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Abstract

Critical size tendon defects demand for tissue samples replacing the missing tissue and 
guiding an effective healing. Autografts, allografts, or xenografts represent viable options; 
however, limited availability and donor site morbidity go along with this approach, rep-
resenting big disadvantages. Tissue engineering of tendon tissue is a further strategy 
fulfilling this need. Basically, an appropriate scaffold material is developed and tested for 
its biomechanical suitability as a graft material. In addition, cell seeding might improve 
biointegration of the tissue engineered construct (TEC). Different cell sources as well as 
different cultivation procedures can be applied in order to tune the envisioned primary 
strength of the TEC. In this chapter, in vitro fabrication protocols and mechanical tests as 
well as animal in vivo experiments will be presented—covering various (bio)materials, 
cell types, and cultivation procedures.

Keywords: tendon, graft, scaffold, biomechanics, gene therapy, growth factor

1. Introduction

Tendon injuries as encountered by accidents may end up in complete ruptures, going along 
with tissue defects that have to be replaced with the aim to regain full function—without pain. 
In order to offer the body suitable substitutes for what it has lost, materials are needed that guide 
and stimulate the healing process and finally lead to a fully integrated and sufficiently stable 
tissue. Main problems occurring after tendon rupture repairs are insufficient strength (leading 
probably to re-ruptures) and adhesion formation (leading to a diminished range of motion) [1].

Best grafts for the reconstruction of injured tendons are obviously tendons themselves, how-

ever, although sometimes possible, tendon grafts are very limited in terms of availability and 
have to be decellularized before application if they are allografts or even xenografts to avoid 
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transplant rejections. Only autografts are easily transplanted—but the donor site morbidity 
may cause a lot of pain and go along with impaired function. In addition, other disadvantages 
of autografts are reported to be insufficient strength [2] because other tendons than the one to 
be replaced might be different in strength, cellularity as well as gliding capacity [3].

Hence, an excellent alternative to decellularized tendons is the tissue engineered construct 
(TEC) aimed to be attached to tendon stumps [4] (Figure 1). In this field, tissue engineer-
ing has covered natural materials like collagen constructs [5], combinations of natural and 
synthetic components as realized in PLGA and alginate [6] or entirely synthetic polymers 
such as PCL ± PEO [7]. Many reports on seeding cells onto the corresponding materials have 
determined their impact, including extracellular matrix deposition and inherently going 
along changes in stability [8]. Other strategies include growth factors implemented in the 
graft material [9, 10] with the ultimate aim to be released sustainably to the repair site in order 
to support and accelerate the innate healing process [11].

Figure 1. Fabrication of a tissue engineered construct. As a first step, a scaffold material is used and processed as 
exemplified by electrospinning. Then, cells may be seeded onto the construct. After that, the cell-seeded construct may 
be cultivated under static conditions or under perfusion in a bioreactor before being implanted into an appropriate 
animal model. As a final step, performance of the TEC is assessed in a clinical trial.
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In this chapter, natural and synthetic materials as well as combinations of them are pre-

sented. Moreover, different types of cells seeded onto TECs are compared and their per-

formance in vitro and in vivo [12] are discussed in a step-by-step manner with criteria set 
as evaluation milestones [13]. Although many of these approaches are highly promising in 
animal studies, they did not yet find their ways into clinical application because the success 
of new graft materials is finally dictated by clinical outcomes of studies where graft materi-
als are implanted into the human body—and clinical trials are not only expensive, they also 
take a long time to be performed. Tissue engineered constructs that were developed 10 years 
ago might only now be ready to be judged and tested in terms of clinical success or failure.

