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Abstract. This work presents some common issues in the statistical analysis of time series of environmental area. The
discussion and the presentation of solutions is raised by the study of a time series of the oxygen concentration variable in
a water quality monitoring site in the river Vouga hydrological basin in Portugal. Issues such as trends, seasonality, temporal
correlation and detection of change points are addressed.
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INTRODUCTION AND DESCRIPTION OF THE DATA

The time series analysis of environmental data has been an important tool on the assessment and monitoring of natural
processes. However, the statistical analysis of environmental data raises a number of issues related to the characteristics
of this type of data. Oftentimes, the hydrometeorological and environmental data are monthly observations with
a strong seasonal character. Some analyzes can circumvent this problem considering the annual averages, if it
is appropriate ([9]). The Gaussian assumption for the data distribution is not suitable in many applications. This
question is relevant due to many statistical procedures assume this assumption. When data distribution are skewed,
the observations can be transformed, usually, using the logarithmic function. However, this procedure has problems
in the interpretation of the models and their parameters. A temporal correlation structure on environmental data
are very common. For instance, [6] applies state space models in order to accommodate the time dependence of
monthly water quality variables, [1] presents inference propers of regression models which residuals follow any
autoregressive stationary process. One of the most common properties is the non-stationarity of a time series. The non-
stationarity can assume many forms. For instance, the existence of a trend or heterogeneity in variance, the change
of a property in a known instant or in a unknown point (usually designed as a change-point). An environmental
time series may have some of these properties simultaneously implying that its analysis should incorporate various
techniques in an appropriate way. This work presents the modeling of a water quality variable time series which
presents a set of properties. This example allows to expose statistics issues on the time series modeling and it
presents some solutions for them. This paper examines the monthly data of the Dissolved Oxygen (mg/l) in the
Carvoeiro water monitoring site in the hydrological basin of the river Vouga, Portugal. Data were collected from the
SNIRH (Sistema Nacional de Recursos Hidricos), the national information system for water resources of Portugal, at
http://snirh.apambiente.pt/. The modeling of water quality variables will be performed using both linear
regression ([5, 11]) and state space models ([3, 6]). Linear models are usually applied for their simplicity and well
known statistical properties. State space models associated with Kalman filter allow incorporating some components
in the model in a dynamic point of view and the Kalman filter produces forecasts with the respective confidence
intervals.

REGRESSION MODELING

The exploratory analysis of data shows that there are a clear structural change in the trend during in the year of 2000
(see Figure 2). Instead of considering two separate analysis, we intend to find a global model that accommodates this
property. Thus, it was followed the methodology adopted in [2]. Considering the DO variable as Y;, 7 = 1, ...,283, after
fitting a regression model with a quadratic trend up to a certain time #j to all possible month/year and a constant to the
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FIGURE 1. Sample autocorrelation function and sample partial autocorrelation function of the residuals of the regression
analysis.

same series from the next month/year, we choose the one with a smaller residual sum of squares. This procedure led
to o = 139, i.e., October 2000 and the estimated model of the trend was

T —0.00147%> +0.01986¢ 4+ 6.8991 if <139 0
"7 9.128 if t>139.

From residuals the seasonal coefficients were estimated as suggested by [9], i.e., the easiest way to handle the
seasonality is to subtract from each month the overall average of this month,s, 1, withr=1,...,12and k=0, 1, ....
As will be seen this procedure is sufficient for this stage of modeling. On the one hand, from Figure 1, which represents
both the sample autocorrelation function and the partial autocorrelation function, it is clear that the residuals series
follows an AR(1) process, that is, there is a temporal correlation structure. On the other hand, we concluded that
subseries variances of each month of the year are heterogeneous and they tend to have greater variability associated to
the highest seasonal coefficients (sample linear correlation coefficient equal to 0.38).

A MIXED-EFFECT STATE-SPACE MODEL

In order to incorporate the temporal correlation and to accommodate the heterogeneity of the variances of the sub
series of each month, we adopte a mixed-effect state-space model. The model is defined as

Y; (Tt‘f‘St)ﬁz“‘et (2)
B = u+o(B1—p)+e& (3)

where the trend component 7; has a structure defined in (1), S; is a periodic function with the twelve averages as
above, the process {f;} is a stationary AR(1) with Gaussian errors & with mean p and ¢, is the observation equation
error, assumed to be a Gaussian white noise process. The model has two main components: a regression structure
which incorporate both trend and seasonality and an unobservable process {f;}, the state. It is assumed that state
process will calibrate the deterministic structure 7; + S;. Another important feature of the model is that by its own
formulation it allows the variances heterogeneity previously identified. As the state process {3} is unknown, it must
be predicted by the Kalman filter recursions. The Kalman filter provides optimal unbiased linear one-step-ahead

predictions of the unknown states and their corresponding mean square error (MSE), which are denoted by [3,‘,_1
and Py, respectively. Furthermore, the Kalman filter provides optimal filtered predictions f3;, and their MSE ;.

