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Abstract

Land managers are often faced with balancing management activities to accomplish 
a diversity of objectives in complex, dynamic ecosystems. In this chapter, we present 
a multi-criteria decision support tool (the Future Forests Geo-Visualization Decision 
Support (FForGeoVDS)) designed to inform management decisions by capturing infor-
mation on how climate change may impact the structure and function of forested eco-
systems and how that impact varies across the landscape. This interactive tool integrates 
spatial outputs from various empirical models in a structured decision framework that 
allows users to customize weights for multiple management objectives and visualize suit-
ability outcomes across the landscape. As a proof of concept, we demonstrate customized 
objective weightings designed to: (1) identify key parcels for sugarbush (Acer saccharum) 
conservation, (2) target state lands that may serve as hemlock (Tsuga canadensis) refugia, 
and (3) examine how climate change may impact forests under current and future climate 
scenarios. These case studies exemplify the value of considering multiple objectives in a 
flexible structure to best match stakeholder needs and demonstrate an important step 
toward using science to inform management and policy decisions.

Keywords: spatial modeling, landscape modeling, integrated modeling, GIS, structured 
decision-making, forest ecology, forest health, climate change, multiple criteria decision 
support, geo-visualization, Future Forests Geo-Visualization and Decision Support tool

1. Introduction

Over the past several decades, climate patterns across the globe have been shifting, accom-

panied by a wide range of biological changes. In the Northeastern US, it is predicted that 

climate change will continue to restructure forests and alter the services they provide over 

the coming century. To refine our understanding of how climate may impact forested 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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 ecosystems, and how this information can be used to inform decision-making, our research 

group developed a spatial, multi-criteria decision support tool (Future Forests Geo-

Visualization Decision Support (FForGeoVDS)) that integrates empirical models of current 

and future forest structure and function in an interactive weighting algorithm. Combined 

with climate projections, the resulting decision support framework allows stakeholders to 

compare outcomes for a variety of management objectives under various climate conditions 

on a pixel-by-pixel basis, thus reflecting the complexity of the Northeast’s heterogeneous 
landscape. This merging of scientific knowledge with management needs is an important 
step toward improving our understanding of the relationships between forests and climate, 

but more importantly affecting change on the ground by informing management and policy 
decisions.

What makes this FForGeoVDS tool unique is several-fold:

1. The integration of disparate empirical ecosystem models allows us to incorporate and ag-

gregate information on a variety of forest structural characteristics, processes, and ecosys-

tem services provided. This set of ecosystem model inputs will be modified and updated 
over time as new models are developed and vetted by the scientific community.

2. The incorporation of several climate projection scenarios allows users to examine potential 

changes in modeled forest structure and function under alternative climate conditions.

3. A dynamic structured decision framework allows users to interactively select and weigh 

multiple management objectives for an integrated assessment of their overall management 

goals.

4. The structured decision framework is applied independently to each 30 m pixel across the 

landscape, providing spatial detail not typically included in decision analyses. This allows 

land managers to visualize outcomes across the landscape and identify various locations 

ideally suited for specific outcomes or those best suited to accomplish multiple outcomes.

5. The ability to continually expand and update the tool via the integration of new ecosystem 

models as they become available.

The overall goal of this chapter is to provide a test case for how the FForGeoVDS tool can 

integrate disparate research products in a structured decision support tool to provide spa-

tially detailed quantification of the relative likelihood of meeting multiple objectives under 
both current and future climate scenarios. Here we give an overview of the FForGeoVDS 

tool’s spatial modeling framework and demonstrate the general structure based on the inte-

gration of five empirical models developed to quantify: sugar maple distribution and health, 
forest fragmentation risk and hemlock distribution, and vulnerability to hemlock wooly adel-

gid (HWA). Using the FForGeoVDS tool, we present three case studies to demonstrate how 

these models can be integrated to visualize and prioritize locations across the landscape that 

meet a variety of management objectives. These case studies correspond to three hypothetical 

users with a decision to make:
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• A Land Trust Director who wants to identify private properties for possible acquisition to 

both conserve sugar maple habitat and minimize forest fragmentation on habitat corridors;

• A State Forest Planner who wants to identify a state forest for hemlock monitoring and 

possible stand improvement where hemlock is likely to tolerate hemlock wooly adelgid 

infestation in order to maintain important wildlife habitat; and

• A Climate Action Advocate who wants to demonstrate how our ability to maintain both 

sugar maple and hemlock across the state is likely to change with the twin pressures of for-

est conversion and projected climate change.

This demonstration exemplifies a structured algorithm for decision support and an opti-
mized spatial output to visualize and assess relative objective success across the study area. 

However, it is important to note that this approach is not designed to serve as an optimiza-

tion exercise that differentiates among management alternatives. Instead, it serves as a spatial 
assessment and visualization tool to allow users to identify where across the landscape pri-

ority management objectives are most likely to be successful under status quo management 

acitivities, and how this might change under climate change scenarios. It also does not permit 

assessment of management objectives or alternate scenarios that are not already captured 

in modeled inputs or spatial data layers. As such, it is limited by the ecological modeling 

products available. However, we anticipate that over time, additional ecological models can 

be incorporated into the decision tool based on feedback on stakeholder needs and continued 

progress in scientific modeling for the region.

