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Abstract

This chapter discusses efficient and practical matrix-free implementations of the ensemble
Kalman filter (EnKF) in order to account for localization during the assimilation of obser-
vations. In the EnKF context, an ensemble of model realizations is utilized in order to
estimate the moments of its underlying error distribution. Since ensemble members come
at high computational costs (owing to current operational model resolutions) ensemble
sizes are constrained by the hundreds while, typically, their error distributions range in the
order of millions. This induces spurious correlations in estimates of prior error correlations
when these are approximated via the ensemble covariance matrix. Localization methods
are commonly utilized in order to counteract this effect. EnKF implementations in this
context are based on a modified Cholesky decomposition. Different flavours of Cholesky-
based filters are discussed in this chapter. Furthermore, the computational effort in all
formulations is linear with regard to model resolutions. Experimental tests are performed
making use of the Lorenz 96 model. The results reveal that, in terms of root-mean-square-
errors, all formulations perform equivalently.

Keywords: ensemble Kalman filter, modified Cholesky decomposition,
sampling methods

1. Introduction

The ensemble Kalman filter (EnKF) is a sequential Monte Carlo method for parameter and

state estimation in highly nonlinear models. The popularity of the EnKF owes to its simple
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distribution, and reproduction in any medium, provided the original work is properly cited.



formulation and relatively easy implementation. In the EnKF, an ensemble of model realiza-

tions is utilized in order to, among other things, estimate the moments of the prior error

distribution (forecast distribution). During this estimation and the assimilation of observa-

tions, many challenges are present in practice. Some of them are addressed in this chapter:

the first one is related to the proper estimation of background error correlations, which has a

high impact on the quality of the analysis corrections while the last one is related to the proper

estimation of the posterior ensemble when the observation operator is nonlinear. In all cases,

background error correlations are estimated based on the Bickel and Levina estimator [1].

2. Preliminaries

We want to estimate the state of a dynamical system x∗ ∈Rn�1, which (approximately) evolves

according to some (imperfect) numerical model operators x∗k ¼ Mtk�1!tk x∗k�1

� �

, for instance, a

model which mimics the behavior of the atmosphere and/or the ocean where n is the model

dimension (typically associated with the model resolution). The estimation process is based on

two sources of information: a prior estimate of x∗, xb ¼ x∗ þ ξ with ξ � N 0n;Bð Þ, and a noisy

observation y ¼ H x∗ð Þ þ e with e � N 0m;Rð Þ, where m is the number of observed model

components, Rm�m is the estimated data error covariance matrix, H : R
n�1 ! R

m�1 is the

(nonlinear) observation operator that maps the information from the model domain to the

observation space, 0n is the nth dimensional vector whose components are all zeros. In prac-

tice, m≪ n or m < n. The assimilation process can be performed by using sequential data

assimilation methods, and one of the most widely used methods is the ensemble Kalman filter,

which is detailed in the following paragraphs.

2.1. The ensemble Kalman filter

In the ensemble Kalman filter (EnKF) [2], an ensemble of model realizations

Xb ¼ xb 1½ �
; xb 2½ �

;…; xb N½ �
h i

∈R
n�N, (1)

is utilized in order to estimate the moments of the background error distribution,

xb i½ � � N xb;B
� �

, (2)

via the empirical moments of the ensemble (1) and therefore,

xb ≈ xb ¼
1

N
�
X

N

i¼1

xb i½ �
∈R

n�1, (3)

and
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B ≈Pb ¼
1

N � 1
� ΔXb � ΔXb

� �T
∈R

n�n, (4)

where N is the ensemble size, xb i½ �
∈R

n�1 is the ith ensemble member, for 1 ≤ i ≤N, xb ∈Rn�1 is

well known as the background state, B∈R
n�n stands for the background error covariance

matrix, xb is the ensemble mean, and Pb is the ensemble covariance matrix. Likewise, the

matrix of member deviations ΔXb
∈R

n�N reads,

ΔXb ¼ Xb � xb � 1TN ∈R
n�N

: (5)

A variety of EnKF implementations have been proposed in the current literature, most of them

rely on basic assumptions over the moments of two probability distributions: the background

(prior) and the analysis (posterior) distributions. In most of EnKF formulations, normal assump-

tions are done over both error distributions.