If the errors are further assumed to have a conditional Normal distribution, then ﬁt|t71 is the conditional mean of
B:. Model’s parameters ® = (u, ¢, 02, 672) are obtained through the maximum likelihood estimation ([7]). Table 1
presents the maximum likelihood estimates of ®. In this paper we adopted a decomposition approach type to estimate
the model’s parameters, that is, estimating parameters step-by-step in each phase of the modeling procedure. However,
it is possible to estimate the model (2)-(3) through the EM-algorithm method (see for instance [10]). The forecasts
one step-ahead with the respective empirical confidence interval at 95% were obtained by Kalman filter equation,
that is, IA/,‘,_] +1.96 MSE)A,’ ot Figure 2 shows the observed DO concentration, the forecast one step-ahead with the

respective confidence interval at 95%. The percentage of observations outside of the respective empirical confidence
interval is 6.36% (18/283). The residuals analysis shows that there are some outliers; the biggest residual is respected
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FIGURE 2. Dissolved oxygen concentration and the forecast one step-ahead with the respective confidence intervals at 95%.

TABLE 1. Gaussian maximum likelihood
estimates of the state space model.

i @ o

1.00077  0.43001 0.01790  0.24292

to January 1992. The p-value of the Kolmogorov-Smirnov test to the normality is equal to 2.8% leading to rejection

of null hypothesis. However, the Gaussian distribution is not rejected (K-S p-value=20.0%) when the largest outliers
are not considered.

CHANGE POINT DETECTION

The modeling procedure exposed before shows a change in the trend component of the DO concentration. This fact
is clear from the exploratory analysis. However, other structural changes are not so evident and they need a statistical
analysis in order to evaluate their existence. The model (2)-(3) established a calibration procedure considering 7; + S;
a intrinsic component of the variable which, in a dynamic way, is calibrate by the state process {f;}. Thus, it is
reasonable to investigate changes in this structure which may be relevant in the water monitoring process. For this
purpose, the filtered predictions of the state process, f3;; can be analyzed relatively to the existence of a change (or
more) in their mean as the best prediction of an AR(1) process. Since the sample size is considerable, the results on the
Gaussian distribution discussed before was devalued. We used test statistics that are called maximum type and referred
in [4]. The null hypothesis claims that X, X», ..., X,, are distributed according to N(u, 6?). The alternative claims that
there exists a time point k € {1,2,...,n— 1} such that X;, X, ..., X; are distributed according to N(u,062) and X; 1,
..., X,, are distributed according to N(u2,6?%) with ; # L. Supposing 62 is unknown, the problem described can be
treated based on two-sample 7 tests. The test statistic 7' (n) is the maximum of the absolute values of two sample 7-test

statistics
T(n) = T = A _
(n) 2;?‘22' k| 1@?2‘,.\/ - Bk — B

= ~ =k ~ ~ = 2 ~ =k 2
1 vk 1 1 k
where ﬁk\k = ;):izl ﬁi|i» ﬁk|k =iz Z?:/H.] ﬁi\i and sy =, | .= [ i—=1 (ﬁi\i - ﬁk\k) +Z?:k+l <Bii - ﬁkk) } .

The test statistic 7'(n) were computed considering the sequences of ;. Based on [9], the interpolated value to
n = 283 is 3.207. However, this critical value assumes that the observations are uncorrelated. So, it is necessary to
correct this critical value according to [8]. Thus, in order to obtain 5% critical values, the value 3.207 is multiplied by
[(1+¢)(1—¢)~']"/2, where ¢ is obtained in Table 1. Thus, 5% critical value is 5.079. Table 2 presents the results
from a binary segmentation procedure (proposed initially by [12]) in order to detect multiple change point. This
procedure ends when the observed value of the test statistics is less than the respective critical value (the critical value
is obtained by interpolation according to the subsample size). This procedure identified two change points, April 1990
and December 1991. Figure 3 represents the change points and the three mean levels of the calibration factors process.
For chronological order, the mean levels of the process {f;} are 1.190, 0.835 and 1.005. This means that in the first
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period of time the DO variable was, on average, 19% higher than those predicted by the regression component. In the
second period of time the observations were, on average, 16.5% lower and in last period of time the observation were,
on average, very close to the regression model predictions. From the environmental point of view, the analysis of the

TABLE 2. Results from the binary segmentation procedure.

critical value critical value

ni  T(nj)ops month/year not corrected corrected
283  5.1893 Apr-90 3.2066 5.0790
270  5.7600 Dec-91 3.2040 5.0749

n-90

Apr-89
Nov-89

5

Ji

calibration factor in each time can be relevant in order to identify unanticipated changes.
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FIGURE 3. Representation of the change points and the three mean levels of the { E,}



