 

had clinical autoimmune HIT, and therefore, they are defined as ‘autoantibodies’ [51].
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3.1.1. Characteristics of human-derived HIT antibodies

In contrast to the detailed characterization of the PF4/polyanion complexes, little is known 
about the features of aPF4/H Abs in the pathogenesis of HIT. Exploring the characteristics 

of HIT antibodies bears a potential to better understand general mechanisms of antibody-
mediated autoimmunity HIT. However, there is a difficulty in subtracting the pathogenic HIT 
antibody directly from human sera because both pathogenic and non-pathogenic antibodies 

bind to the PF4/H antigen.

Newman et al. reported that aPF4/P Abs can be purified by PF4-agarose beads [3]. Later in 

2000, Amiral et al. described that affinity purification of aPF4/P Abs resulted in a mixture of 
IgA, IgM, and IgG [52]. In this mixture, only a subset of IgG antibodies activates platelets 

[49]. Contamination of IgA, IgM, and IgG antibodies will increase the difficulty in character-

izing aPF4/P Abs. To overcome this limitation, two-step affinity chromatography has cur-

rently established to separate aPF4/H Abs from HIT patients sera. By this method, aPF4/P Abs 

from sera of patients were successfully isolated for three antibody groups. The purified Abs 
showed similar characteristics as the original serum in EIA and HIPA. Titrating the antibodies 

in ELISA, all antibody groups show an increase of OD with increasing antibody concentra-

tion (Figure 5A). OD values are highest for group-3, followed by group-2 and then group-1 
Abs. In the HIPA test, group-1 Abs did not cause platelet aggregation up to a concentration of 
89.7 μg/mL; group-2 Abs induced platelet aggregation from concentrations ≥43.5 μg/mL, but 
only in the presence of heparin; while group-3 Abs induced platelet aggregation from concen-

trations ≥5.2 μg/mL independently of heparin (Figure 5B). This is consistent with previous 

findings that chondroitin sulfate plays an important role in platelet activation by PF4/P Abs, 
even in the absence of heparin [53, 54].

Figure 4. Different reaction patterns of aPF4/H antibodies. (Right) pyramid shows antibodies of three groups, all positive 
in EIA. Group-1 (blue) do not activate platelets (HIPA -); many Abs belonging to group-2 do not induce HIT (yellow), 
some induce HIT (gold) and others induce HIT with thrombosis (dark red). Recent studies found an additional small 

subset of patient’s content autoimmune group-3 HIT Abs (red). (Left) visualization of platelet aggregates-induced by 
different antibody groups imaged by scanning electron microscopy in the presence (+) or absence (−) of heparin: Group-1 
abs induce (bottom left) only small aggregates reflecting the background platelet activation; group-2 Abs (middle, left) 
cause large aggregates only in the presence of heparin; group-3 Abs induce large aggregates even in the absence of 

heparin. Same scale bar for all images. Adapted from [55].
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3.1.2. Binding strength of human-derived HIT antibodies

The binding strength between the antibody and PF4/H complexes is determined by AFS. A 

single aPF4/H Abs is immobilized on the cantilever and then approach to the PF4/H complexes 

coated on a solid phase for interacting and measuring of their binding strength. Weakest bind-

ing forces were measured for monoclonal antibody KKO mimicking human HIT antibodies 
(43.6 ± 8.8 pN, gray) and group-1 Abs (44.0 ± 8.1 pN, green), higher for group-2 Abs (60.6 ± 15.4 
pN, blue) and highest for group-3 Abs (72.4 ± 26.2 pN, red). Statistics showed no significant 
difference between KKO and group-1 Abs (p = 0.877), significant difference between group-1 
and group-2 Abs (p < 0.001), or between group-2 and group-3 Abs (p = 0.006)) (Figure 6) [55].