This development of the FForGeoVDS tool has been aided by a broad audience of stake-

holders who have been continually involved in the design process. The research team has 

held multiple participatory design sessions with professionals from multiple state and federal 

agencies, nonprofit land management organizations, and advocacy groups. These stakehold-

ers have provided invaluable input into the necessary features and functionality of the deci-

sion support tool, as well as how this tool will be situated in the larger ecosystem of tools 

available to support decision-making about Vermont’s forests. While many tools exist from 
many different agencies, there is a notable gap in the ability of managers to combine projec-

tions of climate change with forest management objectives in a flexible way pertinent to their 
scale and extent of interest. This puts the FForGeoVDS tool in a particularly good position for 

adoption and use, and these stakeholder engagement sessions have helped to shape both the 

research team’s activities and the expectations of the eventual users of the tool.

2. Background on decision support for forest management

The use of decision support systems is gathering increased attention in natural resource man-

agement because of the demand for increasing transparency, potential for economic, legal, 

and political conflicts, the increasing volume of data available to help inform decisions, and 
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improved technologies to integrate, analyze, and summarize this information [1]. This is par-

ticularly true for forest ecosystem management, where growth and yield models can be used 

to directly predict forest response to management alternatives [2]. Such tools are also prov-

ing useful when applied to adaptive management decisions, particularly as it relates to the 

impacts of climate change [3, 4].

There are many methodological approaches to decision support, including artificial neural 
networks, knowledge-based systems, and multi-criteria decision models [2]. While the aggre-

gation algorithms differ, decision support systems are built on a basic framework that includes 
structuring the decision problem, identifying various alternatives or scenarios to compare, 

determining the preferences of decision-makers, and evaluating and comparing the decision 

alternatives [5]. Choosing the appropriate decision support methodology is dependent upon 

the actors that are involved in the process, desired goals, and available information [6].

Here we developed an interactive, multiple criteria, structured decision framework to help 

land managers visualize how climate change may impact forest structure, conditions, and 

processes across the landscape. Multiple criteria decision systems (MCDSs [7, 8]) provide 

flexibility in the selection and weighting of management objectives using a structured frame-

work for evaluating outcomes for multiple, potentially conflicting objectives in quantitative 
units or qualitative rankings. This framework involves three main concepts: value scaling 

(or standardization) of various objectives, criteria weighting by the user, and a combination 

(decision) rule to aggregate across criteria [9] to evaluate the relative value of each alternative 

scenario in achieving the desired weighted objectives [6]. A key component of this approach 

is allowing decision-makers to determine which objectives are of interest, and what relative 

weights each of those objectives should carry in the analysis.

This approach is becoming more common in natural resource management applications to 

evaluate and compare broad alternatives for specific parcels or management units. More 
recently, it has become common to integrate temporal and spatial results to produce spatial 

decision support systems by coupling with GIS tools [9, 10]. For example, the integrated grid 

based ecological and economic (INGRID) landscape model, was developed by [11] to support 

landscape management decisions. INGRID was designed to simulate the ecological effects of 
management alternatives and costs for dry grasslands using empirical models that predict the 

risk of plant and animal extinction under alternative conditions, management scenarios, and 

disturbance regimes. While input rasters were spatially explicit, the resulting decision assess-

ment was based on overall proportion of cells with desired biodiversity outcomes, without 

examination of spatial patterns in those outcomes across the landscape.

However, this same approach could be applied in a geospatial model where each pixel across 

the landscape is processed through the structured decision framework and evaluated inde-

pendently. The name “Geovisual Analytics for Spatial Decision Support” [12] suggested for 

this approach emphasizes the importance of interactive, visual interfaces, as an effective 
way to synthesize and quantify information to support problem-solving. This requires an 

approach that first articulates decision objectives, integrates information from a multitude of 
data, provides a flexible, interactive interface for customization, and then provides data anal-
ysis and visualization, across multiple scenarios in order to select the right course of action 
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and where across the landscape that can be achieved [12]. Because this approach is typically 

disseminated through online visualization tools, it has the potential to provide access to a 

wider audience of potential stakeholders, enabling many actors to work together and provid-

ing an interface adaptable to the needs of different actors [12].

This highlights one of the key components of what can be a generally “techno-centric” 

approach to decision support: stakeholder engagement. The human decision-makers are an 

integral component to decision-making, providing information that often dominates the pro-

cess [13]. Solutions based on complex algorithms, frameworks, and models can be integrated 

with approaches, such as collaborative learning, expert models, and continuous stakeholder 

participation during development in order to design systems better able to cope with the 
complexities of managing ecosystems with the potential for many conflicting interests [14].

Looking ahead, the future of decision support systems for forest management will likely move 

toward more comprehensive forest models and the need to consider climate change as a major 

driver [15]. This will require careful parameterization and empirical validation before implemen-

tation in decision support tools and at the same time will increase the required expertise to actu-

ally run the models and analyze the resulting output [16]. The Future Forests Geo-Visualization 

Decision Support (FForGeoVDS) tool presented here exemplifies this move toward more com-

prehensive, integrated forest models with parameterization for various climate-change scenar-

ios. Other promising developments include the use of the Internet to enable easy access to data 

and public engagement with these tools and the resulting outputs. This presents an opportunity 

for new decision support applications, such as the one presented here, to bring decision support 

to a broader audience of public, commercial, nonprofit, and private stakeholder groups.

