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Abstract

Monoclonal antibodies have become increasingly accepted as diagnostics and thera-
peutics for various human diseases due to their high affinity and specificity. However, 
several practical drawbacks are apparent for the reagents based on conventional IgG 
antibodies. With the emergence of antibody engineering, many problems were over-
come when the recombinant antibody fragments such as Fabs, scFvs, diabodies and 
single domain antibodies (sdAbs), are developed. These fragments not only retain 
the specificity of the whole monoclonal antibodies, but are also easy to express and 
produce in prokaryotic expression systems. Rather unexpectedly, the natural sdAbs 
namely VHHs, V

NAR
s and variable lymphocyte receptors (VLRs) that comprise excel-

lent biological activities were recently discovered in camelids, cartilaginous fish and 
lampreys, respectively. Due to their unique characteristics, including small size, high 
thermostability, stable folding in the nucleus and cytosol and long CDR3 regions 
which have access to cavities or clefts on the surface of proteins, these new binders are 
now investigated extensively as a substitute for conventional antibodies. This review 
describes the potential of sdAbs selected using in vitro display systems and their use in 
multiple applications.

Keywords: recombinant antibody, single domain antibody, diagnostic and therapeutic 
single domain antibody, scFv, IgNAR, VHH, VLR, V

NAR
s

1. Introduction

In research applications, antibodies are widely used as binders due to their high specificity 
and high affinity. Antibodies can be classified into three different categories such as  polyclonal 
antibodies, monoclonal antibodies and recombinant antibodies [1]. Polyclonal antibodies 
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(polyclonal Abs) are heterogeneous antibody mixtures that are derived from multiple plasma 
cell lines. Because polyclonal antibodies comprise a mixture of different antibodies carrying 
numerous paratopes, they have excellent properties for recognizing antigens [2]. A monoclo-

nal antibody (mAb) is a homogeneous antibody generated from a single B lymphocyte clone. 
Antibodies produced in mAb format have an extremely high specificity against a single epi-
tope on antigens [3]. Recombinant antibodies (rAbs) are antibodies generated using molecu-

lar biology techniques. They are aimed to improve the sensitivity, selectivity, stability and 
immobilization properties in diagnostic applications, for example, in biosensors [4]. In mak-

ing decision to use or generate polyclonal, monoclonal or recombinant antibodies, several 
factors should be considered, including commercial availability, possibility to raise animals, 
types of applications, time length of a project and costs [1]. Although a vast number of rAbs 
has been proposed [5–8], the natural sdAb fragments that were recently discovered from 
camelids (VHHs), sharks (V

NAR
s) and lampreys (VLRs) have shown to possess extraordinary 

features that are not found in conventional antibodies, such as a small dimension, an elevated 
stability and the capability of recognizing cavities and clefts on the surface of proteins that 
cannot be reached by conventional recombinant antibodies [9–11]. This chapter will discuss 
the availability of new binders derived from vertebrates and give an overview of their appli-
cations in a biomedical platform by recognizing specified targets from various diseases.

2. Monoclonal antibodies and their limitations

The first description of monoclonal antibody (mAbs) production was published by Nobel 
prize winners, Kohler and Milstein in 1984 [12]. The fusion technique developed between 
splenic B cells and myeloma cells is termed the hybridoma technique has revolutionized 
immunology and medicine. The production of mAbs is not influenced by sources of ani-
mal used, making mAbs having better homogeneity in scale-up production [13]. The mAb 
technology has been widely applied in biomedical research and pharmaceutical industries.

Unlike polyclonal Abs, the monospecificity of a mAb enables targeting of a single epitope. 
This enables a range of applications, including targeting specific members of a protein family 
and evaluating changes in molecular conformation and targeting protein-protein interactions. 
However, the specificity and sensitivity of mAbs can be reduced by small changes in the 
structure of the antigen determining regions, or even by minor changes in pH or salt concen-

tration. An advantage is that, mAbs can be produced at a greater concentration and much 
higher purity than polyclonal Abs [13].

