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Abstract

Several studies have shown a dramatic reduction of semen quality in many industrialized
countries and infertility is becoming a public health top priority, whose incidence is
associated to late-onset adult diseases, especially cancer, shorter life expectancy and
trans-generational effects. The male reproductive system is particularly sensitive to a
broad variety of reproductive and developmental toxicants, including many environmen-
tal pollutants and recent studies suggest that human semen is an early and sensitive
environmental and health marker. A set of semen biomarkers is described for reproduc-
tive health effects in relation to environmental exposure, where human semen seems to be
an early and sensitive source of biomarkers than blood to monitor high environmental
pressure on human health. Environmental health should consider reproductive health
and development, from intrauterine life to childhood and puberty: these are both vulner-
able targets and high-value protection goals, inasmuch as they represent the future of our
societies. Hence, biomarkers of reproductive health should be exploited as early signals of
environmental pressure and increased risk of adverse chronic health effects so that the use
of “human seminal model” might be the main objective to be considered in the agenda of
public prevention policies for early detection and innovative programs of health surveil-
lance in environmental risk areas.

Keywords: semen quality, pollution, DNA sperm damage, environmental marker,
health marker, endocrine disruptors, sperm telomere, redox status, epigenetic,
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1. Introduction

Since the early 1950s, in several demographic surveys a steady decline of birth rates in all

European countries has been observed [1]. In particular semen quality was highly decreased in

many industrialized countries [2–4] and in many European, Japanese and American young

people poor semen quality was associated with subfertility or even infertility [5, 6]. The risk is

that semen quality of a significant proportion of young men in developed countries will impair

the fecundity potential causing on a short-term basis just a longer waiting time to pregnancy

without to considerably family sizes of modern couples [7, 8], but on a middle-, long-term basis,

strongly contributing (along with socio-economic factors) to the already observed European

decrease in the birth rate. While there was a considerable variability in trends in sperm counts

over the past 20 years, several recent studies have reported that 20–30% of young men today

have sperm concentration below 40 � 106/ml, which is associated with reduced fecundity [9–11].

Among life-style changes that contribute to a reduced birth rate, affecting semen parameters and/

or semen quality, there are: increased age at conception of both parents (although as a conse-

quence of socio-economic factors), the increase in obesity, physical inactivity and the exposure to

environmental and dietary environmental and chemical contaminants, including drugs. Expo-

sure to man-made chemicals, in particular in the workplace, is recognized as major risk factors

formale infertility in both epidemiological and experimental studies [12–16]. Individuals exposed

for professional reasons to environmental contaminants show a reduction of concentration,

motility, morphology and/or sperm DNA damage. In addition, toxicological studies in animal

models are reporting DNA damages or epigenetic alterations within the germline: exposure to

environmental xenobiotics during the fetal development and in early post-natal life, caused

congenital malformations or reproductive tissue alterations or reduced fertility or signs of repro-

ductive syndromes, such as the testicular dysgenesis syndrome, in particular when multiple

in utero exposure to chemicals are tested. Furthermore, gene expression of genes mediating

hormone (e.g. sex steroid hormones) actions is affected by epigenetic alterations even after some

generation from the exposure to chemicals showing that the adverse effects can be eventually

recorded only in next generations. A milestone in understanding the pathogenesis of testicular

tumor has been the discovery of the fact that its onset in adults results from cancer cells in situ,

which are transformed germ cells of the gonocyte type, which have failed to differentiate into

spermatogonia during the fetal period [17, 18]. More strikingly, especially in industrialized

countries, the reduction of semen quality and/or semen count present differences in areas within

the same country or even in the same region supporting the idea that environmental factors,

present in some areas but not in others, may be responsible for the decline in semen quality and

sperm count [19–27]. Furthermore, different studies have reported that in high environmental

pressure areas there is both an increase of infertility, urogenital malformation and chronic disease

(cancer, diabetes, etc.) [28–32]. These epidemiological data are important to understand the

shared biological mechanisms mediated by contaminants. In fact, infertility is becoming a public

health top priority because, in addition to psychological distress and high economic costs, there

aremore andmore evidences of diseases associated with poor semen quality [33] including cross-

generational effects [34, 35], shorter life expectancy [36], testicular cancer [37–41] and overall

other types of cancer [42, 43]. However, the first systematic study regarding environmental
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pollution and human reproduction has been conducted in the Czech Republic within the

research program “Teplice” [44]. In particular, with regard to the impact on the semen quality, it

has been proved a positive correlation between the increased concentration of polycyclic aro-

matic hydrocarbons (PAHs) in atmospheric pollution as well as of airborne particulate matter

(PM), with an aerodynamic diameter smaller than 10 μm (PM10), mainly in winter, and an

increase in fragmentation of sperm chromatin, DNA-PAHs adducts, abnormal sperm shapes

and in the rate of sperm aneuploidies [45]. Other human biomonitoring studies have

documented widespread human exposure to chemicals [46, 47] and actually the European

Commission has financed the Human Biomonitoring Initiative (HBM) (https://ec.europa.eu/

research/conferences/2016/hbm4eu/index.cfm) to promote the generation of current HBM data

throughout Europe as well as the development of new biomarkers of exposure for chemicals.

However, knowing the environmental pollutant concentrations in the environment and their

seasonal variability, is essential to consider each source of exposure related to individual lifestyle

(including living places, dietary habits, use of cosmetics, plastic bottles, personal computers,

wireless internet and much more), and the plausibility of the cause-to-effect relationship among

the real life mixture of dietary and environmental contaminants, the tissue/biological fluid levels

at which chemicals (or their metabolites) are present in the human body and human disorders

and/or pathologies. From this stage onwards, how much chemical values are measurable in

fluids or tissues (biomarkers of exposure) and to which extent they are associated with a biolog-

ical effect (biomarkers of effect) depending on specific, individual response (markers of genetic

susceptibility, polymorphisms, etc.) will define a complete risk assessment founded on a reliable

Adverse Outcome Pathway (AOP) in which each sequential step is linked to the other. Further-

more, in order to adopt an effective primary prevention strategy, it will be important to identify

not only the source and extent of the exposure but also the tissue or organ most sensitive to such

exposure and, simultaneously, the biological tool more sensitive and reliable to predict future

alterations and to detect the earliest clinical risk indices. Dietary and environmental chemicals

exposure may influence human endocrine and metabolic homeostasis and, especially, the repro-

ductive system. Among the reproductive system targets, the male reproductive system could be

considered a general health check detector since it is particularly and uniquely sensitive to a

broad variety of reproductive and developmental toxicants, including many environmental

pollutants, throughout the lifespan. Indeed, spermatogenesis and secretory fluids of the differen-

tiated accessory glands of the male reproductive system are continuously renovated starting

from newly differentiating staminal cells, thus making them a feasible target to study both short-

and long-term effects of chemical exposure. The male germline accumulates mutations faster

than the female one [48, 49]. For instance, it is thought that sperm cells are more susceptible than

eggs to the effects of oxidative damage [50] and recent studies have demonstrated the association

between semen quality and state of health, correlating the semen quality with either chronic

degenerative diseases, comorbidities and even mortality [51–53]. Thus, spermatogenesis is a cycle

extremely complex and vulnerable to endogenous and exogenous stress and that human semen

can become an important “environmental and health marker”. In this way, the qualitative

assessment of human semen might be envisaged as a potential focus for future development of

public prevention policies. Therefore, the use of reproductive biomarkers as environmental

health risks was proposed as a promising/ innovative strategy for the early detection and pre-

vention of environmental health [54].
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2. Main

With the release of the Silent Spring in 1962 [55] the issues related to chemical pollution have

begun to become a topic of political and scientific debate by laying the basis of environmental

chemistry and ecotoxicology as we know them. Environmental toxicology concerns the way in

which toxic substances reach the organism and affect human health. At present many chemicals

[56] have been detected in tissues and biological fluids of human body (Figures 1 and 2).

2.1. Organic pollutants and reproduction

Persistent organic pollutants (POPs) are very durable toxic chemicals which include

polychlorinated dibenzodioxins polychlorinated dibenzofurans polychlorinated biphenyls

(PCBs), chlorinated organic pesticides, PAHs, hexachlorobenzene and many other substances

that we find in daily life such as polybrominated diphenyl ethers (PBDEs), perfluorooctane

sulfonate, Perfluorottanoic acid ammonium salt, brominated flame retardants, food additives

such as bisphenols and phthalates (plasticizers) and parabens (preservatives), according to

recent experimental acquisitions, are known as endocrine disruptors (Endocrine Disrupting

Chemicals). They are able to interfere with the production, release, transport, metabolism,

binding, action or elimination of natural hormones of the body responsible for maintaining

the homeostasis and the setting of endocrine reproductive processes [57–59]. They can also

alter the cellular oxido-reductive homeostasis (redox status), resulting in a condition known as

biochemical oxidative stress [60–62] a genotoxic action featuring a genetic and epigenetic

damage transmissible through the germ line to the offspring (transgenerational effect). This

last aspect is definitely very disturbing to future generations’ public health and justifies the

growing interest of the scientific community in the study of the reproductive system in recent

years [63–65]. These substances, very stable and soluble in fats, are found in semen that has a

considerable lipid amount [66, 67].

2.2. Inorganic pollutants and reproduction

Metals toxicity depends on several factors, including their ability to bonds to reactive groups

of enzymes and proteins (e.g. thiol groups) thus altering their structure and/or function. They

may also interfere with the bioaccumulation of essential metals (e.g. iron, calcium and zinc)

thus negatively affect those physiological mechanisms depending upon their bioavailability.