3. Approach

Here we demonstrate the structure and utility of the new multi-criteria Future Forests Geo-

Visualization and Decision Support (FForGeoVDS) tool, designed to integrate empirical models 

of forest structure and function under various climate conditions. This pilot is based on sev-

eral current empirical models (forest fragmentation risk, sugar maple abundance, sugar maple 

canopy condition, eastern hemlock abundance, eastern hemlock HWA risk), integrated in three 

user case studies. Here we walk through various components of the FForGeoVDS approach, 

including a summary of the empirical models that provide the foundation for the decision sup-

port tool (Section 3.1), the geospatial interface used to integrate across models (Section 3.2), 

customized weighting scenarios (Section 3.3), and the structured decision calculations (Section 

3.4) used to aggregate decision outcomes. The final outputs include maps that quantify the 
weighted suitability (Section 3.5) on a pixel-by-pixel basis, highlighting where management 

objectives are most likely to be met and providing a quantitative basis for parcel comparison.

Because of the flexible design of the FForGeoVDS tool, we are able to demonstrate how the 

mean “weighted suitability” decision outcome can be captured across the landscape and com-

pared across towns, parcels, and climate scenarios to inform three different customized manage-

ment objectives (Section 4).
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3.1. Input empirical models

The FForGeoVDS tool relies on empirical models designed to capture specific ecosystem 
structure and function that can be used as a proxy for management outcomes. Here we incor-

porate five disparate models: tree species distribution (sugar maple and hemlock percent 
basal area maps [17]), forest fragmentation risk [18], sugar maple canopy condition [19], and 

eastern hemlock susceptibility to hemlock wooly adelgid [20]. For all input models included 

in any decision support tool, it is critical to provide easily accessible information about model 

development and validation to add credibility to the tool and allow stakeholders to assess the 

reliability of the resulting products. Here we present a brief summary of each model included 

in this pilot, including links to publications for additional information.

3.1.1. Tree species distribution model

Traditional forest classifications are often limited to coarse forest type classes, but advance-

ments in remote techniques allow for more detailed mapping of species abundance and com-

position. This is particularly useful in the Northeast where species composition is often mixed 

and information beyond “dominant species” is required.

For the models included here, [17] employed a spectral unmixing technique based on multi-

temporal Landsat imagery to capture the proportion of each species present in each pixel.  

Algorithms based on US Forest Service Forest Inventory and Analysis plots were used to con-

vert spectral unmixing scores to basal area composition. Combining basal area maps for all 

key species, fractional basal area was calculated to quantify relative abundance of each species 

and to develop a thematic species map for comparison to more traditional species mapping 

products (Figure 1). Validation with 50 field inventory plots showed the resulting thematic 
forest classification mapped 15 forest classes with overall accuracy = 42%, KHAT = 33%, fuzzy 
accuracy = 86% at the pixel level, providing more detail and higher accuracy than existing 
forest-type mapping efforts.

Model description [17]:

Units: Percent basal area (0–1).

Spatial extent: Northern New York, Vermont, and New Hampshire; Western Maine.

Resolution: 30 m.

Time interval: Historic and current.

Climate: No significant climate influence.

3.1.2. Forest conversion model

To assess potential future changes in forest cover, [18] measured historical changes in forest 

cover in the northern forest region and used correlations between these historical changes and 
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other spatial variables to estimate future transitions into and out of forest at three time steps 

across the landscape.

This forest conversion model can be used to prioritize conservation in critical areas where 

deforestation is likely, or where projected deforestation will cause significant fragmentation 
of the landscape. It can also be used to avoid areas with high fragmentation risk if the man-

agement activity will not be able to control that process.

Resulting forest conversion probability maps (Figure 2) provide projections of places likely 

to experience deforestation or forest regrowth, but only insofar as historical drivers remain 

constant; this assumption may be weaker for later time frames.

Model description [18]:

Units: Probability of change (0–1).

Spatial extent: Northern New York, Vermont, and New Hampshire; Western Maine.

Resolution: 30 m.

Time interval: Historical, current and probability of transition maps available for 2030, 

2060, and 2075.

Climate: No significant climate influence.

Figure 1. Forest cover map spanning northern New York and Vermont produced by integrating spectral unmixing of 

multi-temporal Landsat imagery and a rule-based, OBIA classification scheme.
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3.1.3. Sugar maple stress index model

This study compared a suite of climate metrics to field assessments of sugar maple canopy 
condition across Vermont [19]. Five climate metrics were significantly related to sugar maple 
decline. The influence of climate is comparable to that of insect outbreaks and other distur-

bance events, indicating that in Vermont, sugar maple is a climate-sensitive species.

The model identified areas across the state where climate has historically been better or worse 
for sugar maple (Figure 3). Substituting climate projections in the model indicates that cli-

matic conditions are likely to become less favorable for sugar maple over time, with up to 84% 
of current sugar maple stands negatively impacted by climate change. However, locations 

of “climate refugia” should also be available to maintain sugar maple in spite of changing 

climatic conditions. Considering the role of sugar maple in Vermont’s economy and culture, 
managing this resource into the future as climate changes is of great concern and could pose 

a considerable challenge.

Figure 2. Probability maps show the likelihood of transition from forest to nonforest for each of three time steps. Higher 

values represent a higher probability (0–1 scale) of deforestation. Lower values indicate locations where deforestation 

is unlikely.
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This study was designed to isolate the impacts of climate on sugar maple condition and does 

not capture additional stressors that may result from other biotic or abiotic agents. As such, 

it should be used only to differentiate relative regions of climate favorability for sugar maple.