2. Native tendons

2.1. Structure and composition of tendons

Before we turn our interest toward tissue engineering of tendons, a brief summary of what 
native healthy tendon tissue is composed of and of the characteristics of human and selected 
animal tendons is given here. The hierarchical structure of the tendon tissue is very well-known 
and has been characterized by multiple imaging and analysis techniques [14]. Starting with the 
smallest molecular entity, tropocollagen molecules assemble to form microfibrils. Covalently 
connected, these microfibrils form sub-fibrils and fibrils of the collagen which is typically seen 
in histological sections of tendon tissue as slightly waved “crimps” [15, 16]. Fibrils form bundles 
resulting in fascicles. Between the fascicles, there are cell-rich layers called endotenons that can 
be very well seen in histological sections, as the tenocytes form “lines,” one behind each other 
connected by gap junctions that are important for mechanotransduction [17–19].

In addition, there are some tendons that have a peritenon around the whole tendon. The peri-
tenon is a thin sheath around the tendon, but should not be confused with the tendon sheath on 
intrasynovial tendons [20]. More information on the organization of the tendon tissue are found 
in several articles [14, 21, 22], with a special emphasis on the extracellular matrix (ECM) [23].

In the ECM, the main component is collagen I (around 95% of the dry weight). The non-
collagenous part of tendons is composed of proteoglycans like lubricin, decorin or biglycan, 
glycosaminoglycans (GAGs; typically encountered as chondroitin sulfate, dermatan sulfate 
or heparan sulfate) and glycoproteins such as fibronectin. Proteoglycans are important for tis-

sue hydration (especially decorin) and it was found that they are essential for limiting the 
viscoelastic behavior by preventing tissue fatigue [24]. When GAGs of an extracted fascicle 
were enzymatically digested, they exhibited higher reductions in failure stress and more stress 
relaxation, supporting the regulation of viscoelasticity [24]. Noteworthy, water makes up 
60–80 wt% of the entire tendon tissue and is—together with the GAGs—a highly important 
component regulating viscoelasticity [25]. Moreover, elastin has not to be neglected although it 
makes up only 2% of the tendon dry weight. Elastin fibers are found closely to the tenocytes—
the cells in the tendon tissue [26].

Tenocytes are the mature tendon cells, while tenoblasts are the immature ones. Tenoblasts 
build up the ECM components. They are spindle-shaped, very similar to fibroblasts—and their 
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 morphology changes upon aging [27] and mechanical loading [28]. Surface marker character-

ization of tenocytes and tenoblasts includes tenomodulin [29], which is induced by scleraxis 
(Scx), a transcription factor identifying tendon cells during development [30]. Other cell types 
occurring in tendon are synovial cells, typically found in the tendon sheath and synovial lining 
cells. One subtype of synovial lining cells produces hyaluronic acid, an important lubricant 
facilitating the gliding of the tendon in the sheath [31]. In addition, tendons do also have stem 
cells, primarily residing in a niche composed of biglycan and fibromodulin [32]. Like other 
adult stem cells, tendon stem cells are able to self-renew, form colonies, and differentiate into 
lineages like osteoblasts, chondrocytes, or adipocytes [33, 34].

2.2. Biomechanical baseline values

For successful tissue engineering of tendons, it is essential to know the basic mechanical prop-

erties of the tendons that have to be reconstructed in order to plan processing steps accord-

ingly. Hence, ex vivo determined biomechanical properties of target tendons are crucial and 
should always be taken as background information to compare (a) in vitro mechanical proper-

ties of TECs and (b) in vivo mechanical properties of TECs [13]. Tendon ultimate stress values 
of all human tendons are in a range of approximately 5–80 MPa. Supraspinati of the shoulder 

exhibit quite weak tendon tissue in the posterior portion with only 4 ± 1 MPa [35], while 
Achilles tendons have ultimate stresses of 79 ± 22 MPa [36].