Group-3 Abs bound to PF4/H complexes with much higher binding energy (ΔH = −2.87 
± 2.06 × 108 cal/mol) than group-2 Abs (ΔH = −2.90 ± 0.4 × 104 cal/mol), and their dissocia-

tion constant (K
D
) (~5.3 nM) was about two orders of magnitude lower than that of group-2 

Abs (~1.7 × 102 nM). The binding strength of PF4 to heparin ~150 pN [35] is higher than that 

between group-3 Abs and PF4/H complexes (mostly lower than 150 pN) [55]. Besides that, 

the group-3 Abs have a highest binding affinity (koff = 0.12 s−1) as compared with group-1 
Abs y (koff = 15.6 s−1), group-2 Abs (koff = 2.0 s−1), or KKO (koff = 2.2 s−1). The lowest thermal off-
rate specify that multiplexes induced by PF4/H complexes with group-3 Abs are more stable 

than those formed with other antibody groups. Furthermore, KKO and group-1 Abs contain 
antibodies with similar characteristics, and therefore, they interacted rather uniformly with 

PF4/H complexes. This has been clarified by obtaining the relatively small differences among 
the rupture forces (<60 pN, Figure 6A-B) measured from different cantilevers. However, 
group-2 Abs contain different types of antibodies as observed by a large variation of all bind-

ing forces (~40% exceeded 60 pN). For group-3 Abs, the variation of binding force is even 
higher than that of group-2 Abs as shown by ~44% of all binding forces ≥60 pN and ~15% 

Figure 5. Dose-dependent binding of aPF4/P Abs to PF4/H complexes in EIA and HIPA. (A) EIA shows the lowest OD 

of control IgG (black) as the background reaction, follow by group-1 (dark cyan), higher for group-2 (blue) and highest 
for group-3 (red) Abs. (B) HIPA tests show a dependence of platelet aggregation on antibody concentration: Group-1 
Abs do not activate platelets, neither in the absence (−), nor in the presence (+) of reviparin up to a concentration of 
89.7 μg/mL (dark cyan); group-2 Abs (blue) induced platelet activation (red part) at concentrations ≥44 μg/mL but only 
in the presence of reviparin; group-3 Abs (red) activated platelets at much lower concentrations (≥5 μg/mL) either in the 
presence or absence of reviparin. n = 5 sera per group. Adapted from [55].
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even exceeded 100 pN. The low variability in binding forces of KKO and group-1 Abs has 
been attributed to the fact that they contain homogeneous antibodies, whereas the patient’s 
sera such as group-2 and group-3 Abs contained polyclonal mixtures of aPF4/P Abs differ-

ently reactive. Among these human-derived Abs, it has been proved that the group-2 contains 
also antibodies reacting like group-1 Abs, while group-3 is highly complicated as it composes 
of not only antibodies reacting like group-1 and group-2 Abs but also some additional super 
strong reactive antibodies. The aPF4/H Abs show different reactivity patterns under various 
pH and ionic strength conditions [56].

3.1.3. Autoimmune antibodies cluster PF4

The autoimmune group-3 Abs activate platelets in the absence of polyanions because they can 

self-cluster PF4 to form PF4/group-3 antibody complexes without the need of heparin [55]. 

This characteristic of autoimmune group-3 Abs has been proved by various methodologies:

First, the autoimmune group-3 Abs could be purified from the patient’s sera using a PF4-
column (instead of the PF4/H column). Hardly any PF4/P Abs were obtained from control and 

group-1 sera; group-2 sera showed a minimally increased IgG yield. When these antibodies 
are concentrated to 50 μg/ml, only antibodies purified from group-3 sera activated platelets 
in the HIPA. The results indicate that group-3 sera contain antibodies with PF4 specificity, 
which activate platelets.

Figure 6. Binding characteristics of aPF4/H Abs. Each dot shows the mean and standard error of the rupture force 

for each respective antibody from five sera per group. (A) KKO and (B) group-1 Abs bind to PF4/H complexes with a 
binding strength mostly ≤60 pN (black dotted line), while (C) group-2 and (C) group-3 Abs consist of Abs with different 
binding forces. (D) a subset of group-3 Abs binds to PF4/H complexes with rupture forces higher than 100 pN (red-
dotted line). Adapted from [55].
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Next, only autoantibodies (group-3) show strong interaction with PF4 alone by ITC. When the 

antibodies were tested at the same concentration of 62.5 nM, KKO and group-2 Abs did not 
interact with PF4, while group-3 Abs interacted strongly. As the interaction between group-3 

Abs and PF4 alone showed two binding sites (stoichiometry n = C
ABS

/C
PF4

 = 0.53 ± 0.003), these 
Abs can cluster two PF4 molecules. Increasing antibody concentration did not improve bind-

ing of KKO to PF4 whereas group-2 Abs weakly interacted with PF4. However, the binding 
energy released by group-2 Abs is only 0.1% compared to that of group-3 Abs.