The conventional mAb predominantly produced as IgG after an immune response, is repre-

sented in Figure 1. As determined by their structural and biological properties, IgG molecules 
have specific features, namely their large size compared to recombinant antibody fragments, 
higher synthesis rate and longer half-life. IgGs are the most widely used immunoglobulins 
for antibody-based diagnostic and therapeutic development. Generally, conventional IgGs are 
characterized by having a high affinity (K

a
) ranging from 10−2 to 101 nM, and excellent specific-

ity for its cognate target epitope [14]. The high degree in variations of antibody specificities is 

Antibody Engineering176



conferred by the variable amino acid sequences in the variable regions of the heavy and light 

chain (VH and VL). Each variable domain is comprised of three hypervariable (HV) regions, 
separated by four framework regions (FR). The HV regions are known as complementarity-
determining regions (CDRs), and are responsible for the identification of the specific epitope 
of the cognate antigen. The FR regions are major components of the backbone structure for VH 
and VL regions in antibodies and can potentially influence the conformation of the antigenic 
binding loops [15].

However, several practical drawbacks are apparent for diagnostic reagents based on conven-

tional IgG antibodies. The complex architecture and large molecular size (~150 kDa) may result 
in weak binding when small size protein antigens are not easily recognized by the concave 
surfaces of CDR loops [16]. Initial attempts to generate single domain antibody fragments by 
separating expression of individual human VH or VL units was reported to result in solubility 
problems in aqueous solvents, higher cost and more time consuming process and the require-

ments for sophisticated protein engineering approaches [17]. Moreover, the failure of recogni-
tion of selected mAbs on conserved epitopes of specific antigens due to unbound reactivities 
mediated by the Fc region may hinder their utility for diagnostic applications [18, 19].

With the emergence of DNA engineering, surface display has been widely used to discover 
new antibody fragments as a means for diagnostic and therapeutic applications. An overview 
of principles in phage display technology, including antibody library construction, biopan-

ning, types of bacteriophages used and antibody fragments applications are further discussed 
in the following sessions.

Figure 1. Schematic representation of conventional antibodies and natural single domain antibodies. The conventional 
IgGs derive from mammals while the natural single domain antibodies derive from camelids, sharks and lampreys, 
respectively. Single V domains are presented as colored ovals; C domains are shown gray colored. The domains in 
lamprey variable lymphocyte receptor (VLR) are demonstrated on the right. VLRs consist of an N-terminal cap (LRRNT), 
the first LRR (LRR1), multiple (usually up to seven) 24-residue variable LRRs (LRRVs), a terminal or end LRRV (LRRVe), 
a connecting peptide (CP) and a C-terminal cap (LRRCT), followed by an invariant 3′-terminal region.
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3. Phage display technology for new biomarker binder discovery

Screening phage display libraries are a powerful tool for identifying specific binders from 
libraries containing a large diversity of phage surface expressed molecules [20, 21]. Libraries 
construction are achieved by fusing a repertoire of genes (genotype) encoding the peptides/

proteins to a gene encoding a capsid structural protein. The “displayed” peptides/proteins 
(phenotypes) are included in the capsid layer on the phage surface. Ideally, these proteins 
should not be interfered with the phage structure [22].

The display technologies have enabled exploration of new antibodies from humans or animals, 
including shark, camel, llama and lamprey [23–26] that may not otherwise be discovered.

3.1. Antibody phage display library

Antibody phage display libraries have been extensively used for isolation of specific high affinity 
binders against unique antigens from different targets [27–31]. Three types of antibody library 
are typically constructed: naïve, synthetic and immunized libraries [32]. A naïve antibody library 
refers to the repertoire of antibody genes derived from non-immunized donors. Synthetic anti-
body libraries are constructed using synthesized mutated CDRs and synthetic frameworks 
whereas immunized libraries are based on a host immunized with a target antigen of disease [33].

The function of the phagemid vector is akin to that of a plasmid whereby the genes of interest 
can be cloned directly into the multiple cloning sites upstream of the capsid structural phage 

protein after digestion by appropriate restriction enzymes. Phage display technology has facil-
itated the selection of different antibody fragments using genetic engineering approaches [34]. 
Many antibody fragments created (Fab, scFv and diabody) were used to overcome the limita-

tions of conventional IgG antibodies derived from higher organism [19]. Furthermore, the pre-

sentation of single domain antibodies (sdAb) of heavy chains derived from different animals 
are being widely investigated, including camelids VHH or Nanobodies®, sharks V

NAR
 region 

of IgNAR [35] and the antibody of variable-like lymphocytes (VLRs) from lamprey fish [36].