Figure 3. Climate impacts on sugar maple health from 1981 to 2012. Higher forest stress index (FSI) values (warmer 

colors) represent locations with more severe climate induced sugar maple decline over the historical record. Lower FSI 

values indicate locations with minimal climate induced sugar maple decline.
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Model description [19]:

Units: Forest Stress Index (FSI) near 0 represents average canopy condition, Lower val-

ues = healthier than normal, Higher values = higher decline than normal.

Spatial extent: Vermont.

Resolution: 800 m.

Time interval: Historic (1971–2000 norms), current (1981–2010 norms), and projected 

(2050 and 2100 under two climate scenarios).

Climate: Significant climate influence captured for A2 (high) and B1 (low) emission 
scenarios.

3.1.4. Hemlock wooly adelgid susceptibility model

To measure the relative risk of hemlock wooly adelgid (HWA)-induced decline in eastern 

hemlock stands, [20] quantified changes in hemlock basal area increment (BAI) to quantify 
decline on 41 hemlock stands across New England. They determined that slope, GIS calcu-

lated Hillshade (capturing heat load), and January minimum temperatures were significant 
predictors of hemlock decline rates following infestation. The authors built a model to differ-

entiate stands likely to decline rapidly (susceptible) from those likely to decline over longer 

time periods (tolerant) (Figure 4). The model correctly classified 80% of the 41 original sites 
with 73% accuracy on 15 independent validation sites.

To apply this model across the study region, GIS data layers for key input variables were used to  

produce a spatially explicit model that predicts the likelihood of hemlock growth declines 

following HWA infestation. This was applied using both historical temperature norms and a 

projected 2°C increase in minimum January temperatures.

Model description [20]:

Units: Probability of rapid HWA-induced growth decline (0–1 scale).

Spatial extent: New England.

Resolution: 30 m.

Time interval: Historic (1971–2000 norms), current (1981–2010 norms), and projected 

(2050 and 2100 under two climate scenarios).

Climate: Significant climate influence captured for A2 (high) and B1 (low) emission 
scenarios.

3.2. Geospatial integration

Integration of many spatial data layers requires careful preprocessing. These inputs 

include empirical model inputs (raster layers) as well as other ancillary data necessary in 
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 customizing the decision framework (e.g. land ownership class, political boundaries, etc). 

The first step was to develop a common raster grid framework to which all data were trans-

formed. The 30-m USGS DEM for Vermont was used as the base frame for standardizing 

the various input data, providing the common projection (USA Contiguous Albers Equal 

Area Conic USGS), cell size (30 m), extent and snap raster for aligning all inputs to a com-

mon grid. Each input raster was projected, clipped to the extent of the Vermont study area, 

and then resampled to the common grid cell size and alignment. Continuous variables 

Figure 4. Hemlock risk map shows probable locations of declining sites for current (top) climate and projected 

(bottom) climate conditions. Map units capture the probability quartile (0–50, 50–60, 60–70, 70–80, 80–90, 90–100%) 
that a given location has site conditions favoring rapid hemlock decline. High values indicate locations where 

mortality will occur quickly following HWA infestation. Low values indicate locations where hemlock is likely to 

tolerate HWA infestation.
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were  interpolated using bilinear resampling, while categorical variables were interpolated 

using the nearest neighbor resampling.

In order to integrate these outputs, each was first normalized to the same relative zero to one 
scale. When necessary, a percentile-based linear transformation was used to convert values 

for each pixel to a scale where 0 represents the lowest values for that metric and 1 represents 

the highest value for that metric. Units indicate the percentile value for a given value within 

the larger population of values contained in the input raster for the full study area raster. 

Species percent basal area for hemlock and sugar maple as well as the hemlock wooly adelgid 

probability risk model did not require any transformation as they generate data on a zero to 

one scale. The Forest Stress Index data ranged from −0.176002 (historical norms) to 2.166101 
(A2 scenario). The probability of forest conversion was available for three time steps (2030, 

2060 and 2075); to flatten these into a single raster, the maximum probability of conversion 
was calculated for each cell and used as the final input to the decision support tool. This pro-

cessing was accomplished with a combination of Python scripts and ArcGIS models and run 

in the ArcGIS 10.4 software package.

3.3. User customization

The FForGeoVDS online tool requires that users first select their desired management 
objectives from the list of empirical models available. Here we include empirical models 

designed to capture forest structure or condition attributes described above (Section 3.1). 
Users select their desired management objectives, define an area of interest, weight each 
objective based on their overall management priorities, and define the directionality for 
each objective. The area of interest is used to calculate summary statistics and generate final 
maps. The weightings of each objective must sum to 100. The directionality of each objective 

determines whether higher values from the empirical model correspond to higher desir-

ability for the user. As an example, higher probability of conversion may be desirable from 

someone looking for areas to purchase development rights, while lower probabilities of 

conversion may be desirable for someone looking to establish long-term monitoring plots. 

Once these customizations are set, the user can generate suitability maps of their chosen 

landscape.