Consistently, PF4 or PF4/H EIA show that group-3 Abs bound quite strong to PF4 while 

other antibodies did not even though all Abs bound much stronger to PF4/H complexes than 

to PF4 alone. By AFS, group-1 and group-2 Abs showed much less binding events to PF4 
than to PF4/H complexes, while the super-reactive group-3 Abs showed similar bindings. In 

addition, the interaction forces of group-3 Abs purified via a PF4-column with PF4/H com-

plexes showed the highest range of binding forces (~100 pN). These results again indicate 
that group-3 Abs bind strongly to PF4 alone independently from heparin, while bindings of 

group-1 and group-2 Abs are heparin-dependent.

By dynamic light scattering (DLS), group-3 Abs formed the largest complexes with PF4 as 
compared to other antibody groups with even larger size than PF4/H complexes further indi-

cate that group-3 Abs can cluster PF4.

The binding energy generated by the interaction of group-3 Abs with PF4 in the ITC experi-

ments (ΔH = −3.5 ± 0.86 × 107cal/mol) is much higher than the energy released when a 16-mer 
heparin interacts with PF4 (ΔH = −7.26 ± 1.36 × 103 cal/mol) [6]. As 16-mer heparin can force 
two PF4 molecules together, based on their high energy release, group-3 Abs most probably 

also can force two PF4 tetramers together. In addition, the negative entropy of the reaction 

(ΔS = −11.7 ± 2.8 × 104 cal/mol. K) is attributed to PF4 conformational change when forming 
complexes with the group-3 Abs. By DLS, the size complexes formed by PF4 and group-3 Abs 

increases significantly when the group-2 Abs are added, indicating that group-3 Abs, induce a 
conformational change in PF4 and the resulting PF4/group-3 antibody complexes allow bind-

ing of group-2 Abs in the same way as polyanions do.

Altogether, PF4 form large complexes with heparin and allow group-2 Abs bind and induce 
platelet aggregation/activation (Figure 7A-C). Importantly, a subset of group-3 Abs cluster 

PF4 and the resulting PF4/Group-3 antibody complexes also allow binding of group-2 Abs 
and enhance platelet aggregation/activation even stronger than heparins do as shown by 

tighter and denser aggregates (Figure 7D-F).

3.2. HIT-like antibodies

Many studies in HIT have been performed with human aPF4/P Abs isolated from patient 

plasma because only one monoclonal antibody (KKO) mimicking human HIT antibodies did 
exist until recently [57]. KKO activates platelets [58] and monocytes [59] in vitro and in vivo 

by cross-linking FcγRIIa. KKO has been used to unravel the pathogenesis of HIT and is the 
basis for a recently FDA approved plasma-based antigen assay (HIT-HemosIL) for detection 

of PF4/P antibodies [60, 61]. KKO mimics the biological activity of human aPF4/P Abs [62] 
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and has been used to understand the binding characteristics of an antibody recognizing PF4/P 

complexes and activating platelets [62, 63]. Binding of a non-HIT antibody RTO to PF4 mono-

mers prevents PF4 tetramerization and inhibits KKO and human HIT IgG-induced platelet 
activation/aggregation in vitro, and thrombus progression in vivo. The probability and the 

interaction force of KKO binding to PF4 are much greater than those of RTO, while KKO/
PF4 dissociation rate was approximately 10-fold slower than RTO/PF4 [62, 63], indicating that 

KKO binds stronger than RTO and KKO/PF4 complexes are more stable than RTO/PF4.

KKO interacts with PF4/H complexes coated platelets with ~4-fold higher forces than with 
PF4/H complexes coated on a solid phase, while RTO shows only a minor change [64]. The 

different binding forces strongly indicate that PF4 and PF4/H complexes either expose differ-

ent epitopes or allow better access of platelet-activating Abs to their epitope when PF4 bound 
to the platelet surface compared to the presentation of PF4/H complexes on a solid phase. 

Most probably, PF4/H complexes exhibited the antigenic site differently depending on the 
bound substrates [53]. The findings provide an explanation for the surprising observation that 
KKO interact relatively weak when PF4/H complexes are immobilized on a solid phase [55], 

while it strongly activates platelets in functional assays. It is unresolved, which additional 

binding partners on the platelet surface interfere with the conformational change or different 
presentations of PF4/H complexes. Nevertheless, chondroitin sulfate [53] and polyphosphates 

[65] are potential candidates, as they interact with PF4.