Heavy metals accumulation in living organisms, in particular lead, cadmium, arsenic, mer-

cury, depend upon the exposure to contaminated environment and may trigger acute and

chronic degenerative diseases: In particular, genotoxic elements (Arsenic, Cadmium and

Nickel) may damage the DNA structure either directly (through the production of oxygen

radicals) or indirectly (via the alteration of enzymes responsible for DNA repair) and they may

interfere in the activities of regulators of proliferation, apoptosis, differentiation and cell

transformation [68–71]. Metals also include “trace metals,” such as zinc, copper, iron, manga-

nese, present in humans under physiological conditions, which are toxic at high concentra-

tions. The risk assessment of the exposure to metals is achieved through human biomonitoring

studies and their quantification in human biological fluids such as blood, serum and urine,

Spermatozoa - Facts and Perspectives176



Figure 1. List of some of the chemicals tested and detected.
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being an indispensable tool to evaluate the possible influence of environmental determinants

on human health. The level of metals in human fluids reflects the amount entering the body via

all exposure routes (ingestion, inhalation and dermal absorption). Moving into the blood-

stream, they are compartmentalized in organs or tissues, where they carry out their harmful

effects according to the concentration and to their inherent toxicity. Even though several

papers have covered the report of qualitative parameters of the seminal fluid with the occupa-

tional exposure to metals [72, 73], environmental impact studies in urban areas are still

unsatisfactory [74]. An Italian study [68] has compared, through statistical methods, the sperm

counts with the geochemistry distribution of heavy metals in soils of the metropolitan area of

Naples, observing a strong correlation in the case of lead, whereas a lesser correlation has been

found in the case of mercury and zinc. In addition, data have been reported regarding the

effects of changes in concentration of zinc, magnesium and calcium on semen quality param-

eters and infertility [75].

2.3. Mechanisms involved in male reproductive dysfunction

2.3.1. Oxidative stress

Oxidative stress plays an important role in the etiology of male infertility by impairing nega-

tively the quality and the function of the sperm [76] although the relationship between the

Figure 2. The entry routes of the contaminants into the body.
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bioaccumulation of environmental pollutants and the alteration of the seminal redox status has

not been elucidated yet, and neither the possible mechanism of action. The imbalance of

antioxidant defenses and detoxification processes provides a logical explanation to the onset

of diseases caused by oxidative stress in men [77] and increases the organism susceptibility to

pollutants toxicity [78]. After all, the balance between oxidation and anti-oxidation is critically

important in maintaining healthy any biological system.

The fact remains however, that pro-oxidant activity of PM [79] PAHs [60] on human health has

been demonstrated in clinical data, whereas the harmful effects caused by toxic heavy metals

or pesticides organophosphates [80] have been proved in animal studies. Reactive oxygen

species (ROS), at low physiological levels, play an important role in sperm maturation and

function [81]. On the contrary, excessive amounts of ROS produced by leukocytes and imma-

ture spermatozoa can damage mature sperm and DNA integrity [82–84]. The mechanism of

DNA damage by ROS is mainly due to the high susceptibility of spermatozoa to ROS for their

high content of polyunsaturated fatty acids, major components of cellular and intracellular

membranes (Figure 3). An increase in oxidative stress has been found in 80% of infertile men

clinically tested, and it seems that exposure to environmental toxicants contributes to this

increment [60, 78–80]. In addition, a positive correlation between ROS and sperm DNA frag-

mentation has been reported in studies [85]. However, the Nuclear factor (erythroid-derived

2)-like 2 (Nrf2), plays a key role in the modulation of antioxidant response, which basically

modulates both synthesis and the recycling of the main cellular antioxidant, that is the reduced

glutathione. The reduced activity of glutathione reductase, has been associated with oxidative

stress-related diseases [77], just like an increased susceptibility to adverse effects induced by

pollutants [78] has also been associated with increased expression of p53 [86] (Figure 4).

Notably, detoxifying/antioxidant defenses can be modulated by diet. However, it is known

that improper eating habits (i.e., increased intake of carbohydrates, high protein and total fat)

have been linked to poor sperm quality [87], although the protective effects of a proper diet

towards pro-oxidants effects caused by bioaccumulation of environmental pollutants have not

yet been demonstrated. In summary, although supplementation with antioxidants may

improve pregnancy and birth rates for infertile couples [88] the efficacy of dietary supplements

in improving the quality of male sperm is still controversial [89] and the link among

bioaccumulation of environmental pollutants, diet and semen quality remains to be demon-

strated.

2.3.2. Genetic alterations

Endocrine Disrupting Chemicals affect spermatogenesis both through alterations in the hypo-

thalamic–pituitary axis, and direct damage to spermatozoa [90–92]. In recent decades, several

studies have shown disorders of spermatogenesis due to genetic causes (15–30% of infertile

males) [93, 94] and chromosomal aberrations, either numerical or structural, can profoundly

affect fertility. It is estimated that the frequency of chromosomal aberrations in the general

population is about 0.6% [95], and 2–14% in infertility male [96]. In particular, chromosomal

aberrations increase with the increasing severity of infertility. Moreover, some genetic poly-

morphisms involved in the metabolism and detoxification activities as well as in DNA repair

capacity influence individual susceptibility to environmental exposure leading to changes in
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sperm quality [60]. The main alteration responsible for male infertility is represented by DNA

and chromatin alterations, highly sensitive to exogenous contaminants [97]. Some studies have

suggested that environmental toxins affect sperm DNA’s integrity and it has been observed

that exposure to air pollutants such as PM, is capable of producing disomy of sexual chromo-

some in nemasperm DNA [98]. In fact, most chromosomal abnormalities are lethal and so they

either manifest as a sperm’s inability or as miscarriage [99].

In particular, aneuploidy defined as structural and numerical aberrations of chromosomes

[100], is an informative effect biomarker, for male reproductive toxicants and a hallmark of

cancer [101–104]. There are some substances known that induce sperm aneuploidy and can be

carcinogenic [105, 106] and for this reason sperm aneuploidy is associated with both increased

risk of cancer and reproductive toxicity. Fortunately, sperm aneuploidy assessment has become

very easy and this opens up to a growing use of health risk assessment from chemical hazard

[107] so that, it could be integrated with current aneuploidy and chromosome imbalance

Figure 3. The positive and negative effects on spermatogenesis and steroidogenesis of controlled or uncontrolled oxidative

stress.
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assessments in place for somatic cells [108]. In conclusion, sperm aneuploidy evaluation is

informative well beyond the standard sperm parameters (number, motility, morphology)

useful for comprehensive evaluation of carcinogenicity and reproductive toxicity.

With regard to sperm DNA’s integrity, it is a great indicator of male fertility, since men with

normal sperm parameters may also have a high degree of DNA fragmentation, leading cause

of undiagnosed /inexplicable infertility. In fact, the damage to sperm DNA contributes not only

to infertility, but also on the frequency of miscarriages and birth defects in the offspring. The

data supporting this are primarily derived from animal toxicology studies, which unequivo-

cally demonstrate that the genetic integrity of the male germ line play an important role in

determining the normal embryonic development [109].

The results of studies by toxicologists using several compounds in increasing doses prove

adverse effects on the development of the embryo, on animal behavior, postnatal growth,

longevity of progeny, as well as increased susceptibility to cancer. These toxicology animal-data

Figure 4. Exogenous and endogenous factors inducing oxidative stress: Pathological and physiological roles on sperm

function.
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support the hypothesis that toxic substances can act on themale germ line by interfering with the

development of human pregnancies and the health of the unborn. To support this, there are

associations between paternal smoking, oxidative DNA damage of sperm and the incidence of

cancer in children. The origins of sperm DNA damage are not yet clearly defined, but in light of

recent discoveries, six main mechanisms are hypothesized: (1) apoptosis during the process of

spermatogenesis; (2) breakage of DNA strands created from the sperm chromatin remodeling

during the process of spermatogenesis; (3) post-testicular DNA fragmentation induced mainly

by oxygen radicals, including nitric oxide and hydroxyl radicals, during the transport of sper-

matozoa through the seminiferous tubules and epididymis; (4) DNA fragmentation induced by

endogenous caspase and endonuclease; (5) DNA damage induced by radiotherapy and chemo-

therapy; (6) DNA damage induced by environmental toxins [110]. The damage in testicular

sperm DNA is statistically lower than what is found in ejaculated sperm [111]. Sperm nuclear

DNA fragmentation is the last phase of apoptosis, a highly controlled programmed cell death

program that plays a key role in different biological processes such as embryonic development

and maintenance of homeostasis. High cell proliferation rate and cell differentiation processes

occur during maturation from stem cell to haploid mature sperm. Apoptosis is needed to avoid

the excess of cell proliferation and it seems to have a role in germ cells differentiation. This

process might also be induced by several environmental stimuli or damages [112]. In case of

DNA damage within the male germ line, the adverse outcome(s) will depend either from the

type of damage or from the genomic region affected or from the timing of the damage itself and,

as an overall consequence, from the ability of the embryo repair system to properly counteract

any damage earlier than the first mitotic division will occur. In any case, the embryo could not

always effectively repair damages carried on from male germ as it occurs in genetic dominant

diseases, such as achondroplasia [113]. Furthermore, healthy children born with assisted repro-

duction from DNA-damaged sperm [114] may possess genetic or epigenetic alterations generat-

ing a phenotypic change in the next generation(s) due to double recessive gene expression or in

the birth of a male upon chromosome Xmutations. Finally, it is also possible that DNA-damaged

sperm can cause offspring defects not recognized at birth. The recent discovery that DNA

damage in sperm of males due to aging is associated with the onset of epilepsy, schizophrenia,

autism, and bipolar illness [115, 116].