3.4. Suitability calculations

FForGeoVDS calculates a suitability score for each pixel in the defined area of interest 
from the user-defined weights and directionality for each objective (Figure 5). Using the 

normalized input rasters, it is relatively easy to apply user-defined weights to calculate 
an overall “weighted mean suitability” score. Normalized values for each pixel are used 

as inputs to a weighted mean calculation based on user-defined weights. The desirability 
settings are incorporated by inverting the zero-to-one scores as needed such that positive 
values capture desirable outcomes and negative values capture undesirable values. The 

result is an integrated, weighted mean where higher value pixels identify where across 

the landscape the stated combination of management objectives is most likely to be met 

(Figure 5).
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3.5. Suitability outputs

Outputs from the customization FForGeoVDS tool include maps of weighted average suit-

ability outcomes where 0 represents the least suitable locations and 1 represents the most suit-

able locations for the specified combination of management outcomes. Users can manipulate a 
threshold to filter out pixels that do not meet a desired level of suitability. In addition, weighted 
average suitability data are summarized for user-defined areas of interest, including mean-
weighted average suitability and the proportion of pixels above any user-defined thresholds 
of suitability. In this way, users can quantitatively compare both the extent and magnitude of 

suitability in addition to visualizing patterns across the landscape. With the addition of ancillary 
data layers as filters or for zonal statistics, users can use suitability values to compare properties 
for targeted efforts, relative success of various management objectives for a given property or 
the potential changes in suitability under various climate change scenarios. With this summary 

statistical information, users have critical information on which to base decisions and to more 

effectively communicate how management success is likely to change under various scenarios.

It is important to point out that the suitability score produced using the FForGeoVDS tool 

provides a 0–1 suitability scale based on the full population of conditions captured in the data-

base across the full study area. Thus, if the user selects only their parcel for analysis, the scores 

Figure 5. The GIS model used to calculate final suitability scores includes processes to normalize each selected input 
raster, rescale to match desired outcomes, weighted based on user customization and averaging for each pixel across 

the input study area. The resulting output suitability rasters are then summarized for the user-defined area of interest.
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that are returned do not represent the best and worst locations for that specific parcel only, 
but instead returns scores that are relative to the best and worst locations for the entire area 

captured in the database (in this example, across the state of Vermont). As such, it is possible 

that a given property may contain no highly suitable locations relative to what is available 

across the state. If at the end of this analysis no “best” location to achieve management goals 

has been identified, this does not mean that the analysis was worthless. Often the insights 
gained may suggest other management options, rather than seeking outcomes that may not 

be likely given the conditions within a selected area. Because this analysis is flexible, the 
decision-maker is always free to explore other management objectives available in the tool to 

identify what that given parcel may be best suited for.

Another approach to decision support for clearly defined locations involves limiting normal-

ization and subsequent suitability calculations to the range of values contained within the 

user-defined area rather than the full population of values across input rasters. One widely 

adopted approach to this location-specific analysis is the Simple Multi-attribute Rating 
Technique (SMART [21]). SMART analyses create an interval scale for each metric, and then 

base aggregation algorithms on the range of those scores within the specific decision problem 
area [22], not the range of all scores across the broader landscape. This is particularly useful 

when the range of possible scores is limited within a specific problem, which can limit the 
influence for that particular objective relative to other objectives in the multi-criteria problem. 
SMART weighted aggregation methods then allow the user to obtain a measure of the overall 

benefits of various locations relative to other locations only within the decision problem area. 
However, this approach is not suitable for all circumstances, for example when scores relative 

to other locations outside of the specified area are also of interest, or when there is a possible 
interaction between the some of the criteria [22].

While this tool has been purposefully designed to examine relative suitability across the entire 

study area, and considering the full range of information available within our input models, it 

can easily be modified to use the SMART approach described above. Future iterations of the 
FForGeoVDS tool will include user preference options to base normalization on the full range 

of population values (population) or to limit normalization to the range found only within the 

user-defined area (SMART). We also anticipate creating an option for users to aggregate using 

the weighted average or additive weights option. This further flexibility will allow for users to 
customize the type of information that output maps and tables are able to provide.

4. Use case studies

Here we present three hypothetical case studies to demonstrate different ways that the tool 
can be used to inform management. This includes customized objective selection and weights 

defining the relative importance of each objective, as well as a directionality statement defin-

ing whether high or low values are desired as ideal outcomes for each management objective.

These customized settings were then linked to our input empirical models to examine how 
suitability varies across the landscape, identify target management locations, and, where 
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climate was identified as a potential driver, compare how suitability outcomes may change 
under different climate conditions. Note that not all management objectives will have climate 
scenario products. Some of the empirical models included here have found significant climate 
effects, resulting in products for multiple climate scenarios (e.g., sugar maple condition and 
hemlock risk). Other empirical models (e.g., fragmentation, species distributions) found no 

relationship between climate variables and thus do not include different climate scenarios for 
comparison in the FForGeoVDS tool.

4.1. Case study 1: land trust director

Context: A hypothetical land trust organization can secure funds to acquire new properties for 

conservation. The land trust has a focus on promoting habitat connectivity, and the donor is 

interested in the iconic sugar maple. Combining these, the land trust’s goal is to identify pri-
vate properties that are (1) dominated by sugar maple, (2) at higher risk of development, and 

(3) at a lower risk of climate change-induced maple decline, weighted as described in Table 1. 

They will use output information to identify parcels best able to provide sugar maple refugia 

under climate change, while also maintaining forest connectivity.

Area of interest: Private, nonconserved lands in Vermont.

Input empirical models: Sugar Maple Stress Index Model, Percent Sugar Maple Basal Area, 

Forest Conversion Model.

Ancillary data layers:

Town boundaries and parcel boundaries – Vermont Centre for Geographic Information.