The age influences the stability of the tendon tissue; while Achilles tendons of old people aged 
79–100 years were reported to have ultimate stresses of 48 ± 16 MPa, younger people (36–
50 years old) had corresponding values of 73 ± 8 MPa; interestingly, an age group in between 52 
and 67 years had the strongest Achilles tendons with 81 ± 14 MPa [37]. Besides age, also gender 
plays a significant role when mechanical properties of tendons are assessed and compared; 
female donors usually have weaker tendons and ligaments than male donors [38], however, 
weaker and softer Achilles tendons of women compared to men might also be a consequence 
of different levels of exercise—and therefore cannot only be attributed to gender [39].

Besides these intrinsic factors (age and gender), physical activity also plays an important role 
and has a major impact on tendon strength and elasticity. As a consequence, surgical inter-

vention at a ruptured tendon of an athlete might need a different graft material compared to a 
ruptured tendon of a person that does not do any exercise beyond daily low-impact activities. 
Interestingly, also exercise in elderly people has a massive impact on tendon strength and 
elasticity. In a study performed with two groups of elderly people [aged 74 ± 5 years (n = 9) 
for group 1 and group 2 had and age of 68 ± 6 years (n = 8)], significant impact on the stiffness 
and elastic modulus of the patellar tendon was found when assessed by ultrasound measure-

ments. Group 1 did one lesson of exercise per week going only to 40% of their maximum 
capacity, while group 2 had two lessons weekly and went to 80% of their highest capacity. 
As a result 12 weeks later, the elasticity of the tendons in group one was not changed, while 
group 2 had 1.6-fold increased stiffness and 1.5-fold increased elastic modulus [40]. Hence, 
intrinsic factors should not be interpreted alone; however, extrinsic factors like exercise and 
other physical activities should be considered too.

Compared to humans, the animal realm covers a wider range of mechanical properties; from 
rat tendons to horse tendons, there is a span of one order of magnitude in ultimate stress; with 
horse flexor digitorum superficialis having values of 109 ± 8 MPa [41], while rat Achilles tendons 
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only have ultimate stresses of 16 ± 6 MPa [42]. In terms of elasticity, the range for animals is 
also larger than for humans. While for human tendons it is up to around 800 MPa, for animals, 
values 1.5 times as high are found like for the rabbit flexor digitorum profundus which has an 

elastic modulus of 1166 ± 281 [43] or the horse flexor digitorum superficialis with a modulus of 

1189 ± 63 MPa [44]. Xenografts, although rejection problems may arise, might nevertheless be 
useful starting points if refinements by cell seeding or other cues manipulating the graft are 
applied too. Otherwise, tendon tissue engineering intended at veterinary clinical application 
should include such baseline values when planning to fabricate appropriate TECs.

3. Natural materials

3.1. Collagen

Tendon tissue basically consists of type I collagen [14, 45]. Therefore, many approaches in ten-

don tissue engineering take collagen as a material in order to fabricate appropriate TECs [46]. 
It has to be noted that mechanical properties of collagen greatly depend on the processing. 
Kumar and co-workers produced robust planar collagen fiber constructs by drying collagen 
gels to form dense collagen mats that were layered [47]. With this approach, they were able 
to tune ultimate stress values between 0.6 and 1.8 MPa; if they used an additional crosslink-

ing step, the range of ultimate stress increased to 4.7 up to 10.5 MPa [47]. As for the elastic 
modulus, not cross-linked collagen mats exhibited elastic moduli of 2.0–6.3 MPa; with cross-

linking, however, such fabricated mats had moduli of 52–114 MPa [47]. Obviously, with only 
one processing step (crosslinking), mechanical characteristics could be changed by an order 
of magnitude, enabling the tissue engineer to adapt his material to the mechanics envisioned.

Also, commercially available collagen scaffolds show a wide range of mechanical properties 
and may be chosen upon those selection criteria [48]. Generally, such scaffolds are patches that 
are used as augmentations in order to increase the primary repair strength after operation. 
The following commercially available collagen patches are described further in [48]. They are 
presented with decreasing strength (Table 1).