In general, depending on how the assimilation process is performed, the EnKF implementation

will fall in one of two categories: stochastic filter [3] or deterministic filter [4]. In the context of

stochastic filters, for instance, the assimilation of observations can be performed by using any

of the next formulations,

Xa ¼ A � Pb
� ��1

� Xb þHT � R�1 � Ys
h i

∈Rn�N , (6)

Xa ¼ Xb þ A �HT � R�1 � ΔY ∈R
n�N , (7)

and

Xa ¼ Xb þ Pb �HT � R�1 þH � Pb �HT
� ��1

� ΔY ∈R
n�N , (8)

where the analysis covariance matrix A∈R
n�n is given by A ¼ Pb

� ��1
þHT � R�1 �H

h i�1
, the

matrix of innovations (on observations) is denoted by ΔY ¼ Ys �H � Xb
∈R

n�N, and the matrix

of perturbed observations reads Ys ¼ y � 1TN þ E∈R
m�N , where the columns of E∈R

m�N are

formed by samples from a normal distribution with moments N 0;Rð Þ. In practice, one of the

most utilized formulations is given by (8).

2.2. Cholesky and modified Cholesky decomposition

The forms of the Cholesky and the modified Cholesky decomposition were discussed by Golub

and Van Loan in [5]. If A∈R
n�n is symmetric positive definite, then there exist a unique lower

triangular L∈R
n�n with positive diagonal entries such that A ¼ L � LT . If all the leading princi-

pal submatrices of A∈R
n�n are non-singular, then there exist unique lower triangular matrices L

and M and a unique diagonal matrix D ¼ diag d1; d2;…; dnð Þ such that A ¼ L �D �MT
: If A is

symmetric, then L ¼ M and A ¼ L �D � LT . Golub and Van Loan provide proofs of those
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decompositions, as well as various ways to compute them. We can use the Cholesky factor of a

covariance matrix to quickly solve linear systems that involve a covariance matrix. Note that if

we compute the Cholesky factorization and solve the triangular system L � y ¼ b and LT � x ¼ y,

then

A � x ¼ L � LT
� �

� x ¼ L � LT � x
� �

¼ L � y ¼ b: (9)

For a symmetric matrix A∈Rn�n, the modified Cholesky decomposition involves finding a

non-negative diagonal matrix E such that Aþ E is positive definite. In particular, E ¼ 0 when-

ever A is positive definite, otherwise Ek k should be sufficiently small. This allows applying the

usual Cholesky factorization to Aþ E, i.e. finding matrices L,D∈R
n�n such that Aþ E

¼ L �D � LT .

Recall ΔXb ¼ Xb � xb ⊗ 1TN ∈R
n�N . Thus, Δxb i½ � � N 0n;Bð Þ for 1 ≤ i ≤ n. Let xb i½ � ∈R

N�1, the

vector holding the ith row across all columns of ΔXb for 1 ≤ i ≤ n. Bickel and Levina in [1]

discussed a modified Cholesky decomposition for the estimation of precision covariance

matrix, and this allows in our context to estimate of B�1 by fitting regressions of the form:

xb i½ � ¼
Xi�1

j¼1

xb j½ � � βi, j þ ξ i½ �
∈R

N�1, (10)

then, Lf gij ¼ �βi, j, for 1 ≤ i < j ≤ n.