Habitat connectivity: Vermont Habitat Blocks and Wildlife Corridors: An analysis using 

Geographic Information Systems, Vermont Fish & Wildlife Department, 2011, by Eric 

Sorenson - Vermont Fish & Wildlife Department and Jon Osborne - Vermont Land Trust.

Conserved Lands, Vermont Protected Lands Database, Vermont Centre for Geographic 

Information. Last updated 2016.

Land Trust Director (Sugar Maple Focus)

Objectives Weight Desirability setting

Sugar maple basal area 40 High desirable (1)

Hemlock basal area 0

Sugar maple stress 40 Low desirable (−1)

Hemlock susceptibility 0

Forest conversion risk 20 High desirable (1)

Sum 100

Table 1. Customized objective weights and desirability settings to identify high sugar maple abundance, high conversion 
risk, and low climate-induced stress for sugar maple across the area of interest.
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Summarize by: Town and parcel.

Climate scenarios: Sugar Maple Stress Index Model with inputs for Historic norms, A2 (High 

emissions) and B1 (low emissions) scenarios.

Output maps (Figure 6) of this weighted prioritization of high sugar maple abundance and 

low sugar maple climate induced stress, with high risk of conversion, show that management 

suitability on private lands across the study area varies geographically, with ideal conditions 

concentrated in northern and central Vermont. It is also clear that climate change has the 

potential to decrease suitability considerably across the landscape, although with effects that 
differ geographically.

The user has defined the area of interest as private lands overlapping habitat with high connec-

tivity value and set a suitability threshold of 60 to summarize output data. Within this area of 

interest, summary statistics were generated for each town (Table 2), allowing the hypothetical 

user to identify potential regions to target for land acquisition. These summary statistics identify 

several towns where the prioritized management objectives are likely to be met (highest mean 

suitability values for pixels above the 60 threshold). Zonal statistics, output in table format, sum-

marize the mean suitability score above the threshold, area of the town above a threshold, and 

the percent of the total town area that meets the suitability threshold. This allows of hypothetical 

land trust to prioritize locations to search for potential conservation properties. Under historical 

norm climate conditions, St. Albans Town comes out as a top location, with the highest mean 

suitability score and over 1.2 million hectares that meet at least a 60th percentile for suitability.

However, considering future climate conditions, a new ranking emerges due to differen-

tial projections of climate change across the study area (Table 3). Under the low and high 

Figure 6. Output maps of weighted suitability for every 30 m pixel where sugar maple is present on privately owned 

parcels across the selected study area demonstrate how relative suitability differs geographically and under various 
climate change scenarios.
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Summary Statistics by Town—Current Climate

Town Mean suitability above threshold Area above threshold (ha) % Town area

St. Albans 70.1 1,215,486 9

Montpelier 69.9 729,567 31

Highgate 69.6 2,532,465 18

Swanton 69.4 1,430,865 10

Berlin 69.3 1,458,972 17

Franklin 68.7 2,008,881 21

Waterbury 68.5 807,084 7

Mooretown 68.5 820,449 9

Fairfield 68.4 3,899,907 24

Georgia 68.2 2,588,922 25

Table 2. Summary statistics on suitability outcomes under current climate conditions are summarized by the towns and 

sorted by mean suitability above a 60 suitability threshold.

Town Mean suitability above threshold Area above threshold (ha) % Town area

Summary Statistics by Town—B1 Low Emissions Scenario

Orange 63.6 2,106 0

Addison 63.5 120,528 1

Troy 63.2 209,223 2

Highgate 63.1 628,641 4

Newport 63.1 127,494 1

Irasberg 63.0 216,594 2

Barton 62.9 70,551 1

Montpelier 62.8 228,420 10

Johnson 62.7 57,834 1

Weybridge 62.7 95,013 2

Milton 62.7 476,928 3

Summary Statistics by Town—A2 High Emissions Scenario

Troy 60.6 648 0

Franklin 60.3 81 0

Highgate 60.0 81 0

Note, only those towns with area above the 60 suitability threshold are included.

Table 3. Summary statistics on suitability outcomes under the B1 (low emissions, upper) and A2 (high emissions, lower 

table) climate scenarios are summarized by town and sorted by mean suitability above a 60 suitability threshold.
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 emission scenarios, mean suitability and area above the 60th percentile threshold drop for 

all towns. But this drop is more significant for some, with St. Albans Town dropping off of 
the top 10 list for both low and high emission scenarios entirely. This indicates that if the 

Land Trust wants to consider sugar maple resilience under future climate conditions, the 

town of Orange (low emission) or Troy (low and high emissions) is likely to have more suit-

able locations. However, the area above the 60th percentile threshold is low for both towns, 

indicating that it may be difficult to find available properties for conservation efforts. If the 
small proportion of parcels that are most suitable for purchase are not for sale, the Land 

Trust could target a town such as Troy, VT that has a similar mean suitability but over a 

much larger area.

Parcel maps can then be used to identify key properties to target within the town of Troy for 

conservation purchase. The suitability output maps (Figure 7) show us that there are several 

properties with a high suitability score for potential conservation efforts.

This exercise allows the Land Trust to identify and compare potential properties for sugar 

maple conservation in locations where forest conversion risk is relatively high, but sugar 

maple abundance and resilience in the face of climate change are also high. This represents 

a tangible, decision product that can be used to guide and justify actions taken by the Land 

Trust to preserve potential sugar maple refugia and attract potential funding.