3.2. Biopanning of phage display

The selection of high binding clones from antibody libraries using phage display can be 
undertaken in vitro via a process called biopanning. In this process, the antibody fragments 
displayed on the surface of phages are incubated with an antigen of interest that is immobi-
lized on a surface [37, 38]. Generally, immunoabsorbent ELISA microplates, uncoated cell 
culture dishes and immunotubes are commonly used for ligand immobilization [39]. Non-
specific or unbound phages are removed by washing, whereas phage that binds specifically to 
the target is eluted by changing the binding conditions, depending on types of bacteriophages 
used in the experiment. For instance, acidic solutions of HCl or glycine buffer are used for 
M13 bacteriophage [40]. Other methods include use of basic solutions of triethylamine [41], 
enzymatic cleavage of protease site incorporated in the recombinant coat protein [42], com-

petition with excess antigen [38] and direct bacterial elution [43] have been reported for the 

elution of M13 bacteriophage. For T7 phage display system, the elution buffer is 1% SDS [44].
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The amplification of eluted phage is carried out by infecting the exponential growth phase 
of Escherichia coli. To assembly and produce the recombinant phage a helper phage is added 
[45], whereas T7 phages can be directly released from the host by cell lysis [46]. Successive 
rounds of biopanning varied by types of library and target antigen used. In practice, the 
enrichment of phages of interest can be obtained within three to six rounds of biopanning. 
Further rounds of selection may potentially lead to bias by the enrichment of non-specific 
background phages [47, 48].

Phage display is a powerful technology for the generation of antibodies for medical appli-
cations. Nowadays, approximately 30 monoclonal antibodies have been approved by FDA 
for use in clinical practice with many more currently being tested in clinical trials. [49, 50]. 
The principle of the phage display is represented in Figure 2, indicating the workflows of 
library construction, biopanning and clone screening prior to purification for functional 
assays.

Figure 2. Principle of filamentous bacteriophage M13 phage display using a phagemid vector. Antibody genes encoding 
for millions of variants of libraries are cloned into a phagemid vector carrying the gene encoding for one of five phage 
coat proteins (pIII). Large phage libraries can be obtained by transforming E. coli with phagemids and rescue of phages 
with helperphage. Hence, phages displaying the specific antibodies against immobilized targets can be selected and 
isolated by several rounds of biopanning. These steps involve binding, washing, elution, infection and amplification. 
The eluted bound phages are subsequently screened by ELISA assay and followed by DNA sequencing prior to their 
protein expression and purification.
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Table 1. Comparison of M13 filamentous phage with T7 phage.

3.3. Types of bacteriophage utilized in phage display system

In phage display systems, different bacteriophages have been used to display a range of pro-

teins on surface. M13 filamentous bacteriophage [51, 52] and T7 lytic phage are the most 
commonly used for displaying and production of antibody fragments [53, 54]. A comparison 
between M13 bacteriophage and T7 lytic phage are discussed in the following section and 
summarized in Table 1.

3.3.1. Filamentous bacteriophage M13 system

The filamentous phage M13 is the most extensively used phage for antibody phage display [55]. 
Other classes of filamentous phages that have been studied include F1 and Ff phages [56, 57]. 
In the mature virus particle, filamentous phage M13 have a cylindrical-shaped structure, about 
930 nm in length and phage proteins are encoded by a circular single-stranded DNA genome. 
Foreign peptides are typically displayed on the N-terminal of the minor p3 coat protein or on 
the major p8 coat protein with the copy numbers from 5 to more than 2000 depending on type 
of vectors used. However, type 3 is the most widely used display format [56, 58]. Generally, 
this leads to expression of 1–3 copies of the recombinant fusion protein on the phage surface.

The diversity of M13 phage display libraries typically ranges from 105 to 1012, and is greatly 
dependent on the transformation efficiency of the host E. coli. As the proteins are secreted through 
periplasmic layers, the M13 phage display system represents a suitable tool to display the  
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appropriately folded proteins containing disulfide bonds. Hence, many functional antibody 
fragments, enzymes and inhibitors have been displayed and selected using this system [28, 59, 60].  
However, it also has the minor limitation of poor display of cytoplasmic proteins on the mem-

brane [61]. Moreover, the removal of stop codons in the DNA library can facilitate correct dis-

play of the foreign proteins on the coat protein at the N-terminus of M13 bacteriophage [56].