3. Filters based on modified Cholesky decomposition

3.1. Ensemble Kalman filter based on modified Cholesky

In the ensemble Kalman filter based on a modified Cholesky decomposition (EnKF-MC) [6],

the analysis ensemble is estimated by using the following equations,

Xa ¼ Xb þ B�1 þHTR�1 �H
� ��1

�HT � R�1 � ΔY, (11)

and

ΔY ¼ YS �H:Xb
� �

∈R
n�N

: (12)

In this context, error correlations are estimated via a modified Cholesky decomposition. This

provides an estimate of the inverse background error covariance matrix of the form,

B�1
≈ bB

�1
¼ LT �D�1 � L∈R

n�n, (13)
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or equivalently

B ≈ bB ¼ L
�1 �D � L�T

∈R
n�n, (14)

where L∈R
n�n is a lower-triangular matrix whose diagonal elements are all ones, and

D∈R
n�n is a diagonal matrix. Even more, when only local effects are considered during the

estimation of bB
�1

, sparse estimators of the precision background can be obtained. Further-

more, the matrix L can be sparse with only a few non-zero elements per row. Typically, the

number of non-zero elements depends on the radius of influence during the estimation of

background error correlations. For instance, in the one-dimensional case, the radius of influ-

ence denotes the maximum number of non-zero elements, per row, in L. The EnKF-MC is then

obtained by plugging in the estimator (3) in (6). Given the structure of the Cholesky factors, the

EnKF-MC can be seen as a matrix-free implementation of the EnKF.

Recall that the precision analysis covariance matrix reads,

A
�1 ¼ B

�1 þH
T � R�1 �H � Rn�n, (15)

moreover, since HT � R�1 �H ∈R
n�n can be written as a sum of m rank-one matrices, the factors

(3) can be updated in order to obtain an estimate of the inverse analysis covariance matrix. The

next section discussed such approximation in detail.

3.1.1. Posterior ensemble Kalman filter stochastic (PEnKF-S)

In the stochastic posterior ensemble Kalman filter (PEnKF-S) [7, 8], we want to estimate the

moments of the analysis distribution,

x � N x
a
;Að Þ, (16)

based on the background ensemble X
b

� �
, where xa is the analysis state and A∈R

n�n is the

analysis covariance matrix. Consider the estimate of the inverse background error covariance

matrix Eq. (3), the precision analysis covariance matrix Eq. (4) can be approximated as follows:

A
�1

≈ bA
�1

¼ bB
�1

þ X � XT , (17)

where X ¼ H
T � R�1

2 ∈R
n�m. The matrix (17) can be written as follows:

bA
�1

¼ L
T �D�1 � Lþ

Xm

i¼1

xi � x
T

i
,

where xi denotes the ith column of matrix X, for 1 ≤ i ≤m. Consider the sequence of factor

updates,
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Li
� �T

�Di � Li ¼ L i�1ð Þ
h iT

�Di�1 � Li�1 þ xi � x
T
i

Li
� �T

�Di � Li ¼ L i�1ð Þ
h iT

� D i�1ð Þ þ pi � p
T
i

h i
� L i�1ð Þ

Li
� �T

�Di � Li ¼ ~L i�1ð Þ � L i�1ð Þ
h iT

� ~D i�1ð Þ � ~L i�1ð Þ � L i�1ð Þ
h i

,

where Li�1 � pi ¼ xi ∈R
n�1, for 1 ≤ i ≤m, bB

�1

¼ L 0ð Þ
h iT

�D 0ð Þ � L 0ð Þ and

D ið Þ þ pi � p
T
i ¼ ~L ið Þ

h iT
� ~D ið Þ � ~L ið Þ

∈R
n�n, (18)

We can use of Dolittle’s method in order to compute the factors ~D ið Þ and ~L ið Þ in (9), and it is