4.2. Case study 2: state forest planner

Current models suggest that hemlock wooly adelgid will disperse through the majority of east-

ern hemlock’s native range, but with impacts that vary widely depending on site  conditions. 
This hypothetical state forest planner wants to identify hemlock stands within state forests 

that contain high-density eastern hemlock stands that are most likely to tolerate HWA infes-

tation, weighted as described in Table 4. The goal is to manage for hemlock in areas that are 

likely to serve as long-term seed source for this species.

Area of interest: Vermont State Forests.

Input empirical models: Percent Hemlock Basal Area, Forest Conversion Model, Hemlock 

Risk Model.

Ancillary data layers: Conserved lands, Vermont Protected Lands Database, Vermont 

Centre for Geographic Information. Last updated 2016.

Summarize by: Forest management unit.

Climate scenarios: Hemlock Risk Model with inputs for Historic norms, A2 (high emis-

sions), and B1 (low emissions) scenarios.

Output maps of this weighted prioritization of high hemlock abundance and low hemlock 

risk on state lands indicate that much of the state’s forest land is suitable for hemlock man-

agement under current climate conditions (Figure 8). However, some state forests, particu-

larly those in central and eastern VT, are particularly at risk from the invasive HWA under 

future climate scenarios. In particular, we begin to see the impact of heat and water stress 

on the relatively drought intolerant hemlock manifest in lower suitability scores on southern 

facing slopes.
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Figure 7. Mean suitability for parcels >25 acres (10.1 ha) for the town of Troy, Vermont, and a close-up look at suitability 

rankings on four parcels with high means (inset).

State Forest Planner (Hemlock Focus)

Objectives Weight Desirability setting

Sugar maple basal area 0

Hemlock basal area 50 High desirable (1)

Sugar maple stress 0

Hemlock susceptibility 50 Low desirable (−1)

Forest conversion risk 0

Sum 100

Table 4. Customized objective weights and desirability settings to identify high hemlock abundance and low HWA risk 
across the area of interest.
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The State Forest Planner has used Vermont’s state forest boundaries as the area of interest and 
as the unit for generating summary statistics and has set a suitability threshold of 60. Opting 

for summary data in chart rather than table form, the State Forest Planner can see which of 

their forests are ideally suited for hemlock management, and quantify which are most likely 

to decrease in suitability under a changing climate (Figure 9).

In this example, Camels Hump State Forest has the highest proportion of its area above the 

60th percentile suitability threshold under current climate conditions, while Mt. Mansfield 
has the highest total area. Considering the proportion of suitable land, two smaller forests 

rank highest under the climate change scenarios, with 12.9% of Boyer State Forest above the 
threshold under the low emission scenario and 4.7% of Mt. Carmel State Forest above the 
threshold under the high emission scenario. But in terms of absolute area, Mt. Mansfield 
and CC Putnam State Forests provide the largest base of suitable landscape. Comparison of 

the climate scenarios also helps to identify how vulnerable hemlock stands in the different 
forests may be to climate change. For example, the proportion of suitable hemlock stands 

in the West Rutland State Forest changes modestly between the climate norms and B1 sce-

narios. In contrast, the Camels Hump State forest loses almost half of its suitable hemlock 

under the B1 scenario.

These maps and data give the Forest Planner a set of criteria that they can use to evalu-

ate against other factors, such as funding, staff capacity, and institutional opportunities for 
experimentation. The forest planner can take these results and analyze trade-offs to target 
a smaller forest as a demonstration project or spreading management efforts across a larger 
land area while considering the long-term effects of climate on their hemlock management 

Figure 8. Output maps of weighted suitability for every 30 m pixel on state-owned parcels across the selected study 

area demonstrate how relative suitability for hemlock refugia differs geographically and under various climate change 
scenarios.
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goals. This information provides necessary information to target management activities on 

the ground and justification for management decisions.

4.3. Case study 3: climate action advocacy group

Presenting before the State Legislature, this organization is looking to demonstrate the poten-

tial severity of climate change impacts on the state’s largest natural resource: its forests.  

Figure 9. Graphical output summarizes the total area (top) above the specified suitability threshold for the areas of 
interest (VT State forest lands) under three different climate scenarios. This information can also be summarized as 
percent of total area (bottom), which helps to emphasize the importance of smaller parcels.
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Specifically, they want to quantify how our ability to maintain sugar maple and eastern hem-

lock stands across the state is likely to change under various climate projections, with all man-

agement objectives equally weighted as described in Table 5. They are particularly interested 

in private lands because Vermont’s forests are 80% privately owned, and they want legislators 
to provide new incentives for landowners to implement climate-resilient management strate-

gies for these important species.

Area of interest: Vermont private lands.

Input empirical models: Percent Hemlock Basal Area, Percent Sugar Maple Basal Area, 

Sugar Maple Stress Index Model, Forest Conversion Model, Hemlock Risk Model.

Ancillary data layers: Conserved lands, Vermont Protected Lands Database, Vermont 

Centre for Geographic Information. Last updated 2016.

Summarize by: State of Vermont.

Climate scenarios: Sugar Maple Stress and Hemlock Risk Models with inputs for Historic 

norms, A2 (high emissions), and B1 (low emissions) scenarios.

Output maps of this objective prioritization that equally weight all available management 

objectives demonstrate the potential impacts of climate change on the region’s sugar maple 
and hemlock resource (Figure 10). The user has chosen nonpublic, nonconserved lands as 

their area of interest to capture the private ownership that dominates in VT, and selected to 

generate summary statistics for the entire region.