Strikingly, an increased risk of sperm DNA fragmentation was associated to high levels of air

pollution, in fact seems that the classical sperm parameters -motility, concentration, morphol-

ogy- do not change related to high smog levels, while sperm DNA fragmentation appeared to

be much more sensible [98]. In this direction, also in Campania Region (Southern Italy),

preliminary data of EcoFoodFertility initiative [54], indicated an increased sperm DNA dam-

age associated to environmental pressure, measured with two techniques. In fact, healthy, no-

smoking, no-drinker, no professionally exposed to environmental stresses males (n = 175,

mean age 30 � 4) were enrolled in areas of High or Low environmental impact. According to

their stable residence in “Land of Fires”, a wide area between the towns of Naples and Caserta

(High Environmental Impact Area—HIP; n = 70) or in Alto-Medio Sele in Salerno province

(Low Environmental Impact Area – LIP; n = 105), data of the enrolled men were compared by

their DNA Fragmentation Index (DFI). DFI was evaluated by using the sperm DNA fragmen-

tation Kit (Halosperm®, Halotech DNA SL). Furthermore, the spermatic p53 levels were also

assessed by using the DuoSet® ELISA (R&D) [117]. The results obtained so far support the
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effectiveness of the considered markers in the quantification of DNA damages as well as the

relationship between the extent of the observed sperm DNA damage and the environmental

characteristics of the area of residence (HIP versus LIP areas). In conclusion, these data showed

sperm DNA damage measured as DFI by SCD and p53 overexpression to be an early and

sensitive marker of environmental pollution [118].

In recent years, an increasing interest has been directed on other biomarkers of DNA integrity

in male germinal cells: telomere. Telomeres are noncoding double-stranded DNA repeats (in

humans, TTAGGG sequences extended 10–15 kbIn dividing cells, the synthesis of new

telomeric DNA repeats requires the activity of telomerase, a protein complex composed of the

TERT enzyme and of the telomere-associated proteins, able to recognize the 150–200 nt 30-

single stranded (G-strand) overhang. During aging in most adult somatic cells, a progressive

telomere shortening occurs and, in turn, telomerase activity decrease or completely disappear.

In contrast to such adult somatic cells, germ cells maintain high telomerase activity, long

telomeres and high proliferative potential [119, 120]. In particular, the sperm telomere length

(STL) seems to be of fundament importance for fertilization and early embryo development

[121]. To date, the relationship between telomere function and aspects of semen quality is an

area of great attention. Indeed, it has been reported that sperm TL is lower in oligozoospermic

than in normozoospermic men [122]. Furthermore, spermatozoa from elderly males have

significantly longer telomeres than those from younger males, but the biological implications

of this paradoxical effect are unknown [123]. Additionally, telomere dysfunction is a relevant

mechanism driving cancers in humans [124]. Indeed, critical telomere attrition results in

chromosomal aberration which in the absence of normal cellular DNA repair and apoptosis

can lead to genetic instability. On the other hand, long telomeres may permit cells to escape

growth arrest and increase the chance of acquiring mutations, especially in the presence of an

external exposure, i.e. smoking and sun exposure. In fact, longer telomeres have been associ-

ated with some types of cancers, especially melanoma and lung cancer [125]. Recently, a

Mendelian randomization study reported that longer telomeres were associated with

increased risk of several cancers but reduced risk of some non-neoplastic diseases [126].

Interestingly, accumulating evidence indicates that leukocyte telomeric DNA may be one

important target of environmental [127–132]. Accordingly, a very recent study has shown a

possible association between high environmental pressure in polluted area and the STL [133].

In particular, a preliminary study was carried out evaluate the influence of environmental

exposure to the telomere length (TL) of leukocytes (LTL) and of STL. This pilot study was

conducted on young healthy men living in HEI or in LEI area and the data obtained showed

that STL was significantly greater in subjects while no significant difference was observed

between LTL and HEI in the LEI group and no correlation between STL and sperm parameters

was found [134]. These findings support the view that STL is a more sensible marker than LTL

to environmental pollution and it is a further evidence that the genetic structure of spermato-

zoa is particularly sensitive to environmental insults.

2.3.3. Epigenetic alterations

In recent years, interest has grown on new acquisitions that regulate gene expression and

epigenetic mechanisms. In fact, if the interaction between genes and environment in
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determining human phenotypes has been known for many years, the real innovation provided

by epigenetic studies concerns specific gene expression changes without any change in their

sequence. Therefore, as genetic variants make the organism vulnerable to certain environmen-

tal insults, epigenetic alterations induced by the environment may have the same effect and

especially could be transmitted to the offspring. Thus, birth defects, greater susceptibility to

diseases in adulthood, may be the result of a gene/environment interaction that occurred in

one of the parents, not the subject itself. Studying the sperm epigenome represents a new

frontier in the field of human reproduction, and numerous studies have shown the importance

of epigenetic mechanisms as potential biomarkers in hazard identification and risk assessment

attributable to environmental exposures. Epigenetic mechanisms responsible for these alter-

ations are represented by DNAmethylation, histone modifications and noncoding microRNAs

[135]. The association between sperm DNA methylation and idiopathic male infertility is

already documented with studies [136–139]. Other studies have shown that DNA

hypermethylation of gene promoters (like MTHFR, PAX8, NTF3, SFN and others) plays a

crucial role in determining male infertility. On the contrary, hypomethylation of other genes,

including the check zone IGF2/H19 1 (ICR1), is found in patients with lower sperm concentra-

tion and motility compared to controls with normal sperm kinetics [140–145]. Nuclear conden-

sation in the spermatozoon represents the most delicate and sensitive stress related event,

inducing genetic and epigenetic alterations. During this phase, in fact, about 85% of histones

(rich in lysine) bound to DNA, are replaced with proteins of transition and arginine-rich

proteins: the protamine [146, 147]. In contrast to histones, which form a ring-like association

with DNA (nucleosomes), protamines are linked to DNA helix grooves, wrapping themselves

tightly around the DNA strands (about 50 kb of DNA and protamines), to form tight loops

highly organized. The spermatozoon’s nuclear condensation is obtained by the intramolecular

disulfide bonds between cysteine-rich protamines resulting in the reduction of about 10% of

the size of the nucleus. The bromodomain testis-specific protein is the key factor mediating the

chromatin compaction promoting nuclear remodeling ensuring the transition between a his-

tone chromatin organization, which is somatic, and the protamine one typical of the mature

sperm. The sperm genome is protected from physiological and environmental stresses by this

peculiar nuclear compaction, but also from genetic mutations and chromosomal abnormalities

that can interfere with the mechanisms of spermatogenesis [148]. These alterations may result

in an abnormal chromatin structure, a feature incompatible with fertility. The resulting geno-

mic material defects that are found in mature spermmay be packing defects (defective replace-

ments of histones-protamines), defects in the maturation of the nucleus, DNA fragmentation

defects (that is, single or double strand breaks), sperm DNA integrity defects or chromosomal

aneuploidy and changes in gene expression (epigenetic modifications). In fact, an increasing

amount of data now supports the hypothesis that in the mature spermatozoon of mammals the

DNA is actually not homogeneously rich of protamine [149]. Defects in the action of protamine

affect the transcription of genes. For example, in mice, the deregulation of the protamine action

process results in premature chromatin condensation, interruption of the transcription, and

failure of spermatogenesis [150]. The human sperm’s nucleus preserves 10–15% of its original

histone content, which is distributed heterogeneously in the genome [142]. An analysis of the

entire genome of seven infertile patients has clearly demonstrated that five out of seven

infertile men had a random process of protamine action in comparison with normal fertile
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men where the preservation of histone quota was programmatic [143]. Specific errors in the

epigenetic control, damaging male fertility and embryonic development, can occur at each

stage of spermatogenesis [144]. At the mitotic level, epigenetic alterations can affect the expres-

sion of specific genes involved in the early stages of spermatogenesis, decreasing the overall

differentiation process. At the meiotic level, epigenetic alterations can trigger double strand

breaks or chromosomal nondisjunction and, during the spermiogenesis, protamine replace-

ment errors may induce, in turn, epigenetic alterations due to defects in the above described

histone-protamine transition [144]. Taken together, these facts suggest that the different char-

acteristics of male infertility, including alterations in sperm count or morphology, DNA frag-

mentation chromosomal, aneuploidy, alterations in the chromatin density, could all be related

to epigenetic mechanisms that occur at different stages of spermatogenesis. Great attention is

then lately directed to the role of microRNA (miRNA) and so to the posttranscriptional

regulation. Increasing evidence has shown that miRNAs play a critical role in mitosis and

meiosis as well as in spermatogenesis [151–153]. MiRNAs are expressed specifically during

spermatogenesis and participate in the control of every phase of the male germ cell differenti-

ation. Genetically altered rat models have shown the importance of miRNA’s pathway for the

development of a normal spermatogenesis and functional studies have been conducted to

establish the roles of specific miRNAs [154]. Finally, clinical studies have shown that sperma-

tozoa from patients with sperm alterations present an altered miRNA profile [155, 156]. Hence,

a strong emphasis on the crucial role of miRNA in spermatogenesis: indeed, the miRNA

profile expression can be also seen as a new reliable and non-invasive diagnostic biomarker

for the study of male fertility. Recently, a pool of sperm samples obtained from fertile and

infertile men was examined and shown that alterations in miRNA profiles both in azoosper-

mia and asthenozoospermia conditions can be found [157]. In particular, the level of seven

miRNAs was significantly lower in patients with azoospermia and higher in the

asthenozoospermia, compared to fertile subjects considered as case–control, leading to the

hypothesis that these seven miRNAs may have confirmatory molecular diagnostic value for

male infertility. Furthermore, miR-I9B and let-7 bis expression pattern was analyzed in patients

affected by idiopathic infertility, azoospermia or non-obstructive oligozoospermia: it was

showed that both miRNAs were expressed at higher levels in infertile patients compared to

fertile individuals [158]. Therefore, it was concluded that miR-I9B and let-7 bis may be consid-

ered good diagnostic molecular markers for non-obstructive azoospermia cases with primary

infertility or oligozoospermia. Similarly, it was recently identified miR-155 serum level as a

potential biomarker of male fertility [159]. Interestingly, the miR-155 serum has been associ-

ated with male subfertility regardless of the systemic inflammation grade or androgenic

alteration. Ultimately, the damage assessment to the spermiogenesis caused by pollution, of

genotoxic, genetic and epigenetic type, are a major concern not only for the susceptibility to

chronic diseases in adulthood, but also and especially for the vulnerability to diseases of future

generations (transgenerational effects). (Figures 5 and 6).