3.3.2. T7 bacteriophage system

The bacteriophage display and cloning system using T7, T4 and λ phage was introduced in 
1990s, and has several advantageous features over other phage display systems [62–64]. As a 
lytic phage, the T7 phage contains a linear double-stranded DNA genome. It has a diameter 
of 55 nm, with the capsid shaped in an icosahedron structure. The Novagen’s T7Select® is the 

commercially available phage display system that takes advantage of the properties of bacterio-

phage T7. There are three types of vectors available in this system: for peptide display with up 
to 50 amino acids in high-copy number (415 per phage); 1200 amino acids display in mid-copy 
number (5–15 phage) and 1200 amino acids display in low-copy number (0.1–1 per phage) [64].

Fusion proteins are displayed at the C-terminal end of the T7 capsid protein (gene 10); the 
removal of the stop codon from foreign genes is not necessary, resulting in ease construction 
of a library. The diversity of T7 phage display is often dependent on the packaging efficiency 
into the capsid. Nevertheless, a successfully constructed library could encode a library of the 
size 107–108 clones [64]. In contrast to bacteriophage M13, the secretion of library proteins 
through the periplasmic layer of the host cell does not occur in the T7 phage display sys-

tem. This may lead to the reduction of physiochemical restriction and less bias in the library 
peptide diversity [65]. In addition, the T7 phage system has the advantages of being able to 
display a cytoplasmic protein, a major limitation of the M13 filamentous phage [61, 66].

However, folding of cytoplasmic proteins with disulfide bonds in T7 bacterial phage system 
do not occur quite well. This problem can be resolved by using the complementing hosts 
such as BLT5615 or BLT 5403 E. coli strain included in the T7Select® kit [65, 67, 68]. In term of 
general features, T7 phage grows much faster than M13. After infection, clear plaques (lawns) 
of T7 phages can usually be observed within 2–3 h on an LB plate at 37°C. Furthermore, the 
purification process of T7 phage for ELISA and DNA sequencing is also simple to perform, 
with only PEG/NaCl precipitation required to recover the purified phage [47, 65].

4. Engineered sdAb fragments from vertebrates

With the advent of recombinant DNA technology, antibody genes can be selected and ampli-
fied using phage display, yeast display, bacterial display, ribosome display, mRNA display, 
DNA display or mammalian cell surface display [69–73] and see chapter in this book: “Display 
technologies for the selection of monoclonal antibodies for clinical use” by Tsuruta et al. 
A range of mammalian V-gene libraries have been used to undertake in vitro recombinant 

antibodies screening projects using phage display. These include mouse [74], rabbit [75], 
sheep [76] and human [77]. Unlike hybridoma technology, the direct link between the geno-

The Development of Single Domain Antibodies for Diagnostic and Therapeutic Applications
http://dx.doi.org/10.5772/intechopen.73324

181



type and the phenotype of displayed antibodies during selection (biopanning) can facilitate 

the identification of binding antibodies and corresponding antibody genes. Further, the gene 
encoding the desired antibody can be manipulated to improve affinity, specificity and expres-

sion or fusion to a carrier protein can be performed [38, 48, 78].

An advantage of sdAb fragments is their ease of genetic manipulation due to their smaller 

size, in addition ease of expression in bacterial system, low lot-to-lot variation and easy scaled-
up production [79, 80] . Moreover, sdAb production is not influenced by species-specific cell 
fusion partner incompabilities. Nowadays, the desired sdAb repertoire can be developed 
from shark, camels and humans with an appropriate set of specific primers [81] . However, an 
additional step of point mutations in framework regions and CDR randomization is required 
to construct human VH and V

L
 sdAbs [81]. Regardless, the generation of sdAbs by bacterial 

fermentation is significantly cheaper, simpler and quicker than conventional polyclonal Abs 
or mAbs production [80, 82–84]. The general features of some natural sdAb fragments are 
described in the following section.