First, it is interesting to note how the geographic patterns of suitability scores vary signifi-

cantly for this combined outcome weighting (emphasizing both sugar maple and hemlock) 

compared to an emphasis only on sugar maple in Case Study 1 and only on hemlock in Case 

Study 2. This highlights the importance of targeting specific management objectives, includ-

ing allowing for a complex combination of multiple management objectives. The decisions 

that result from these differential weightings can vary widely.

Advocacy Group (Climate Change Focus)

Objectives Weight Desirability setting

Sugar maple basal area 20 High desirable (1)

Hemlock basal area 20 High desirable (1)

Sugar maple stress 20 Low desirable (−1)

Hemlock susceptibility 20 Low desirable (−1)

Forest conversion risk 20 Low desirable (−1)

Sum 100

Note that the key information desired from this case is a comparison of how climate impacts our ability to maintain 

suitable habitat for all listed management objectives.

Table 5. Customized objective weights and desirability settings to integrate across all management objectives.
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Second, it is striking how drastically overall suitability declines under both low and high 

emission scenarios (Table 6). Across the study area, suitability drops considerably, with a 

study-wide mean of 56.3 under historical norms dropping to 44.3 under low emissions and 

28.8 under high emissions. This drop is particularly pronounced along the Lake Champlain 

Valley where a large portion of Vermont’s population is located.

Using the current suitability values as a baseline representing the current “standard” of forest 

health, our hypothetical climate advocate stakeholder group could quantify the proportion 

of the region’s forest lands that fall more than a standard deviation below current “mean/
baseline” suitability. This provides a tangible value to present to policy makers they hope to 

 influence to promote climate policy. In this management prioritization scenario, the user can 
say that 65.6% of the region’s forest will become less suitable to sustaining a healthy sugar 
maple and hemlock forests under a low emission scenario. They can further demonstrate 

that 95.2% of the region’s forest will become less suitable under a high emission scenario. 

Figure 10. Output maps of weighted suitability for every 30 m pixel on private owned parcels with either hemlock 

or sugar maple present demonstrate how relative suitability differs geographically and under various climate change 
scenarios for this customized analysis equally weighting all available management objectives.

Climate scenario Mean suitability Maximum suitability Range in suitability

Historical norms 56.3 79.9 55.6

B1 – low emissions 44.3 73.3 58.5

A2 – high emissions 28.8 65.6 59.7

Table 6. Summary statistics of suitability scores across the entire study area demonstrate how suitability can be expected 

to change under various climate scenarios.
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With these substantial drops in suitability, the advocate can make an argument that Vermont 

will face significant challenges in maintaining hemlock, and maple species on private lands 
under even generous climate change scenarios, arguing for proactive efforts by the state to 
encourage landowners to take action. This may include implementing management efforts on 
private lands directed at managing forests for resilience and resistance. Or it could be used 

to justify policy changes to limit or mitigate greenhouse gas emissions. The maps, summary 

statistics, and underlying science provide the advocate with a set of materials to take to a lob-

bying session or public hearing where they can advocate for better protections and manage-

ment of important forest resources across the state.

5. Conclusions

One challenge that many natural resource managers face is the uncertainty of climate change 

and the effects that large-scale changes will have on resources at a parcel- to landscape scales. 

With the ability to explore different climate change outcomes for a particular set of objectives, 
managers can find bounds to their expectations, lowering the barrier to incorporating climate 
change into management planning.

While many forest decision support tools exist, there is a notable gap in the ability to com-

bine projections of climate change with current ecosystem models, linked to discrete forest 

management objectives in a flexible way pertinent to their scale and extent of interest. This 
puts the Future Forests Geo-Visualization Decision Support (FForGeoVDS) tool in a particu-

larly good position for adoption and use to a broad audience of stakeholders. Because out-

puts include quantitative metrics to identify locations across a property or landscape where 

various management objectives are most likely to be met, the possibility of selecting different 
locations is highly dependent on objective weightings. This may prove particularly useful for 

conservation efforts, where resources to conserve targeted properties are limited, but conser-

vation goals are complex.

The case studies we have presented here outline three potential uses for this tool. The ability 

to refine and target areas meeting multiple objectives, as in the case of the land trust director, 
or the ability to compare the suitability of a short list of state-owned properties, as in the case 

of the state forest planner, provides powerful new ways of combining scientific models, GIS 
data layers, and climate projections to generate detailed maps, useful summary statistics, and 

motivating graphics. However, we expect to see a more diverse range of users as the decision 

tool is refined and additional empirical models are included (e.g., wildlife occupancy, recre-

ational patterns, carbon storage, etc.). This increases the number of management objectives 
one can consider and thus the robustness of the tool.

The FForGeoVDS research team has actively engaged with land managers and decision 

makers from nonprofits, state and federal natural resource departments and agencies, and 
advocates to understand what questions they face and what outputs and supporting mate-

rial a decision support system focused on climate change and forests should provide. These 
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working sessions have proven invaluable in the development and design of the tool. Because 

of the diverse nature of these stakeholder groups, initial feedback has ranged from a desire 

for more detail, flexibility and complexity, to a desire for more simplistic approaches. This 
exemplifies the importance of continuous interaction with stakeholders to find the best fit for 
the most users  and the need for continual updates, additions and increased functionality to 

the tool itself.
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