enough to note that,

1 ~l21 ~l31 ⋯ ~ln1

0 1 ~l32 ⋯ ~ln2

0 0 1 ⋯ ~ln3

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 ⋯ 1

2

66666666664

3

77777777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
~L ið Þ½ �

T

~d1 0 0 0 0

0 ~d2 0 0 0

0 0 ~d3 0 0

⋮ ⋮ ⋮ ⋱ 0

0 0 0 0 ~dn

2

66666666664

3

77777777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
~D ið Þ½ �

1 0 0 … 0

~l21 1 0 … 0

~l31 ~l21 1 … 0

⋮ ⋮ ⋮ ⋱ 0

~ln1 ~ln2 ~ln3 … 1

2

66666666664

3

77777777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
~L ið Þ½ �

¼

d1 þ p21 p1 � p2 p1 � p3 … p1 � pn

p2 � p1 d2 þ p22 p2 � p3 … p2 � pn

p3 � p1 p3 � p2 d3 þ p23 … p3 � pn

⋮ ⋮ ⋮ ⋱ ⋮

pn � p1 pn � p2 pn � p3 … dn þ p2n

2

666666666664

3

777777777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
D ið Þþpi �p

T
i½ �

After some math simplifications, the next equations are obtained,

~dk ¼ p2k þ dk �
Xn

q¼kþ1

~dq �~l
2
qi, (19)

and

~lkj ¼
1
~dk

� pk � pj �
Xn

q¼kþ1

~dq �~lqi �~lqj

2

4

3

5, (20)
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for 1 ≤ k < n and 1 ≤ j ≤ k� 1. The set of Eqs. (19) and (20) can be used in order to derive an

algorithm for rank-one update of Cholesky factors, and the updating process is shown in

Algorithm 1.

Algorithm 1. Rank-one update for the factors L i�1ð Þ and D i�1ð Þ

1. function UPD_CHOLESKY_FACTORS L i�1ð Þ
;D i�1ð Þ

; xi

� �

2. Compute pi from Li
� �T

� pi ¼ xi

3. for k ¼ n � 1 do

4. Compute ~dk via Eq. (10).

5. Set lkk  1.

6. for j ¼ 1! k� 1 do

7. Compute ~lkk according to (11).

8. end for

9. end for

10. Set L ið Þ  L i�1ð Þ � L i�1ð Þ and D ið Þ  ~D ið Þ.

11. return L ið Þ, D ið Þ

12. end function

Algorithm 1 can be used in order to update the factors of bB
�1
for all column vectors in X, and

this process is detailed in Algorithm 2.

Algorithm 2. Computing the factors L mð Þ and D mð Þ of L mð Þ
h iT

�D mð Þ � L mð Þ

13. function COMPUTE_ANALYSIS_FACTOR L 0ð Þ
;D 0ð Þ

;H;R
� �

14. Set X  HT � R�
1
2.

15. for i ¼ 1! m do

16. Set L ið Þ
;D ið Þ

h i
 UPD_CHOLESKY_FACTORS L i�1ð Þ

;D i�1ð Þ
; xi

� �

17. end for

18. return L mð Þ, D mð Þ

19. end function
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Once the updating process has been performed, the resulting factors form an estimate of the

inverse analysis covariance matrix,

bA
�1

¼ L mð Þ
h iT

�D mð Þ � L mð Þ
∈R

n�n, (21)

From this covariance matrix, the posterior mode of the distribution can be approximated as

follows:

xa ¼ xb þ z∈Rn�1, (22)

where

L mð Þ
h iT

�D mð Þ � L mð Þ � z ¼ q, (23)

with q ¼ HT � R�1 � y�H � xb
� �

∈R
n�1. Note that the linear system (23) involves lower and

upper triangular matrices, and therefore, xa can be estimated without the need of matrix

inversion. Once the posterior mode is computed, the analysis ensemble is built about it. Note

that bA reads bA ¼ L mð Þ
h i�1

� D mð Þ
h i�1

� L mð Þ
h i�T

, and therefore, a square root of bA can be

approximated as follows:

bA
1
2
¼ L mð Þ

h i-1
� D mð Þ
h i�1

2

∈R
n�n, (24)

which can be utilized in order to build the analysis ensemble,

Xa ¼ xa � 1TN þ ΔXa, (25)

where ΔXa
∈R

n�N is given by the solution of the linear system,

L mð Þ � D mð Þ
h i�1

2

� ΔXa ¼ W ∈R
n�N , (26)

In addition, the columns ofW ∈R
n�N are formed by samples fromamultivariate standardnormal

distribution. Again, since L mð Þ is lower triangular, the solution of (26) can be obtained readily.