2.4. The semen as an early marker of environmental exposure (environmental sentinel)

Semen qualitative and quantitative changes observed by several epidemiological studies, by

Carlsen and latest ones [2–5], show how these changes are induced by individual lifestyle and
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from the environment. Epidemiological studies on individuals exposed for professional rea-

sons or living in contaminated areas and nearby settlements, demonstrate significant alter-

ations of the semen: reduction of the motility, concentration, of sperm’s morphology, sperm

DNA damage, sperm aneuploidies, alteration of sperm epigenome that result in increased

cases of infertility, recurrent miscarriage, congenital malformations. Toxicological studies

conducted on mice, show how some of the major environmental organic and inorganic con-

taminants reduce seminal quality. Significant changes of semen quality are noticed in different

environments [22–27]. Exposure to air pollution has been associated with abnormalities in

sperm parameters. In recent studies the negative effect on sperm motility was estimated, in

Figure 5. Epigenetic alterations by environmental factors affects sperm quality and when fertilization occurs,

transgenerational epigenetic effects may compromise embryo development, favoring congenital diseases at birth and

diseases in adulthood.
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particular on sperm DNA’s integrity from carbon monoxide, nitrogen dioxide, sulfur dioxide,

ozone, lead and PM 2.5, the latter being of particular interest, because it contains several trace

elements and PAHs, powerful endocrine disruptors [160].

Spermatogenesis unlike oogenesis from puberty onward is continuously and therefore more

easily exposed to insults in his stages of continuous replication. Moreover, biologically a

20-year-old’s sperm has undergone about 160 rounds of chromosome replication, a 40-year-

old’s has undergone 610 and many male germline mutations fall into the “replicative” cate-

gory or the “non-replicative,” such as those caused by environmental exposure, so male

germline accumulates mutations faster than female one [48, 49]. For instance, it is thought that

sperm cells are more susceptible than eggs to the effects of oxidative damage as a consequence

of: (i) the limited cytoplasmic space where to host the enzymes involved in the antioxidant

protection, and (ii) the higher amount of polyunsaturated fatty acids within the sperm mem-

branes rendering them more susceptible to oxidative stress, such as lipid peroxidation [50].

Furthermore, in semen it is possible to measure simultaneously environmental contaminants

and in vivo effects on sperm cells, which are readily available, with features sensitive to

environmental pollutants such as motility, morphology and the integrity of the DNA strand.

Figure 6. Environmental, life style and diet factors causing with different epigenetic mechanisms (histone modifications,

DNA methylation, small ass-coding RNAs) alterations of the sperm epigenome and subsequent transgenerational effects.
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In 2010, Rubes while assessing seasonal differences of exposure of police officers who worked

in the Centre of Prague (Czech Republic), found that sperm DNA fragmentation was signifi-

cantly higher in winter (high exposure) rather than in spring (low exposure) in samples of all

men, including non-smokers [161]. Also in the metropolitan area of Naples studies support the

relationship between low sperm motility and high environmental exposure to emissions of

traffic or heavy metals [162]. In addition, significantly higher level of sperm DNA damage,

measured by means two different techniques, was found in healthy male volunteers living in

HIP area as compared with that measured in volunteers living in LIP [118]. Human semen

sensitivity to pollution-induced alteration of semen redox status was recently confirmed in a

recently published study [26]. In particular, it was demonstrated that semen is more suscepti-

ble than blood plasma to pollution-associated alteration of redox status and that STL, but not

LTS, was significantly influenced by the environmental impact [134] Certainly, the possibility

for measuring simultaneously in human semen the presence of environmental contaminants

and checking in vivo effects on sperm cells, readily available, with sensitive features to envi-

ronmental pollutants such as motility, morphology, integrity of DNA strand, semen redox

status, sperm aneuploidies, STL, make it an ideal way to assess the adverse effects of environ-

mental exposure for measuring the environmental impact on human health. In conclusion,

human semen seems an earlier and sensitive source of biomarkers than blood to monitor high

environmental pressure on human health, hence useful for innovative prevention programs

and health surveillance, especially in risk areas.

2.5. The semen as an early marker of health (health sentinel)

The spermatogenesis cycle is extremely complex and vulnerable to endogenous and exoge-

nous stress, so it is not surprising that it can be an important indicator of the state of well-being

of the organism. Recent studies have demonstrated the association between semen quality and

state of health, correlating the semen quality with either chronic degenerative diseases,

comorbidities and even mortality [36, 42, 43, 51–53].

In a first study of Eisenberg [53] a group of 9387 men was examined, average age 38 years,

which had been evaluated for infertility issues between 1994 and 2011. Within the group, 44%

had at least one medical diagnosis not related to infertility. Using the Charlson Comorbidity

Index, researchers have shown that men with a higher index of chronic conditions had a lower

count of sperm volume and motility, of total number of sperms and of normal shape. Sperm

abnormalities rates were significantly higher among men with endocrine-metabolic, circula-

tory or genitourinary disorders and skin diseases, compared to other men without these

conditions. Vascular hypertension, cerebrovascular disease and ischemic heart disease were

associated with higher rates of sperm abnormalities. On the other hand, about 15% of all

human genes are directly involved in reproduction and the majority of these genes may also

play an important role in other parts of the body.

In a second study of Eisenberg [42] 2238 men recruited in an infertility clinic of Texas were

analyzed: 451 of which with azoospermia and 1787. It was compared the incidence of cancer

on with that on the general population of Texas. At the first evaluation of infertility, the

average age was 35.7 years. After a 6–7 years follow-up, it was shown that 29 of the infertile
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men developed a cancer, 10 (2.2%) among those ones with azoospermia and 19 (1.1%) among

those ones without it. In comparison to the overall population of Texas, this subset of infertile

men had a significantly higher risk of overall cancers and such a was significantly higher in

men with azoospermia than in those without azoospermia.

The same Eisenberg linked semen quality with mortality rates [53] and found that men with

damaged seminal parameters, including low sperm volume, concentration, sperm motility,

had higher death rates than men with normal sperm parameters. Men with at least two

abnormal sperm parameters had a 2.3-fold higher death risk (95% CI 1.12–4.65) than men with

normal sperm. This further study of association, shows that men with poor semen parameters

have an increased mortality rate in subsequent years and suggests that the fertility assessment

may be an indicator of overall health.

3. Conclusion

A certain number of regions in all the world experience a higher incidence of health disorders

(reproductive, pediatric, cancer, etc.) due to environmental pollution: the societal costs associ-

ated with poor health and the interventions to reduce pollution are stirring debates and

concerns. It is important a science-based guidance for preventing/reducing health risks in

many high environmental pressure areas.

Information about levels of exposure to contaminants (chemical, physical) is critical to evaluate

and to manage environmental and professional risks and, as a result, as much as possible, to

measure the biological risk expressed in terms of probability of reaching potential harm

through the exposure to certain chemical and/or physical stress. There are new analytical tools

today that first identify and measure biomarkers, quantitative end-point and intermediate

pathways of biological tissue/fluid fluids to identify early signs of functional or structural

modification before clinical damage. Therefore, in order to have greater preventive efficacy

and raise the level of attention and protection especially to populations living in areas with

greater environmental exposure, it is important consider to organofunctional “sentinel” sys-

tems more susceptible to endogenous and exogenous modifications, those that suffer effects

before others. For this reason and in relation to the new primary prevention approaches, the

endocrine-metabolic system, and in particular the male reproductive, considering “double

function” of human semen (Health and Environmental marker), represent an ideal tool for

investigating and promoting health surveillance. Human semen seems to be a time-effective,

sensitive and informative source of biomarkers, providing information about the presence of

biologically active exposures, useful for innovative prevention programs and health surveil-

lance, especially in environmental risk areas. Furthermore, maintaining a good semen quality

and fertility is a prevention coverage. Bad lifestyles and environmental contaminants can

impair reproductive health and overall health, encouraging the development of chronic degen-

erative diseases affecting the adult and, through the sperm epigenome changes, future gener-

ations. Environmental health should consider reproductive health and development, from

intrauterine life to childhood and puberty: these are both vulnerable targets and high-value
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protection goals, inasmuch as they represent the future of our societies, in particular, bio-

markers of reproductive health should be exploited as early signals of environmental pressure

and increased risk of adverse chronic health effects. Hence, the use of reproductive biomarkers

for early detection and prevention of environmental health risks represents a useful initiative

for public health. Thus, identifying risk factors to improve the management of human wellness

and health throughout standardized analysis, which correlates the toxic bioaccumulation of

the seminal fluid with the multiple semen parameters, might be the main objective to be

considered in the agenda of public prevention policies.

Acknowledgements

The authors would like to thank EcoFoodFertility research group and Silvia Letizia Piscopo for

the English revision.

Author details

Luigi Montano1*, Paolo Bergamo2, Maria Grazia Andreassi3 and Stefano Lorenzetti4

*Address all correspondence to: luigimontano@gmail.com

1 Andrology Unit of the “San Francesco d’Assisi” Hospital, ASL Salerno, Oliveto Citra,

Salerno, Italy

2 National Research Council (CNR), Institute of Food Sciences, Avellino, Italy

3 National Research Council (CNR), Institute of Clinical Physiology, Pisa, Italy

4 Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di

Sanità (ISS), Rome, Italy

References

[1] Lutz W, O’Neill BC, Scherbov S. Demographics. Europe’s population at a turning point.