4.1. V
HH

 heavy-chain domain in camelids

Conventional immunoglobulins comprise two major parts such as the antigen-binding frag-

ment (Fab region) and fragment crystallisable region (Fc region), with a typical molecular 
weight of 150 kDa. The Fab domain is responsible for antigen binding and therefore its speci-
ficity. This domain is divided into heavy (H) and light (L) chains with the molecular weights 
of 25 kDa each [85]. The stability of the molecular complex of an immunoglobulin is conferred 
by four inter-domain disulfide bonds in the hinge regions. The heavy chain can be subdivided 
into one variable (VH) region and three constant (C) regions (CH1, CH2 and CH3) while 
the light chain contains one variable region (VL) and only one constant region (CL). Lacking 
direct antigen-binding functions, the main role of the Fc domain is to provide effector func-

tions such as binding to cellular receptors on macrophages and complement activation, and 
determination of the half-life of an antibody [86].

In addition to conventional heterotetrameric antibodies, the sera of Camelidae were discov-

ered to possess special IgG antibodies known as heavy-chain antibodies (HCAbs). Although 
HCAbs contain both a constant (Fc) and variable domain, these antibodies are slightly differ-

ent from conventional IgG by devoid of the L chain polypeptide and the first constant domain 
(CH1) (Figure 1). Therefore, the isolated variable domain region of camelids HCAbs is known 
as VHH (variable domain of the heavy chain of HCAbs) or Nanobody® (Nb; Ablynx) [87]. VHH 

constitutes a binding surface to interact with the target antigen. The molecular weight of VHH 

is 15 kDa, 10 times lower than that of a conventional antibody. It was thereby considered the 
smallest possible antibody fragment and has attracted the interests of many scientists [88, 89]. 
Moreover, the capability of camelid antibodies to retain the reversibility and binding activity 
after heat denaturation has enabled new applications where transient heating may occur [90].

The major advantage of a VHH antibody is their greater solubility compared to classical VH 
[17]. This is due to the hydrophilic amino acid substitution present in the framework 2 region. 
Meanwhile, the single coding exon of less than 450 base pairs facilitates genetic engineering 
of VHH fragments [91]. In addition, on account of its smaller antigen binding surface area, the 
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unique CDR3 region enables the heavy domain of camelids to penetrate into antigen cleft 
regions that are not easily recognized by conventional antibodies [92, 93]. From a phyloge-

netic prospect, since camelids are related to the primate lineage [94] it is possible to produce 

humanized VHH, a process that may be easier to perform than the complicated manipulation 
required to “humanize” murine or other more distant species to reduce an alloresponse, such 
as the human anti-mouse antibody (HAMA) response [95].

Furthermore, due to their high intrinsic domain stability, camelids VHH are now under 
investigation as probes for diagnostics [18, 96]. The diagnostic potential of camelids VHH 

as probes in immunodetection systems offers the possibilities of improving the diagnosis 
of infection [97], cancers [98] and food contaminants [99]. Although VHHs do not originate 

from humans, the humanizations strategies of VHHs have successfully been undertaken by 
designing a humanized scaffold region onto the antigen-binding loops (CDRs) of specific 
VHHs can be grafted [100]. In addition, non-humanized and humanized VHHs with therapeu-

tic potential have been applied in multiple areas, including hematology [101], inflammatory 
diseases [102], infectious diseases [103], in vivo imaging [104], neurological disorders [105] 

and oncology [106, 107].

4.2. V
NAR

 heavy-chain domain in sharks

A class of naturally occurring antibodies comprising a variable domain of a heavy chain (V
NAR

) 

without a variable light chain domain was discovered in the serum of elasmobranch cartilagi-
nous fish during early of 1990s [108–110]. These natural functional antibody repertoires were 
termed as immunoglobulin new antigen receptors (IgNARs). IgNARs are an unconventional 
and unique class of proteins found in sharks, including nurse sharks (Ginglymostoma cirra-

tum) [111], wobbegong sharks (Orectolobus maculatus) [112], smooth dogfish (Mustelus canis) 

[113], banded hound sharks (Triakis scyllium) [68] and horn shark (Heterodontus francisci) [114]. 
Investigations have revealed that IgNARs function as antibody and immune response media-

tors in sharks. However, until now it is not clear if the IgNARs as single domain antibodies 
arise from TCR domains/L chains or primitive cell surface molecules [109, 115].