3.1.2. Posterior ensemble Kalman filter deterministic (PEnKF-D)

The deterministic posterior ensemble Kalman filter (PEnKF-D) is a square root formulation of

the PEnKF-S. The main difference between them lies on the use of synthetic data. In both

methods, the matrices A�1 and B�1 are computed similarly (i.e., by using Dolittle’s method

and the algorithms described in the previous section).

In the PEnKF-D, the computation of bB
�1

is performed (13) based on the empirical moments of

the ensemble. The analysis update is performed by using the perturbations

Kalman Filters - Theory for Advanced Applications172



bB
�1

2 � Xb � xb � 1TN
� �

� N 0; Ið Þ, (27)

which are consistent with the dynamics of the numerical model, for instance, samples from

(27) are driven by the physics and the dynamics of the numerical model. Finally, the analysis

equation of the PEnKF-D

Xa ¼ xa � 1TN þ bA
1
2
� bB

�1
2 � ΔXb

∈R
n�N , (28)

where

xa ¼ xb þ A �HT � R�1 � y�H � xb
� �

, (29)

A
1
2 ≈

bA
1
2
¼ ~LT � ~D

1
2

h i�1

, (30)

and

B�1
2 ≈

bB
�1

2 ¼ L �D
1
2, (31)

Since the moments of the posterior distribution are unchanged, we expect both methods

PEnKF-S and PEnKF-D to perform equivalently in terms of errors during the estimation

process.

3.2. Markov Chain Monte Carlo-based filters

Definitely, the EnKF represents a breakthrough in the data assimilation context, perhaps its

biggest appeal is that we can obtain a closed form expression for the analysis members.

Nevertheless, as can be noted, during the derivation of the analysis equations, some constrains

are imposed, for instance, the observation operator is assumed linear, and therefore, the

likelihood P yjxð Þ obeys a Gaussian distribution. Of course, in practice, this assumption can

be easily broken, and therefore, bias can be introduced on the posterior prediction; this is

notoriously significant if one considers the fields in which data assimilation lives are sub-

merged. From a statistical point of view, more specifically, under the Bayesian framework, this

situation can be summarized as follows:

• The prediction is obtained from the posterior distribution: P xjyð Þ.

• The information from numerical model is known like the prior of background: Pb xð Þ:

• The information from the observations is incorporated through the likelihood: P yjxð Þ.

• The posterior distribution is calculated: P xjyð Þ∝Pb xð Þ �P yjxð Þ.

• If Pb xð Þ and P yjxð Þ are Gaussian, P yjxð Þ is Gaussian too, and the analysis is equal to the

mean of P yjxð Þ.
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A significant number of approaches have been proposed in the current literature in order to

deal with these constraints; for instance, the particle filters (PFs) and the maximum likelihood

ensemble filter (MLEF) are ensemble-based methods, which deal with nonlinear observation

operators. Unfortunately, in the context of PF, its use is questionable under realistic weather

forecast scenarios since the number of particles (ensemble members) increases exponentially

regarding the number of components in the model state. Anyways, an extended analysis of

these methods exceeds the scope of this document, but its exploration is highly recommended.

Taking samples directly from the posterior distribution is a strategy that can help to remove

the bias induced by wrong assumptions on the posterior distribution (i.e., normal assump-

tions). We do not put the sights on finding the mode of the posterior distribution; instead of

this, we want a set of state vectors that allow us to create a satisfactory representation of the

posterior error distribution, then, based on these samples, it is possible to estimate moments of

the posterior distribution from which the analysis ensemble can be obtained [9].

Hereafter, we will construct a modification of the sequential scheme of data assimilation; first,

we will describe how to compute the analysis members by using variations in Markov Chain

Monte Carlo (MCMC)-based methods, and then, we will include the modified Cholesky

decomposition in order to estimate a precision background covariance.

An overview of the proposed method is as follows:

1. The forecast step is unchanged; the forecast ensemble is obtained by applying the model

to the ensemble of states of the previous assimilation cycle.