Trade name Tissue Ultimate load (N)

GraftJacket® extr. 2.0 Human dermis 229 ± 72

MaxForce® 1. 4 Human dermis 182 ± 50

GraftJacket® 1.0 Human dermis 157 ± 38

Permacol® 1.0 Porcine dermis 128 ± 26

TissueMend® 1.1 Fetal bovine dermis 76 ± 22

TissueMend® 1.2 Fetal bovine dermis 70 ± 13

Restore® 1.0 Porcine small intestinal submucosa 38 ± 3

CuffPatch® 1.0 Porcine small intestinal submucosa 32 ± 4

Table 1. Selected commercially available collagen scaffolds sold as patches for tendon or ligament augmentation in the 
order of decreasing strength according to [48].
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Depending on the processing technique and the final architecture and structure of the col-
lagen scaffold, ultimate stress and elastic modulus vary over a range of six orders of magni-
tudes, with the following increasing order:

As shown by Kato and colleagues, extruded collagen fibers highly resemble mechanical char-

acteristics of rat tail tendon tissue [49], with elastic moduli >1000 MPa and ultimate stress 
>600 MPa. However, these mechanical assessments were made under dry conditions. As 
tendons are hydrated tissues, wet conditions should rather be taken into account. For that 
reason, Zeugolis et al. compared extruded collagen fibers under wet and dry conditions and 
found that wet extruded fibers were swelling (increase in CSA), while ultimate stress values 
decreased by factors up to 2000 [50]. Therefore, other optimization strategies like blending 
collagen with PEG (polyethylene glycol) were undertaken in order to achieve not only the 
desired fiber thickness but also envisioned mechanical properties [51]. Moreover, crosslink-

ing of extruded collagen fibers with different chemical agents like aldehydes and isocyanates, 
biologically by microbial transglutaminase or physically by photo-oxidation was compared 
in terms of fiber diameter and mechanical properties [52]. A total of 16 different ways for 
crosslinking were compared and the high variability in characteristics was summarized [52].

3.2. Silk

Silk is derived from silkworm cocoons named Bombyx mori (mulberry silk) consisting of two 
fibroin proteins, and has been approved by the Food and Drug Administration [53]. The 
physical properties of silk fibroin (which is achieved after sericin is removed) are ideal for 
tendon grafts. Moreover, silk fibroin is biodegradable and compatible and can also be struc-

turally changed and adapted for different purposes [54]. Silk fibroin exhibits ultimate stress 
values up to 4800 MPa, which is far beyond maximum ultimate stress limits of human ten-

dons (approximately 80 MPa) and animal tendons (around 120 MPa). Physical properties can 
be tuned by giving the silk fibroin different architectures. Li and Snedeker showed that wired, 
braided, and straight silk fibroin fibers behaved differently in biomechanical fatigue tests [55]. 
They found that a wired structure best fitted their final target which was an anterior cruciate 
ligament. In addition, also knitted silk fibroin gained from a non-mulberry silk intended at 
tendon tissue engineering has been tested in vitro, and Musson and co-workers found that 
cell attachment and growth was satisfactory [56]. Finally, biphasic silk fibroin scaffolds with 
different pore alignments (anisotropic and isotropic) mimicking the tendon-bone interface are 
very promising TECs based on this natural material [57].

Often, silk is combined with other materials like collagen [58, 59], PDLLA [60], or PLGA [61, 
62] in order to manipulate and adapt the TEC under view. As a promising example, silk 
fibroin was combined with PCL and electrospun nanofibers of this blend were seeded with 
rabbit dermal fibroblasts, with the result that silk fibroin favored and supported cell prolifera-

tion compared to blank PCL and tendon-specific proteins like collagen and tenascin-C were 
increased and deposited to a higher amount in an in vivo experiment using New Zealand 
White rabbits and an Achilles tendon partial defect [63]. Moreover, also biomechanics were 

sponges < gels < yarns, mats < cross-linked mats < cross-linked yarns <3D extruded fibers
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considerably enhanced by the presence of silk fibroin in this blend compared to mere PCL 
[63] because silk is a very stress-resistant material and can be tuned so well in order to cover 
a wide range of mechanical properties; it has not only been considered for tissue engineering 
of tendons but also for applications in bone tissue engineering [64–67].