Science. 2003;299(5615):1991-1992

[2] Carlsen E, Giwercman A, Keiding N, Skakkebæk NE. Evidence for decreasing quality of

semen during past 50 years. British Medical Journal. 1992;305:609-613

[3] Rolland M, Le MJ, Wagner V, Royere D, De MJ. Decline in semen concentration and

morphology in a sample of 26,609 men close to general population between 1989 and

2005 in France. Human Reproduction. 2013;28:462-470

[4] Andersen AG. Semen quality and reproductive hormones in normal young men and in

partners of pregnant women [PhD thesis]. Copenhagen: Univ. of Copenhagen; 2001

Spermatozoa - Facts and Perspectives190



[5] Sengupta P, Borges EJ, Dutta S, Krajewska-Kulak E. Decline in sperm count in European

men during the past 50 years. Human & Experimental Toxicology 2017. DOI: 10.1177/

0960327117703690 [Epub ahead of print]

[6] Kollin C, Karpe B, Hesser U, Granholm T, Ritzen EM. Surgical treatment of unilaterally

undescended testes: Testicular growth after randomization to orchiopexy at age 9 months

or 3 years. The Journal of Urology. 2007;178:1589-1593

[7] Andersson AM, Jørgensen N, Main KM, Toppari J, Rajpert-De Meyts E, Leffers H, Juul A,

Jensen TK, Skakkebæk NE. Adverse trends in male reproductive health: We may

have reached a crucial “tipping point”. International Journal of Andrology. 2008;31:

74-80

[8] Slama R, Kold-Jensen T, Scheike T, Ducot B, Spira A, Keiding N. How would a decline in

sperm concentration over time influence the probability of pregnancy? Epidemiology.

2004;15:458-465

[9] Bonde JP, Ernst E, Jensen TK, Hjollund NH, Kolstad H, Henriksen TB, et al. Relation

between semen quality and fertility: A population-based study of 430 first-pregnancy

planners. Lancet. 1998;352:1172-1177

[10] Guzick DS, Overstreet JW, Factor-Litvak P, Brazil CK, Nakajima ST, Coutifaris C, et al.,

National Cooperative Reproductive Medicine Network. Sperm morphology, motility, and

concentration in fertile and infertile men. The New England Journal of Medicine. 2001;345:

1388-1393

[11] Slama R, Eustache F, Ducot B, Jensen TK, Jørgensen N, Horte A, et al. Time to pregnancy

and semen parameters: A cross-sectional study among fertile couples from four Euro-

pean cities. Human Reproduction. 2002;17:503-515

[12] Selevan SG, Borkovec L, Slott VL, Zudova Z, Rubes J, Evenson DP, et al. Semen quality

and reproductive health of young Czech men exposed to seasonal air pollution. Envi-

ronmental Health Perspectives. 2000;108:887-894

[13] Rubes J, Selevan SG, Evenson DP, Zudova D, Vozdova M, Zudova Z, et al. Episodic air

pollution is associated with increased DNA fragmentation in human sperm without

other changes in semen quality. Human Reproduction. 2005;20:2776-2783

[14] Guven A, Kayikci A, Cam K, Arbak P, Balbay O, Cam M. Alterations in semen param-

eters of toll collectors working at motorways: Does diesel exposure induce detrimental

effects on semen? Andrologia. 2008;40:346-351

[15] Hammoud A, Carrell DT, Gibson M, Sanderson M, Parker-Jones K, Peterson CM.

Decreased sperm motility is associated with air pollution in Salt Lake City. Fertility and

Sterility. 2010;93:1875-1879

[16] Deng Z, Chen F, Zhang M, Lan L, Qiao Z, Cui Y, et al., Association between air pollution

and sperm quality: A systematic review and meta-analysis. Environmental Pollution.

2016;208:663-669

The Role of Human Semen as an Early and Reliable Tool of Environmental Impact Assessment on Human Health
http://dx.doi.org/10.5772/intechopen.73231

191



[17] Sonne SB, Kristensen DM, Novotny GW, Olesen IA, Nielsen JE, et al. Testicular dysgen-

esis syndrome and the origin of carcinoma in situ testis. International Journal of Androl-

ogy. 2008;31:275-287

[18] Skakkebaek NE. Carcinoma in situ of the testis: possible origin from gonocitys and

precursor of all types of germ cell tumours except spermatocytoma. International Jour-

nal of Andrology. 1987;26:2-15

[19] Auger J, Kunstmann JM, Czyglik F, Jouannet P. Decline in semen quality among fertile

men in Paris during the past 20 years. New England Journal of Medicine. 1995;332:281-

285 (9)

[20] Mendiola J, Jorgensen N, Andersson AM, Stahlhut RW, Liu F, Swan SH. Reproductive

parameters in young men living in Rochester, New York. Fertility and Sterility. 2014;101:

1064-1071

[21] Le Moal J, Rolland M, Goria S, Wagner V, De Crouy-Chanel P, Rigou A, et al. Semen

quality trends in French regions are consistent with a global change in environmental

exposure. Reproduction. 2014;147:567-567

[22] Hauser R, Sokol R. Science linking environmental contaminant exposures with fertility

and reproductive health impacts in the adult male. Fertility and Sterility. 2008;89:e59-e65

[23] Akre O, Cnattingius S, Bergstrom R, Kvist U, Trichopoulos D, Ekbom A. Human fertility

does not decline: Evidence from Sweden. Fertility and Sterility. 1999;71:1066-1069

[24] Menchini-Fabris F, Rossi P, Palego P, Simi S, Turchi P. Declining sperm counts in Italy

during the past 20 years. Andrologia. 1996;28:304-332

[25] Nordkap L, Joensen UN, Blomberg Jensen M, Jørgensen N. Regional differences and

temporal trends in male reproductive health disorders: Semen quality may be a sensitive

marker of environmental exposures. Molecular and Cellular Endocrinology. 2012;355(2):

221-230

[26] Bergamo P, Volpe MG, Lorenzetti S, Mantovani A, Notari T, Cocca E, et al. Human

semen as an early, sensitive biomarker of highly polluted living environment in healthy

men: A pilot biomonitoring study on trace elements in blood and semen and their

relationship with sperm quality and RedOx status. Reproductive Toxicology. 2016;66:1-9

[27] Zhou N, Cui Z, Yang S, Han X, Chen G, Zhou Z, et al. Air pollution and decreased

semen quality: A comparative study of Chongqing urban and rural areas. Environmen-

tal Pollution. 2014;187:145-152

[28] Pirastu R, Comba P, Conti S, Iavarone I, Fazzo L, Pasetto R, Zona A, Crocetti E, Ricci P.

Sentieri-Epidemilogical Study of residents in National Priority Contaminated Sites:

Mortality, cancer incidence and hospital discharges. Epidemiologia e Prevenzione.

2014;38:25-33

[29] Jagai JS, Messer LC, Rappazzo KM, Gray CL, Grabich SC, Lobdell DT. County-level

cumulative environmental quality associated with cancer incidence. Cancer. Aug 1,

2017;123(15):2901-2908. DOI: 10.1002/cncr.30709 [Epub May 8, 2017]. PMID: 28480506

Spermatozoa - Facts and Perspectives192



[30] Tagliabue G, Borgini A, Tittarelli A, van Donkelaar A, Martin RV, Bertoldi M, Fabiano S,

Maghini A, Codazzi T, Scaburri A, Favia I, Cau A, Barigelletti G, Tessandori R, Contiero

P. Atmospheric fine particulate matter and breast cancer mortality: A population-based

cohort study. BMJ Open 2016 Nov 14;6(11):e012580. doi: 10.1136/bmjopen-2016-012580.

PMID: 28076275

[31] Martuzzi M, Mitis F, Bianchi F, Minichilli F, Comba P, Fazzo L. Cancer mortality and

congenital anomalies in a region of Italy with intense environmental pressure due to

waste. Occupational and Environmental Medicine. 2009;66:725-732. DOI: 10.1136/

oem.2008.044115

[32] Pasetto R, Zengarini N, Caranci N, De Santis M, Minichilli F, Santoro M, Pirastu R,

Comba P. Environmental justice in the epidemiological surveillance system of residents

in Italian National Priority Contaminated Sites (SENTIERI project). Epidemiologia e

Prevenzione Jan–Feb 2017;41(2):134-139

[33] Asklund C, Jorgensen N, Skakkebaek NE, Jensen TK. Increased frequency of reproduc-

tive health problems among fathers of boys with hypospadias. Human Reproduction.

2007;22:2639-2646

[34] Barazani Y, Katz BF, Nagler HM, Stember DS. Lifestyle, environment, and male repro-

ductive health. The Urologic Clinics of North America. 2014;41:55-66

[35] Guerrero-Bosagna C, Skinner MK. Environmentally induced epigenetic transgenerational

inheritance of male infertility. Current Opinion in Genetics & Development. 2014;26:

79-88

[36] Jensen K, Jacobsen R, Christensen K, Nielsen NC, Bostofte E. Good semen quality and

life expectancy: A cohort study of 43,277 men. American Journal of Epidemiology. 2009;

170:559-565

[37] Baker JA, Buck GM, Vena JE, Moysich KB. Fertility patterns prior to testicular cancer

diagnosis. Cancer Causes & Control. 2005;16:295-299

[38] Jorgensen N, Vierula M, Jacobsen R, Pukkala E, Perheentupa A, Virtanen HE, et al.,

Recent adverse trends in semen quality and testis cancer incidence among Finnish men.