2. The analysis step is modified, so that the analysis is not obtained anymore by, for instance

(28), but we perform k iterations of an algorithm from the Markov Chain Monte Carlo

(MCMC) family in order to obtain samples from the posterior distribution.

In order to be more specific in the explanation, let us define Metropolis-Hastings (MH) as the

selected algorithm from the MCMC family. Now let us focus on MCMC in the most intuitive

way possible. Let us define J x; yð Þ equal to the posterior pdf obtained from the expression

P xjyð Þ∝Pb xð Þ �P yjxð Þ. MH explores the state space in order to include model states in a so-

called Markov Chain. The selection of candidates is based on the condition

x cð Þ; y
� �

> J x t�1ð Þ; y
� �

, that is, if the value of J �ð Þ for a candidate x cð Þ is greater than that for a

previous vector x t�1ð Þ. Candidates are generated from a pre-defined proposal distributionQ �ð Þ;

generally, a Gaussian multivariate distribution with mean x t�1ð Þ is chosen, and a covariance

matrix is defined in order to handle the step sizes. Concisely, MCMC methods proceed as

follows: at first iteration, the chain is started with xb vector. At end, the sample is obtained by

extracting the last t vectors on the chain, and the other vectors are dismissed or “burned”. In

(32), we can see the expression to calculate the acceptance probability that relates the target

pdf, J �ð Þ, with the proposal Q �ð Þ

α ¼
J x cð Þjy
� �

Q x t�1ð Þjx cð Þ

� �

J x t�1ð Þjy
� �

Q x cð Þjx t�1ð Þ

� � , (32)
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The terms that involve Q �ð Þ can be canceled if a symmetric distribution is chosen as the

proposal one, for instance, in the Gaussian distribution case. The procedure for the calculation

of the analysis applying MH is described below:

1. Initialize the Markov Chain, C, assigning the background value xb to C 0ð Þ.

2. Generate a candidate vector state x cð Þ, fromQ.

3. ObtainU from a uniform (0, 1) distribution.

4. If U ≤α Then: C tþ1ð Þ ¼ x cð Þ Else: C tþ1ð Þ ¼ C tð Þ

5. Repeat Steps 2 through 4, for t ¼ 1 until t ¼ k� 1

6. Remove the first p vectors of the chain, the burned ones.

The analysis is computed over the sample:

xa ¼ 1

k� pð Þ �
Xk

i¼k�p

C ið Þ,

MCMC methods are straightforward to implement; when an enough number of iterations is

performed, the behavior of the target function is captured on the chain [10]. This is true for

even, complex density functions such as those with multiple modes. Briefly, let us focus on the

fact that, generally, simulation-based methods such as MCMC explore a discretized grid, and

as the mesh is refined, a huge number of iterations are needed before a high probability zone of

the posterior distribution is reached [11]. Concretely, Hu et al. [12] proposed a family of

modified MCMC dimension-independent algorithms under the name of preconditioned

Crank-Nicolson (pCN) MCMC. These methods are robust regarding the curse of dimensional-

ity in the statistical context. Initially, the Crank-Nicolson discretization is applied to a stochas-

tic partial differential equation (SPDE) in order to obtain a new expression for the proposal

distribution:

x cð Þ ¼ x t�1ð Þ �
1

2
δKL x t�1ð Þ þ x cð Þ

� �
þ

ffiffiffiffiffiffiffiffiffi
2Kδ

p
e0, (33)

where L is the precision matrix of B, K is a preconditioning matrix, e0 is white noise, if K ¼ B

and δ∈ 0; 2½ � in (33), we get the pCN proposal described in (34):

x cð Þ ¼ x t�1ð Þ �
1

2
δKL x t�1ð Þ þ x cð Þ

� �
þ

ffiffiffiffiffiffiffiffiffi
2Kδ

p
, (34)

where ωeN 0;Bð Þ and β ¼ 8δ= 2þ δð Þ2. Of course, we use Pb like a computationally efficient

estimation of B. The acceptance probability is defined in (35):

α ¼ min 1; exp J xt�1; yð Þ � J xc; yð Þð Þ

 �

, (35)
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The procedure for the calculation of the analysis applying pCN Metropolis-Hastings is

described as follows:

1. Initialize the Markov Chain, C, assigning the background value xb to C 0ð Þ.

2. Generate a candidate vector state using (3): x cð Þ ¼ 1� β2
� �

1
2x t�1ð Þ þ βω.