3.3. Chitosan

Chitin and its derivative chitosan are getting more and more attractive as a suitable natural 
biomaterial for tissue engineering purposes [68], especially for tendons [69]. In a combination 
with poly acrylic acid, composite films were fabricated by a layer-by-layer technique. These 
films exhibited elastic moduli of 27–420 kPa suitable for tissue engineering of tendons exhib-

iting low elastic moduli [70]. Other composites like chitosan-hyaluronic acid were used to 
close defects of infraspinatus in a rabbit model. The result was that ultimate stress and elastic 
modulus were significantly increased as compared to defects closed without this scaffold [71]. 
Moreover, the same composite material was also used for medial collateral ligament reconstruc-

tion in a rabbit model and it was found to be a promising substitute in case cells were seeded 
on the chitosan-hyaluronan [72].

Chitosan in combination with collagen has also been investigated to serve as a material for tissue 
engineering: addition of chitosan to bovine and salmon collagen scaffolds improved the mechan-

ical properties by increasing the compressive strength and the swelling ratio [73]. Moreover, a 
rat Achilles tendon study, where a scaffold based on chitosan-β-glycerophosphate-collagen was 
used, demonstrated the effectiveness of this composite material for this purpose [74].

4. Synthetic materials

If synthetic polymers are used for (tendon) tissue engineering, the fabrication process highly 
decides upon its biocompatibility and its effectiveness as graft. As nicely shown by Prof. 
Ratner, the same polymer, once applied as a porous foam and once as a dense block, can evoke 
quite different reactions of the body: while the porous material is penetrated by ingrowing 
cells as well as vasculature and there is practically no foreign body reaction, the dense block is 
encapsulated as a foreign body going along with an inflammation reaction [75]—in vivo veritas 

[76]. Hence, the processing of a synthetic material, mostly polymers in tendon tissue engineer-

ing, has to be optimized in order to get a biocompatible material that fulfills the requirements 
encountered in tendon tissue engineering.

Many polymers have been synthesized and modified in order to get suitable materials in 
terms of implants for tendon repair and regeneration; polyglycolic acid (PGA) [75, 77], 
polylactic-co-glycolic acid (PLGA) [78], PLGA/alginate composite [6], polylactic acid (PLA) 
[79–81], poly-l-lactic acid (PLLA) [82–84], polycaprolactone (PCL) [85], polycaprolactone/
polyethylene oxide (PCL/PEO) [7], polyurethane (PU) [86, 87], polyethylene terephthalate 
(PET) [88, 89], DegraPol® [90, 91] (Figure 2), nanocarbon fiber [92], and polyurea [93], among 
others. The architecture of the synthetic materials has to be chosen carefully, as gene expres-

sion of (stem) cells may be significantly influenced by the microenvironment that the cells 
encounter [94].
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5. Cellular approaches

The potential of stem cells for regenerative medicine and for tissue engineering applications 
has been reported many times with convincing evidence in vitro and in vivo and comprehensive 
information given in recent review articles [12, 95]. Hence, although tenocytes would be the first 
and self-evident cell source to be used in tendon tissue engineering [20, 96, 97], there are more 
reports based on stem cells for the same purpose. For example, adipose-derived stem cells were 
seeded onto biphasic silk scaffold in order to fabricate a tendon-to-bone interface, mimicking 
the gradient-like structure of the enthesis [57]. Adipose-derived stem cells are easily harvested 
and differentiated toward a desired lineage [98] and amounts per gram of tissue are higher as 