International Journal of Andrology. 2011;34:e37-e4811-12

[39] Raman JD, Nobert CF, Goldstein M. Increased incidence of testicular cancer in men

presenting with infertility and abnormal semen analysis. The Journal of Urology. 2005;

174:1819-1822

[40] Ostrowski KA, Walsh TJ. Infertility with testicular cancer The Urologic Clinics of North

America. 2015;42:409-420

[41] Hanson HA, Anderson RE, Aston KI, Carrell DT, Smith KR, Hotaling JM. Subfertility

increases risk of testicular cancer: Evidence from population-based semen samples.

Fertility and Sterility. 2016;105:322-328

[42] Eisenberg ML, Li S, Brooks JD, Cullen MR, Baker LC. Increased risk of cancer in infertile

men: Analysis of U.S. claims data. The Journal of Urology. 2015;193:1596-1601

The Role of Human Semen as an Early and Reliable Tool of Environmental Impact Assessment on Human Health
http://dx.doi.org/10.5772/intechopen.73231

193



[43] Rogers MJ, Walsh TJ. Male infertility and risk of cancer. Seminars in Reproductive Medi-

cine. 2017;35:298-303

[44] Srám RJ, Benes I, Binková B, Dejmek J, Horstman D, Kotĕsovec F, et al. Teplice program:

The impact of air pollution on human health. Environmental Health Perspectives. 1996;

104(Suppl 4):699-714

[45] Srám RJ, Binková B, Rössner P, Rubes J, Topinka J, Dejmek J. Adverse reproductive out-

comes from exposure to environmental mutagens. Mutation Research. 1999;428:203-215

[46] Frederiksen H, Jensen TK, Jorgensen N, Kyhl HB, Husby S. Skakkebaek NE, Main KM,

Juul A, Anderson AM. Human urinary excretion of non-persistent environmental

chemicals: An overview of Danish data collected between 2006 and 2012.Reproduction.

2014;147:555-565

[47] CDC Report. Fourth national Report on Human Exposure to Environmental Chemicals,

Updates Tables. Atlanta, USA: Ceners for Disease Control and Prevention, National Cen-

ter for Enviornmetal Health; February 2015. pp. 1-1095

[48] Ségurel L, Wyman MJ, Przeworski M. Determinants of mutation rate variation in the

human germline. Annual Review of Genomics and Human Genetics. 2014;15:47-70 (5)

[49] Blumenstiel JP. Sperm competition can drive a male-biased mutation rate. Journal of

Theoretical Biology. Dec 7, 2007;249(3):624-632

[50] Aitken RJ, Gibb Z, Baker MA, Drevet J, Gharagozloo P. Causes and consequences of

oxidative stress in spermatozoa. Reproduction, Fertility, and Development. 2016;28(1–2):

1-10. DOI: 10.1071/RD15325

[51] Eisenberg ML, Li S, Behr B, Pera RR, Cullen MR. Relationship between semen produc-

tion and medical comorbidity. Fertility and Sterility. 2015;103:66-71

[52] Latif T, Kold Jensen T, Mehlsen J, Holmboe SA, Brinth L, Pors K, et al. Semen quality is a

predictor of subsequent morbidity. A Danish cohort study of 4,712 men with long-term

follow-up. American Journal of Epidemiology. May 11, 2017. DOI: 10.1093/aje/kwx067

[Epub ahead of print]

[53] Eisenberg ML, Li S, Behr B, Cullen MR, Galusha D, Lamb DJ, Lipshultz LI. Semen

quality, infertility and mortality in the USA. Human Reproduction. 2014;29:1567-1574

[54] Montano L, Iannuzzi L, Rubes J, Avolio C, Pistos C, Gatti A, Raimondo S, Notari N.

EcoFoodFertility – Environmental and food impact assessment on male reproductive

function. Andrology. 2014;2(Suppl 2):69 http://dx.doi.org/10.1111/andr.267

[55] Carson R. Silent Spring. Boston: Houghton Mifflin; 1962

[56] ECHA. European Chemicals Agency, List of Registered Substances. 2016. Available from:

https://echa.europa.eu/information-on-chemicals/registered substances. [Accessed: Nov

20, 2016]

[57] Kavlock RJ, Daston GP, DeRosa C, Fenner-Crisp P, Gray LE, Kaattari S, et al. Research

needs for the risk assessment of health and environmental effects of endocrine disruptors:

Spermatozoa - Facts and Perspectives194



A report of the U.S. EPA-sponsored workshop. Environmental Health Perspectives. 1996;

(Suppl 4):715-740

[58] Den Hond E, Tournaye H, De Sutter P, Ombelet W, Baeyens W. Covaci A, et al. Human

exposure to endocrine disrupting chemicals and fertility: A case-control study in male

subfertility patients. Environment International. 2015;84:154-160

[59] Marques-Pinto A, Carvalho D. Human infertility: Are endocrine disruptors to blame?

Endocrine Connections. 2013;17:R15-R29

[60] Singh R, Sram RJ, Binkova B, Kalina I, Popov TA, Georgieva T, et al. The relationship

between biomarkers of oxidative DNA damage, polycyclic aromatic hydrocarbon DNA

adducts, antioxidant status and genetic susceptibility following exposure to environ-

mental air pollution in humans. Mutation Research. 2007;620:83-92

[61] Singh R, Kaur B, Kalina I, Popov TA, Georgieva T, Garte S, et al. Effects of environmental

air pollution on endogenous oxidative DNA damage in humans. Mutation Research.

2007;620:71-82

[62] Wright C, Milne S, Leeson H. Sperm DNA damage caused by oxidative stress: Modifi-

able clinical, lifestyle and nutritional factors in male infertility. Reproductive Biomedi-

cine Online. 2014;28:684-703

[63] Guerrero-Bosagna CM, Skinner MK. Epigenetic transgenerational effects of endocrine

disruptors on male reproduction. Seminars in Reproductive Medicine. 2009;27(5):403-408

[64] Xin F, Susiarjo M, Bartolomei MS. Multigenerational and transgenerational effects of

endocrine disrupting chemicals: A role for altered epigenetic regulation? Seminars in

Cell & Developmental Biology. 2015;43:66-75

[65] Walker DM, Gore AC. Transgenerational neuroendocrine disruption of reproduction.

Nature Reviews Endocrinology. 2007;7(4):197-207

[66] Kamarianos A, Karamanlis X, Theodosiadou E, Goulas P, Smokovitis A. The presence of

environmental pollutants in the semen of farm animals (bull, ram, goat, and boar).

Reproductive Toxicology. 2003;17(4):439-445

[67] Jurewicz J, Hanke W, Radwan M, Bonde JP. Environmental factors and semen quality.

International Journal of Occupational Medicine and Environmental Health. 2009;22(4):

305-329

[68] Giaccio L, Cicchella D, De Vivo B, Lombardi G, De Rosa M. Does heavy metals pollution

affects semen quality in men? A case of study in the metropolitan area of Naples (Italy).

Journal of Geochemical Exploration. 2012;112:218-225

[69] Mínguez-Alarcón L, Mendiola J, Roca M, López-Espín JJ, Guillén JJ, Moreno JM, et al.

Correlations between different heavy metals in diverse body fluids: Studies of human

semen quality. Advances in Urology. 2012;2012:420893

[70] Srikanth K, Pereira E, Duarte AC, Ahmad I. Glutathione and its dependent enzymes’

modulatory responses to toxic metals and metalloids in fish – A review. Environmental

Science and Pollution Research International 2013;20:2133-2149

The Role of Human Semen as an Early and Reliable Tool of Environmental Impact Assessment on Human Health
http://dx.doi.org/10.5772/intechopen.73231

195



[71] Li P, Zhong Y, Jiang X, Wang C, Zuo Z, Sha A. Seminal plasma metals concentration

with respect to semen quality. Biological Trace Element Research. 2012;148:1-6

[72] Danadevi K, Rozati R, Reddy PP, Grover P. Semen quality of Indian welders occupa-

tionally exposed to nickel and chromium. Reproductive Toxicology. 2003;17:451-456

[73] Mendiola J, Torres-Cantero AM, Moreno-Grau JM, Ten J, Roca M, Moreno-Grau S, et al.

Exposure to environmental toxins in males seeking infertility treatment: A case-

controlled study. Reproductive Biomedicine Online. 2008;16:842-850

[74] Altomare M, Vicari LO, Fiore M, Ferrante M, Fallico R, Condorelli RA, et al. Relation-

ships between occupational exposure and heavy metal levels in men living in an eastern

sicily industrial area. In: ISEE Conference – August 26–30, 2012 – Columbia, South

Caroline. In Epidemiology. 2012. Vol. 23(5S). Philadelphia: Editore Lippincot Willuiams

& Wilkins; Sep 2012

[75] Marzec-Wróblewska U, Kamiński P, Łakota P, Szymański M, Wasilow K, Ludwikowski

GM, et al. Zinc and iron concentration and SOD activity in human semen and seminal

plasma. Biological Trace Element Research. 2011;143:167-177

[76] Tremellen K. Oxidative stress and male infertility: a clinical perspective. In: Agarwal A,

et al. editors. Applied Basic Research and Clinical Practice. Humana Press; 2012.

p. 325-353

[77] Hybertson BM, Gao B, Bose SK, McCord JM. Oxidative stress in health and disease: The

therapeutic potential of Nrf2 activation. Molecular Aspects of Medicine. 2011;32:234-246

[78] Williams MA, Rangasamy T, Bauer SM, Killedar S, Karp M, Kensler TW, et al. Disrup-

tion of the transcription factor Nrf2 promotes pro-oxidative dendritic cells that stimulate

Th2-like immuno responsiveness upon activation by ambient particulate matter. Journal

of Immunology. 2008;181:4545-4559

[79] Risom L, Møller P, Loft S. Oxidative stress-induced DNA damage by particulate air

pollution. Mutation Research. 2005;592:119-137

[80] Ojha A, Srivastava N. Redox imbalance in rat tissues exposed with organophosphate

pesticides and therapeutic potential of antioxidant vitamins. Ecotoxicology and Envi-

ronmental Safety. 2012;32:234-246

[81] De Lamirande E, Jiang H, Zini A. Reactive oxygen species and sperm physiology.