Figure 7. Group-3 Abs cluster PF4 and enhance platelet activation. (A) PF4 form large complexes with heparin and the 

resulting PF4/H complexes allow (B) group-2 Abs bind and (C) induce platelet aggregation/activation. (D) a subset of 
group-3 Abs cluster PF4 forming PF4/Group-3 antibody complexes which also (E) allow binding of group-2 Abs and (F) 
enhance platelet aggregation/activation evidenced by tighter and denser aggregates compared to (C). Adapted from [55].
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However, KKO is a mouse IgG2b antibody (an absent subclass in humans) [66], while the 

platelet-activating aPF4/P Abs present in HIT plasma samples are predominantly IgG1. KKO 
behaves differently from human aPF4/P Abs, i.e. it binds only weakly to PF4/H complexes 
coated on a solid phase [64]. Recently, a chimeric monoclonal aPF4/H Abs with a human Fc 

fragment (5B9) has been developed [67]. The 5B9 antibody has been demonstrated to fully 
mimic the cellular effects of human HIT Abs [10, 68].

4. Diagnosis of HIT

Immunologic assays, such as polytypic ELISA, IgG-specific ELISA, and particle gel immu-

noassay (PGI) have a sensitivity, are widely used to detect aPF4/H Abs in the diluted human 

sera because of their high sensitivity (≥95%) and the fast turn-around. However, only ~50% 
of aPF4/H Abs detected by antigen tests are clinically irrelevant. The results from positive 

immunologic assays may lead to an overtreatment for HIT that can result in serious conse-

quences, such as venous limb gangrene or fatal hemorrhage [69]. However, immunologic 

assays are still powerful tools to rule-out patients with HIT. The cut-off optical intensity (OD) 
in ELISA was defined at 0.5. An ELISA test showing OD > 0.5 is normally suspected to contain 
aPF4/H Abs. To increase the specificity of clinically relevant antibodies, a higher OD cut-off 
for the antigen tests (e.g. OD > 1.0) had been suggested [70].

Even though functional assays such as by serotonin release assay (SRA) [71] or HIPA [72] have 

a sensitivity of ~90% which is slightly lower than the immunologic assays, these tests show a 
much better specificity of over 90%. For the better identifying HIT, it is recommended that a pos-

itive PF4/H ELISA should prompt confirmatory testing by functional assays [73]. However, the 

functional assays are only available in specialized laboratories and not available in many coun-

tries. Therefore, many physicians rely on the results of antigen tests, especially for the first days 
after clinical suspicion of HIT has been raised until the results of the functional assay is reported.

Besides immunologic assays and functional assays, the chemiluminescent immunoassays 

such as HemosIL AcuStar HIT-IgG and HemosIL AcuStar HIT-Ab have been recently intro-

duced. These methods are relatively faster (~30 minutes) than the immunologic assays (hours) 
and showed extremely high sensitivity (~100%) [74]. The assays seem to be ideal for ruling out 

HIT. Another study used a colorimetric test to detect HIT based on the interaction between 

platelets and tetrazolium-based indicator dye [75]. The authors reported the quality of detect-

ing HIT is from 96 to 100% agreement with the functional assay C-SRA.

5. Conclusion

Not only heparin but also autoimmune antibodies induce thrombocytopenia. Large antigenic 

complexes formed between PF4 and either heparin or antibody activate platelets, cause a 

prothrombotic and result in a variety of thromboembolic and systemic consequences. In auto-

immune HIT, aPF4/P Abs activate platelets in the absence of heparin. These antibodies are 

highly reactive. They can self-cluster PF4-molecules forming antigenic complexes and allow 
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binding of otherwise aPF4/P Abs. The resulting immunocomplexes induce massive platelet 

activation in the absence of heparin. The source and length of heparins play an important 

role in inducing thrombocytopenia. Improvement of heparin quality together with discover-

ing new non-heparin drugs should be highly desirable. Patients who are suspected of HIT 

need to be immediately stopped heparin exposure and switched to an alternative anticoagu-

lant. Regarding patients with antibody-induced thrombocytopenia, the level of complication 

is much higher than the general heparin-induced thrombocytopenia. To date, these human-

derived antibodies are hardly controlled, and therefore, efforts in the field would be appreci-
ated. Clinical tests for detecting HIT antibodies as well as autoimmune HIT antibodies must 

be improved to achieve an appropriate identification of clinical HIT patients.
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