3. Obtain U from a uniform (0, 1) distribution.

4. If U ≤α, then C tþ1ð Þ ¼ x cð Þ . Else: C tþ1ð Þ ¼ C tð Þ:

5. Repeat Steps 2 through 4, for t ¼ 1 until t ¼ k� 1.

6. Remove the first p vectors of the chain, the burned ones.

7. The analysis is calculated over the sample: xa ¼ 1
k�pð Þ �

Pk
i¼k�p C ið Þ.

Finally, in the data assimilation context, by using the modified Cholesky decomposition

described in the earlier sections, the pCN-MH filter reads:

1. The forecast step remains unchanged; the forecast ensemble is obtained by applying the

model to the ensemble of states of the previous iteration, but the estimation of background

covariance matrix is calculated by modified Cholesky.

2. The update step is modified, so that the analysis is obtained by run k iterations of pCN-

MH, to obtain a sample of the posterior error distribution.

Now we are ready to numerically test the methods discussed in this chapter.

4. Experimental results

4.1. Stochastic filter PEnKF-S

We assess the accuracy of the PEnKF-S and compare it against that of the LETFK implementa-

tion proposed by Hunt [13]. The numerical model is the Lorenz 96 model [11], which mimics

the behavior of the atmosphere:

dxk
dt

¼ �xk�1 � xk�2 � xkþ1ð Þ � xk þ F, for 1 ≤ k ≤n, (36)

where n is the number of components in the model and F is an external force; with the value of

the parameter, F ¼ 8, the model presents a great entropy.

The experimental settings are described below:

1. An initial random solution x
þ
�3 is propagated for a while in time by using Lorenz 96 model

and a fourth-order Runge Kutta method in order to obtain a vector state x
þ
�2 whose

physics are consistent with the dynamics of such numerical model. This vector state serves

as our reference solution.
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2. The reference solution is perturbed by using samples from a normal distribution with

parametersN 0n; σB � Ið Þ. Three different values for σB are considered during the numerical

experiments σB ∈ 0:05; 0:10; 0:15f g. This perturbed state is propagated in time in order to

make it consistent with the physics and dynamics of the numerical model. From here, an

initial background state xb�1 is obtained.

3. A similar procedure is performed in order to build a perturbed ensemble about xb�1. The

ensemble members are propagated in time from where an ensemble of model realizations

x
b i½ �
0

n oN

i¼1

of model is obtained.

4. The assimilation windows consist of 15 equidistant observations. The frequency of obser-

vations is 0.5 time units, which represents 3.5 days in the atmosphere.

5. The dimension of the vector state is n ¼ 40. The external force of the numerical model is

set to F ¼ 80.

6. The number of observed components is 50% of the dimension of the vector state.

7. Three ensemble sizes are tried during the experiments ∈ 20; 40; 60f g.

8. As a measure of quality, the L2 norm of the analysis state and the reference solution are

computed across assimilation steps.

9. A total of 100 runs are performed for each pair N; σBð Þ. For each run, a different initial

random vector is utilized in order to build the initial perturbed reference solution x
þ
�3

(before the model is applied x
∗

�2). This yields to different initial ensembles as well as

synthetic data for the different runs of each configuration (pair).