Reviews of Reproduction. 1997;2:48-54

[82] Said TM, Agarwal A, Sharma RK. Human sperm superoxide anion in generation and

correlation with semen quality in patients with male infertility. Fertility and Sterility.

2004;82:871-877

[83] Gil-Guzman E, Ollero M, Lopez MC. Differential production of reactive oxygen species

by subsets of human spermatozoa at different stages of maturation. Human Reproduc-

tion. 2001;16:1922-1930

Spermatozoa - Facts and Perspectives196



[84] Sharma RK, Pasqualotto AE, Nelson DR. Relationship between seminal white blood cell

counts and oxidative stress in men treated at an infertility clinic. Journal of Andrology.

2001;22:575-583

[85] Metelev AY, Bogdanov AB, Ivkinl EV, Mitrokhin AA, Vodneva MM, Veliev EI. Hyper-

baric oxygen therapy in the treatment of male infertility associated with increased sperm

DNA fragmentation and reactive oxygen species in semen. Urologia. 2015;5:74-76

[86] Faraonio R, Vergara P, Di Marzo D, Pierantoni MG, Napolitano M, Russo T, et al. p53

suppresses the Nrf2-dependent transcription of antioxidant response genes. The Journal

of Biological Chemistry. 2006;281:39776-39784

[87] Attaman JA, Toth TL, Furtado J, Campos H, Hauser R, Chavarro JE. Dietary fat and semen

quality among men attending a fertility clinic. Human Reproduction. 2012;27:1466-1474

[88] Showell MG, Mackenzie-Proctor R, Brown J, Yazdani A, Stankiewicz MT, Hart RJ.

Antioxidants for male subfertility.Cochrane Database of Systematic Reviews. 2014;12:

CD007411

[89] Yao DF, Mills JN. Male infertility: Lifestyle factors and holistic, complementary, and

alternative therapies. Asian Journal of Andrology. 2016;18:410-418

[90] Sharma R, Biedenharn KR, Fedor JM, Agarwal A. Lifestyle factors and reproductive health:

Taking control of your fertility. Reproductive Biology and Endocrinology. 2013;16(11):66

[91] Anawalt BD. The silent spermatozoon: Are man-made endocrine disruptors killing male

fertility? Asian Journal of Andrology. 2013;15:165-168

[92] Veras MM, Caldini EG, Dolhnikoff M, Saldiva PH. Air pollution and effects on

reproductive-system functions globally with particular emphasis on the Brazilian popu-

lation. Journal of Toxicology and Environmental Health. Part B, Critical Reviews 2010;

13:1-15

[93] Ferlin A, Raicu F, Gatta V, Zuccarello D, Palka G, Foresta C. Male infertility: Role of

genetic background. Reproductive Biomedicine Online. 2007;14:734-745

[94] Esteves SC. A clinical appraisal of the genetic basis in unexplained male infertility.

Journal of Human Reproductive Sciences. 2013;6:176-182

[95] Berger R. The incidence of constitutional chromosome aberrations. Journal de Génétique

Humaine. 1975;23:42-49

[96] Shi Q, Martin RH. Aneuploidy in human sperm: A review of the frequency and distri-

bution of aneuploidy, effects of donor age and lifestyle factors. Cytogenetics and Cell

Genetics. 2000;90:219-226

[97] McAuliffe ME, Williams PL, Korrick SA, Altshul LM, Perry MJ. Environmental exposure

to polychlorinated biphenyls and p,p’-DDE and sperm sex-chromosome disomy. Envi-

ronmental Health Perspectives 2012;120:535-540

The Role of Human Semen as an Early and Reliable Tool of Environmental Impact Assessment on Human Health
http://dx.doi.org/10.5772/intechopen.73231

197



[98] Rubes J, Selevan SG, Evenson DP, Zudova D, Vozdova M, Zudova Z, Robbins WA,

Perreault SD. Episodic air pollution is associated with increased DNA fragmentation in

human sperm without other changes in semen quality. Human Reproduction. Oct 2005;

20(10):2776-2783. [Epub Jun 24, 2005]

[99] Aitken RJ, De Iuliis GN, McLachlan RI. Biological and clinical significance of DNA

damage in male germ line. International Journal of Andrology. 2009;32:46-56

[100] Dyer A, Jong K, Ratter J. Aneuploidy: A redefinition. Notes from the Royal Botanic

Garden Edinburgh. 1970;30:177-182

[101] Albertini RJ, Anderson D, Douglas GR, Hagmar L, Hemminki K, Merlo F, et al. IPCS

guidelines for the monitoring of genotoxic effects of carcinogens in humans. Interna-

tional Programme on Chemical Safety. Mutation Research. 2000;46:111-172

[102] Norppa H. Cytogenetic biomarkers. IARC Scientific Publications. 2004;157:179-205

[103] Gordon DJ, Resio B, Pellman D. Causes and consequences of aneuploidy in cancer.

Nature Reviews. Genetics. 2012;13:189-203

[104] Torres EM, Williams BR, Amon A. Aneuploidy: Cells losing their balance. Genetics.

2008;179(2):737-746

[105] Schrader SM, Marlow KL. Assessing the reproductive health of men with occupational

exposures. Asian Journal of Andrology. 2014;16(1):23-30

[106] NTP. Report on Carcinogens. 12th ed. Collingdale, Pennsylvania, USA: DIANE Publish-

ing Company; 2011

[107] Martinez G, Gillois P, Le Mitouard M, Borye R, Esquerre-Lamare C, Satre V, et al. FISH

and tips: A large scale analysis of automated versus manual scoring for sperm aneu-

ploidy detection. Basic and Clinical Andrology. 2013;23:13

[108] Fenech M, Kirsch-Volders M, Rossnerova A, Sram R, Romm H, Bolognesi C, et al.

HUMN project initiative and review of validation, quality control and prospects for

further development of automated micronucleus assays using image cytometry systems.

International Journal of Hygiene and Environmental Health. 2013;216:541-545

[109] Adler ID. 2000. Spermatogenesis and mutagenicity of environmental hazards: Extrapo-

lation of genetic risk from mouse to man. Andrologia. 2000;32:233-237

[110] Sakkas D, Alvarez JG. Sperm DNA fragmentation: Mechanisms and origin, impact on

reproductive outcame, and analysis. Fertility and Sterility. 2010;934:1027-1036

[111] Moskovtsev SI, Jarvi K, Brendan J, Mullen M, Cadesky KI, Hannam T, et al. Testicular

spermatozoa have statistically significantly lower DNA damage compared with ejacu-

lated spermatozoa in patients with unsuccessful oral antioxidant treatment. Fertility and

Sterility. 2010;93:1142-1146

[112] Slama R, Darrow L, Parker J, Woodruff TJ, Strickland M, Nieuwenhuijsen M, et al.

Meeting report: Atmospheric pollution and human reproduction. Environmental Health

Perspectives. 2008;116(6):791

Spermatozoa - Facts and Perspectives198



[113] Crow JF. The origins, patterns and implication of human spontaneous mutation. Nature

Reviews. Genetics. 2000;1:40-47

[114] Gandini L, Lombardo F, Paoli D, Caruso F, Eleuteri P, Leter G, et al. Full-term pregnan-

cies achieved with ICSI despite high levels of sperm chromatin damage. Human Repro-

duction. 2004;19:1409-1417

[115] Sipos A, Rasmussen F, Harrison G, Tynelius P, Lewis G, Leon DA, Gunnell D. Paternal

age and schizophrenia: A population based cohort study. British Medical Journal. 2004;

329:1070

[116] Frans EM, Sandin S, Reichenberg A, Lichtenstein P, Langstrom N, Hultman CM.

Advancing paternal age and bipolar disorder. Archives of General Psychiatry. 2008;65:

1034-1040

[117] Raimondo S, Gentile T, Cuomo F, De Filippo S, Aprea GE, Guida J. Quantitative evalu-

ation of p53 as a new indicator of DNA damage in human spermatozoa. Journal of

Human Reproductive Sciences. Jul 2014;7(3):212-217. DOI: 10.4103/0974-1208.142490

[118] Montano L, Notari T, Raimondo S, Bergamo P, Rossi M, Luongo D, et al. Campania

region group research EcoFoodFertility . Evaluation of environmental impact on sperm

DNA integrity by sperm chromatin dispersion test and p53 ELISA. Preliminary data

(ECOFOODFERTILITY project). Reproductive Toxicology. 2015;56:20

[119] Červenák F, Juríková K, Sepšiová R, Neboháčová M, Nosek J, Tomáška L. Double-

stranded telomeric DNA binding proteins: Diversity matters. Cell Cycle. 2017;16:1568-

1577. DOI: 10.1080/15384101.2017.1356511

[120] Thilagavathi J, Venkatesh S, Dada R. Telomere length in reproduction. Andrologia. 2013;

45:289-304

[121] Zalenskaya IA, Bradbury EM, Zalensky AO. Chromatin structure of telomere domain in

human sperm. Biochemical and Biophysical Research Communications. 2000;279:213-218

[122] Yang Q, Zhao F, Dai S, Zhang N, Zhao W, Bai R, et al. Sperm telomere length is

positively associated with the quality of early embryonic development. Human Repro-

duction. 2015;30:1876-1881

[123] Aston KI, Hunt SC, Susser E, Kimura M, Factor-Litvak P, et al. Divergence of sperm and

leukocyte age-dependent telomere dynamics: Implications for male-driven evolution of

telomere length in humans. Molecular Human Reproduction. 2012;18:517-522

[124] Hou L, Zhang X, Gawron AJ, Liu J. Surrogate tissue telomere length and cancer risk:

Shorter or longer? Cancer Letters. 2012;319:130-135

[125] Rode L, Nordestgaard BG, Bojesen SE. Long telomeres and cancer risk among 95,568

individuals from the general population. International Journal of Epidemiology. 2016;45:

1634-1643

[126] Haycock PC, Burgess S, Nounu A, Zheng J, Okoli GN, Bowden J, et al., Telomeres

Mendelian Randomization Collaboration. Association between telomere length and risk

The Role of Human Semen as an Early and Reliable Tool of Environmental Impact Assessment on Human Health
http://dx.doi.org/10.5772/intechopen.73231

199



of cancer and non-neoplastic diseases: A Mendelian Randomization Study. JAMA Oncol-

ogy. 2017;3:636-651

[127] Hoxha M, Dioni L, Bonzini M, Pesatori AC, Fustinoni S, Cavallo D, et al. Association

between leukocyte telomere shortening and exposure to traffic pollution: A cross-sectional

study on traffic officers and indoor office workers. Environmental Health. 2009;8:41

[128] Shin JY, Choi YY, Jeon HS, Hwang JH, Kim SA, Kang JH, et al. Low-dose persistent

organic pollutants increased telomere length in peripheral leukocytes of healthy

Koreans. Mutagenesis. 2010;25:511-516

[129] Hou L, Wang S, Dou C, Zhang X, Yu Y, Zheng Y, et al. Air pollution exposure and

telomere length in highly exposed subjects in Beijing, China: A repeated-measure study.

Environment International. 2012;48:71-77

[130] Dioni L, Hoxha M, Nordio F, Bonzini M, Tarantini L, Albetti B, et al. Effects of short-term

exposure to inhalable particulate matter on telomere length, telomerase expression, and

telomerase methylation in steel workers. Environmental Health Perspectives. 2011;119:

622-627

[131] Li H, Engström K, Vahter M, Broberg K. Arsenic exposure through drinking water is

associated with longer telomeres in peripheral blood. Chemical Research in Toxicology.

2012;25:2333-2339

[132] Gao J, Roy S, Tong L, Argos M, Jasmine F, Rahaman R, et al. Arsenic exposure, telomere

length, and expression of telomere-related genes among Bangladeshi individuals. Envi-

ronmental Research. 2015;136:462-469. DOI: 10.1016/j.envres.2014.09.040

[133] Ling X, Zhang G, Chen Q, Yang H, Sun L, Zhou N, et al. Shorter sperm telomere length

in association with exposure to polycyclic aromatic hydrocarbons: Results from the

MARHCS cohort study in Chongqing, China and in vivo animal experiments. Environ-

ment International. 2016;95:79-85. DOI: 10.1016/j.envint.2016.08.001

[134] Vecoli C, Montano L, Borghini A, Notari T, Guglielmino A, Mercuri A, et al. Effects of

highly polluted environment on sperm telomere length: A pilot study. International

Journal of Molecular Sciences. 2017;18:1703. DOI: 10.3390/ijms18081703

[135] Feng S, Jacobsen SE, Reik W. Epigenetic reprogramming in plant and animal develop-

ment. Science. 2010;330:622-627

[136] Houshdaran S, Cortessis VK, Siegmund K, Yang A, Laird PW, Sokol RZ. Widespread

epigenetic abnormalities suggest a broad DNA methylation erasure defect in abnormal

human sperm. PLoS One. 2007;2:e1289

[137] Urdinguio RG, Bayón GF, Dmitrijeva M, Toraño EG, Bravo C, Fraga M, et al. Aberrant

DNA methylation patterns of spermatozoa in men with unexplained infertility. Human

Reproduction. 2015;30:1014-1028

[138] Du Y, Li M, Chen J, Duan Y, Wang X, Qiu Y, et al. Promoter targeted bisulfite sequenc-

ing reveals DNA methylation profiles associated with low sperm motility in

asthenozoospermia. Human Reproduction. 2016;31:24-33

Spermatozoa - Facts and Perspectives200



[139] Laurentino SS, Borgmann J, Gromoll J. On the origin of sperm epigenetic heterogeneity.

Reproduction. 2016;151:R71-R78 (16)

[140] Hammoud SS, Purwar J, Pflueger C, Cairns BR, Carrell DT. Alterations in sperm DNA

methylation patterns at imprinted loci in two classes of infertility. Fertility and Sterility.

2010;94:1728-1733

[141] Kobayashi H, Sato A, Otsu E, Hiura H, Tomatsu C, Utsunomiya T, Sasaki H, Yaegashi N,

Arima T. Aberrant DNA methylation of imprinted loci in sperm from oligospermic

patients. Human Molecular Genetics. 2007;16:2542-2551

[142] Marques CJ, Costa P, Vaz B, Carvalho F, Fernandes S, Barros A, Sousa M. Abnormal

methylation of imprinted genes in human sperm is associated with oligozoospermia.

Molecular Human Reproduction. 2008;14:67-74

[143] Khazamipour N, Noruzinia M, Fatehmanesh P, Keyhanee M, Pujol P. MTHFR promoter

hypermethylation in testicular biopsies of patients with non-obstructive azoospermia:

The role of epigenetics in male infertility. Human Reproduction. 2009;24:2361-2364

[144] Wu W, Shen O, Qin Y, Niu X, Lu C, Xia Y, et al. Idiopathic male infertility is strongly

associated with aberrant promoter methylation of methylenetetrahydrofolate reductase

(MTHFR). PLoS One. 2010;5:e13884

[145] Rajender S, Avery K, Agarwal A. Epigenetics, spermatogenesis and male infertility.

Mutation Research. 2011;727:62-71

[146] Hammoud SS, Nix DA, Hammoud AO, Gibson M, Cairns BR, Carrell DT. Genome-wide

analysis identifies changes in histone retention and epigenetic modifications at develop-

mental and imprinted gene loci in the sperm of infertile men. Human Reproduction.

2011;26:2558-2569

[147] Paradowska AS, Miller D, Spiess AN, Vieweg M, Cerna M, Dvorakova-Hortova K, et al.

Genome wide identification of promoter binding sites for H4K12ac in human sperm and

its relevance for early embryonic development. Epigenetics. 2012;7:1057-1070

[148] Dada R, Kumar M, Jesudasan R, Fernández JL, Gosálvez J, Agarwal A. Epigenetics and its

role in male infertility. Journal of Assisted Reproduction and Genetics. 2012;29:213-223

[149] Rousseaux S, Caron C, Govin J, Lestrat C, Faure AK, Khochbin S. Establishment of male-

specific epigenetic information. Gene. 2005;345:139-153

[150] Weber M, Hellmann I, Stadler M.B, Ramos L, Paabo S, Rebhan M, Schubeler D. Distri-

bution, silencing potential and evolutionary impact of promoter DNA methylation in

the human genome. Nature Genetics. 2007;39:457-466

[151] Hayashi K, Chuva de Sousa Lopes SM, Kaneda M, Tang F, Hajkova P, Lao K, et al.

MicroRNA, biogenesis is required for mouse primordial germ cell development and

spermatogenesis. PLoS One. 2008;3:e1738

[152] Maatouk DM, Loveland KL, McManus MT, Moore K, Harfe BD. Dicer1 is required for

differentiation of the mouse male germline. Biology of Reproduction. 2008;79:696-703

The Role of Human Semen as an Early and Reliable Tool of Environmental Impact Assessment on Human Health
http://dx.doi.org/10.5772/intechopen.73231

201



[153] Huszar JM, Payne CJ. MicroRNA 146 (Mir146) modulates spermatogonial differentia-

tion by retinoic acid in mice. Biology of Reproduction. 2013;88:15

[154] Kotaja N. MicroRNAs and spermatogenesis. Fertility and Sterility. 2014;101:1552-1562

[155] Khazaie Y, Nasr Esfahani MH. MicroRNA and male infertility: A potential for diagnosis.

International Journal of Fertility & Sterility. 2014;8:113-118

[156] Salas-Huetos A, Blanco J, Vidal F, Godo A, Grossmann M, Pons MC, et al. Spermatozoa

from patients with seminal alterations exhibit a differential micro-ribonucleic acid pro-

file. Fertility and Sterility. 2015;104:591-601

[157] Wang C, Yang C, Chen X, Yao B, Yang C, Zhu C, et al. Altered profile of seminal plasma

microRNAs in the molecular diagnosis of male infertility. Clinical Chemistry. 2012;57:

1722-1731

[158] Wu W, Hu Z, Qin Y, Dong J, Dai J, Lu C, et al. Seminal plasma microRNAs: Potential

biomarkers for spermatogenesis status. Molecular Human Reproduction. 2012;18:489-497

[159] Tsatsanis C, Bobjer J, Rastkhani H, Dermitzaki E, Katrinaki M, Margioris AN, et al.

Serum miR-155 as a potential biomarker of male fertility. Human Reproduction. 2015;

30:853-860

[160] Radwan M, Jurewicz J, Polańska K, Sobala W, Radwan P, Bochenek M, et al. Exposure to

ambient air pollution. Does it affect semen quality and the level of reproductive hor-

mones? Annals of Human Biology. 2016;43:50-56

[161] Rubes J, Rybar R, Prinosilova P, Veznik Z, Chvatalova I, Solansky I, Sram RJ. Genetic

polymorphisms influence the susceptibility of men to sperm DNA damage associated

with exposure to air pollution. Mutation Research. Jan 5, 2010;683(1–2):9-15

[162] De Rosa M, Zarrilli S, Paesano L, Carbone U, Boggia B, Petretta M, Maisto A, Cimmino F,

Puca G, Colao A., Lombardi G. Traffic pollutants affect fertility in men. Human Reproduc-

tion. 2003;18:1055-1061

Spermatozoa - Facts and Perspectives202