compared to other stem cells sources like bone marrow [99]. Hence, these cells are very well 
suited for tissue engineering purposes, like tendon tissue engineering [100, 101]. Among dif-
ferent stem cell sources, however, the best source of stem cells for tendon tissue engineering is 
reported to be tendon stem cells, although their availability is limited and the harvesting pro-

tocol everything else than easy [32]. An interesting study reports the beneficial effect of seed-

ing tendon-derived stem cells onto a chitosan-β-glycerophosphate-collagen hydrogel scaffold 
intended to repair an Achilles tendon defect in a rat model [74]. The healing was enhanced as 
indicated by the improvement in histological and immunohistochemical outcomes. In addition, 
the increase in the biomechanical properties of the regenerated tissue at both 4 and 6 weeks 
post-operation also supported the effectiveness of tendon-derived stem cells [74].

The in vitro preparation of cell-based TECs highly determines the mechanical properties; cell-
seeded scaffolds cultivated under static conditions have different characteristics compared 
to TECs cultivated under dynamic conditions—as for example cultivation in a bioreactor 
with medium perfusion flow and/or tensile stretching/compression regimen [102]. Collagen 
sponges seeded with MSCs have been reported to have significantly higher mechanical prop-

erties when cultivated with mechanical stimulation than under static conditions [103]. Also, 
the expression of collagen I and III are increased upon mechanical stimulation, as shown for 
rabbit MSC/collagen sponges and murine MSC/collagen sponges [104]. In such approaches of 

Figure 2. Application of DegraPol®. An electrospun DegraPol® tube is placed around a fully transected rabbit Achilles 
tendon (A) in order to deliver a growth factor to the repair site. The laceration is sutured by a 4-strand Becker suture and 
the tube is pulled over (B).
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dynamic cell culture and cell-seeded TECs, physical experimental parameters like frequency, 
amplitude, medium flow rate, etc., have to be carefully tuned in order to get the desired dif-
ferentiation (if stem cell-based) and the intended biomechanics [105–108].

Other concepts in tendon tissue engineering are based on decellularization of a natural xeno-
graft in order to avoid immunorejection [4, 109–111] or decellularization of a primarily cell-
seeded construct in order to generate a scaffold coated with the components of the ECM of a 
certain cell type (instructive ECM) cultivated under well-defined conditions [112, 113]. Such 
decellularized graft materials can be applied in daily clinical practice more easily than cell-
seeded TECs; because storage is facilitated without (living) cells [114].

Furthermore, there are gene therapy strategies including adeno-associated viral type 2 vector 
(AAV2) and micro-RNA related gene therapy aiming at improving strength of the repaired ten-
don as well as decreasing adhesion formation to the surrounding tissue [115, 116]. Moreover, 
some approaches deal with delivering certain (growth) factors, supporting the regeneration 
process of tendons [117, 118].

TGF-β1 plays an important role during tendon healing and has an influence on adhesion forma-
tion, an unwanted side effect during tendon healing. Therefore, regulation of TGF-β1 through 
application of micro-RNA specifically inhibiting the function of TGF-β1 was tested in a chicken 
flexor tendon model [119]; TGF-β protein expression in the tendons decreased on increasing 
the vector dosage. As a consequence, the adhesion extent significantly decreased 6 and 8 weeks 
post-injury; however, tendon strength unfortunately was also reduced [119]. Another study 
showed that gene therapy to produce supernormal amounts of bFGF or VEGF supported the 
intrinsic tendon healing in a chicken flexor tendon model—with a significantly higher tendon 
strength by 68–91% from week 2 after AAV2-bFGF treatment and by 82–210% from week 3 
after AAV2-VEGF compared to controls [120]. At the same time, adhesion formation was not 
adversely affected.