The average of the error norms of each pair N; σBð Þ for the LETKF and the PEnKF

implementations is shown in Table 1. As can be seen, on average across 100 runs, the

σB N LETKF PEnKF-S

0.05 20 22,6166 21,2591

40 20,5671 18,2548

60 20,0567 17,8824

0.10 20 23,1742 21,0725

40 20,9513 18,3542

60 18,5048 17,8240

0.15 20 24,8201 20,9059

40 21,1314 18,1731

60 20,8487 17,7590

Table 1. Average of L-2 norm of errors for 100 runs of each configuration σB;Nð Þ for the compared filter

implementations.
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performance of the proposed EnKF implementation outperforms that of the LETKF in terms of

L2 norm of the error. Even more, the PEnKF-S seems to be invariant to the initial background

error σB since, in all cases, when the ensemble size is increased a better estimation of the

reference state x
∗ at different observation times is obtained. This can also obey to the estima-

tion of background error correlations via the modified Cholesky decomposition since it is

drastically improved whenever the ensemble size is increased as pointed out by Bickel and

Levina in [1]. In such case, the error decreases by O log nð Þ=Nð Þ. This is crucial in the PEnKF-S

formulation since estimates of the precision analysis covariance matrix are obtained by rank-

one updates on the inverse background error covariance matrix. On the other hand, in the

LETKF context, increasing the ensemble size can improve the accuracy of the method but that

is not better than the one shown by the PEnKF.

Some plots of the L2 norm of error for the PEnKF and the LETKF across different configura-

tions and runs are shown in Figure 1. Note that the error of the PEnKF decreases aggressively

since the earlier iterations. In the LETKF context, the accuracy is similar to that of the PEnKF

only at the end of the assimilation window.

4.2. Deterministic filter PEnKF-D

Holding the settings from the previous section, experiments are performed by using the

PEnKF-D. The results have similar behavior to that of the LETFK and the PEnKF-S implemen-

tation proposed by Niño et al. in [8]. This can be appreciated in Figures 1–3. As can be seen, the

error distributions reveal similar behavior across all compared filters.

4.3. MCMC filter based on modified Cholesky decomposition

We will describe experiments of our proposed filter based on a modified Cholesky decompo-

sition and the preconditioned Crank-Nicolson Metropolis-Hastings. Again, the numerical

Figure 1. Local ensemble transform Kalmar filter (LETKF).
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model is the Lorenz 96 model. In this section, we are mainly interested on describing the

behavior of the method, especially when the observational operator is nonlinear.

The experimental settings are as follows:

1. The observational operator is quadratic: H xð Þf g
i
¼ x

2
i
, where xi denotes the ith compo-

nent of the vector state x.

2. The vector of states has n ¼ 40 components.

3. The ensemble size is N ¼ 20.

4. The length of the Markov Chain is 1000.

5. The proposal is pCN with β ¼ 0:09.

Figure 2. Posterior ensemble Kalmar filter stochastic (PEnKF-S).

Figure 3. Posterior ensemble Kalmar filter deterministic (PEnKF-D).
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Figure 4 describes the distribution of six of the 40 components of the state vector after 1000

iterations of the algorithm, attempting to visualize if the actual value is within or near the region

of the highest probability density described by the sample contained in the Markov Chain.

Note that, not in all cases, the actual values of the model components were located at the peaks

of the histogram, but most of them were within or near to zones of high probability described

by the sample. This result is important if we take into account that probably the posterior

distribution is not normal as is the case of quadratic observation operators.

5. Conclusions

In this chapter, efficient EnKF implementations were discussed. All of them are based on a

modified Cholesky decomposition wherein a precision background covariance is obtained in

terms of Cholesky factors. In the first filter, the PEnKF-S, synthetic data are utilized in order to

compute the posterior members, as done in stochastic formulations of the filter. Even more, a

sequence of rank-one updates can be applied over the factors of the prior precision matrix in

order to estimate those of the posterior precision. In the second filter, the PEnKF-D, synthetic

data are avoided by using perturbations obtained from the physics and the dynamics of the

numerical model. Finally, a MCMC-based filter is obtained in order to reduce the impact of bias

when Gaussian assumptions are broken during the assimilation of observations, for instance,

when the observation operator is nonlinear. Numerical experiments with the Lorenz 96 model

reveal that the proposed filters are comparable to filters from the specialized literature.

Figure 4. Histogram of six components of the state vector after 1000 iterations of the algorithm, the dashed lines indicate

the position of the true value for the respective component.
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