Because decorin and IL-10 downregulate TGF-β1, another approach included co-delivery of 
decorin and IL-10 transgenes from a collagen hydrogel system to a tenocyte culture in vitro. 
As expected, TGF-β1 was downregulated and simultaneously also collagen I and III and fibro-
nectin. The authors concluded that this approach might be a useful tool against scar forma-
tion (extensive fibrosis), the system has not yet been tested in vivo, however [121]. Moreover, 
another AAV-based approach was the delivery of VEGF to chicken flexor tendons; after com-

plete transection of these tendons, 2 × 109 particles of AAV2-VEGF or saline (as control) were 
injected before they were surgically repaired [122]. The outcome was a significantly increased 
ultimate strength 4, 6 and 8 weeks post-operation, while the adhesion was unaffected [122]. 
Hence, such gene therapy approaches might get more significance also in daily clinical life, 
as they are easily performed (injection of a small volume only) and show promising effects.

Another nice example has been shown using Scx-transduced tendon-derived stem cells in 
a rat unilateral patellar tendon window injury model. For transplantation, a TEC based on 
fibrin and transduced cells was used. Tendon repair was significantly improved in terms 
of histology and biomechanics in vivo. In vitro results showed that Scx-transduced tendon-
derived stem cells expressed tendon- and also cartilage-related genes to a higher level; as for 
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osteogenic markers (which might be regarded as an unwanted differentiation), the results 
remained inconclusive [123]. Further reports on gene therapy dealing with the tendon-to-
gone interface also used BMPs [124].

6. Drugs to stimulate the healing

Growth factors or drugs aiming at the support of the healing process can be injected directly 
to the wound site. However, one major problem encountered by doing that is that activity of 
such biological molecules (often proteins) is short-lived. Hence, a suitable strategy is to take 
a delivery device realized by an implant material or a TEC allowing sustained release of the 
drug to the repair site over longer periods of time. Among many others, one interesting growth 
factor supporting tendon rupture repair is PDGF-BB [125]. It is not only mitogenic but also 
angiogenic and chemotactic—ending up in accelerated cell proliferation, migration, increased 
collagen synthesis and vascularity, and finally improved biomechanics of the repaired tendon 
[125]. Hence, a random-fiber electrospun delivery device in form of a tube was developed 
which not only allowed the controlled release of PDGF-BB [11], but also acted as an effective 
physical anti-adhesion barrier [126]. Without the growth factor included, this TEC neither 
evokes any adverse cellular effects nor influences inflammation reaction toward the implant 
[90, 91]. With the growth factor, biomechanics improved significantly, underlying promising 
perspectives for this bioactive implant.

Another approach using tendon-derived progenitor/stem cells seeded onto an aligned random-
fiber mesh made of PLLA discovered that tenogenesis of these stem cells was not triggered 
by the aligned fibers, which was previously hypothesized. Because the expression of histone 
deacetylases was found to be reduced in the progenitor cells seeded on the aligned fibers, a 
small molecule (Trichostatin A), which is an inhibitor of histone deacetylases, was incorporated 
in the aligned fiber mesh. As a result of this bioactive mesh, the corresponding progenitor cells 
seeded on this TEC showed better tenogenesis and when implanted in a rat Achilles tendon 
model, the healing was accelerated and improved compared to non-Trichostatin TECs [83].

7. Conclusion

Tissue engineering of tendon substitutes and grafts is a viable option to close critical size 
defects. The choice of a suitable scaffold material, natural or synthetic, is a decision which 
should be based on biomechanical baseline values of native tendon tissues and which will 
direct/affect biocompatibility, cell attachment, or incorporation of factors that support the 
healing process. Cell seeding and cultivation may be performed under static conditions as 
well as in dynamic systems using bioreactors. Bioreactors offer perfusion flow resulting in 
shear stress; additional mechanical stimulation by stretching the cell-seeded TEC may help 
to improve the mechanical characteristics of the TEC and trigger the desired differentiation 
if stem cells are involved. Growth factors incorporated in TECs may also support the healing 
process of the lacerated tendon tissue.
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