Several desirable biological properties of IgNAR V domains have been identified, and their 
potential as alternative antigen binders explored [112, 113, 116]. The natural habitat of sharks 
has resulted in evolving extraordinary stable antibodies such that the functionality of antibod-

ies can be retained in a harsh environment [117]. Electron microscopic studies have indicated 
that the intact IgNAR exists as a disulfide-bonded homodimer that consists of a polyprotein 
with one variable domain (V

NAR
) and five constant domains (C

NAR
) (Figure 1) [118].

Similar to the camelid VHH, the V
NAR

 has only a heavy-chain domain. However, the cross-
species conservation of the amino acid sequence with a human VH is extremely low in a V

NAR
 

domain (~25%), whereas it is more than 80% homologous to VHH scaffolds in camelids VHH 

[110, 119]. It is hypothesized that IgNARs lack many residues that exist in conventional anti-
bodies. These are replaced by other hydrophilic residues. The greatly truncated CDR2 region, 
herein defined as HV2 region, has created a signature hallmark for shark V

NAR
. Due to this 

unusual structure, the single variable heavy domain proteins of shark IgNARs are currently 
the smallest antibody fragments observed in animal kingdoms, having a size of only 12 kDa. 
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Yet, in combination with the peculiar feature of a long CDR3 region, these V
NAR

 domains tend 

to more readily penetrate cleft regions of antigens, thereby increasing the opportunity to tar-

get small target epitopes that may not be accessible to conventional IgG [120].

In terms of heat stability, V
NAR

 also possess refolding properties as found in camelids VHH. 
The ability of retaining fully functional antigen-binding activity after exposure up to 95°C 
may make V

NAR
 ideally suited to protein array and diagnostic applications where transient 

heating may occur as part of the protein immobilization process [9, 113]. It is partly due to the 
presence of cysteine residues in these single domain antibodies, resulting in an extraordinary 
conformation [35].

V
NAR

 domains are more easily produced as recombinant proteins compared to conven-

tional antibodies. Additionally, due to hydrophilic residues present within V
NAR

 surfaces, 
high yields of expressed proteins associated with high solubility, are achievable and thus 
they can be easy produced in prokaryotic systems [112]. Therefore, the potential utility of 
V

NARs
 as alternative binders for clinical applications is now being investigated in a variety 

of areas.

4.3. VLRs immunoglobulin-like domains in lamprey

Lamprey and hagfish are the only surviving groups of jawless fish, having appeared since 
the Cambrian period. The adaptive immune system of jawless vertebrates was recognized 
as unique due to the rearrangement of antigen receptors which is completely different from 
that used by jawed vertebrates [121]. The somatic rearrangement of the variable (V) gene seg-

ments, diversity (D) segments, joining (J) segments and constant (C) segments is commonly 
observed in conventional Ig-based Ag receptors. However, the immune system in jawless 
vertebrates is predominantly regulated by recombination activating gene (RAG)-independent 
combinatorial assembly to generate leucine-rich repeats (LRR) cassettes for Ag recognition. 
Owing to these differences, antibodies in jawless fish were termed as variable lymphocyte 
receptors (VLRs) rather than Ig superfamily (Figure 1) [122].

In comparison to CDR loops used by Ig-based antibodies and T-cell receptors in many animals, 
the antigen-binding regions of VLRs have evolved into variable β-strands and C-terminal 
loop structural motifs, resulting in a crescent-shaped protein conformation [123, 124]. Due to 
the prevalence of this unusual pattern, VLRs tend to be more useful for microbial recognition 
[36]. Thus far, two VLR genes have been identified in lamprey and hagfish, namely VLRA 
and VLRB. However, the VLRB gene in lamprey shows more complexity in terms of coding 
sequence analysis [125].

Sequences analysis has revealed that each VLR consists of a signal peptide (SP), hypervariable 
LRR regions, consisting of a 27–34 residue N-terminal LRR (LRRNT), the first 24-residue LRR 
(LRR1), up to nine 24-residue variable LRRs (LRRV), one 24-residue end LRRV (LRRVe), one 
16-residue connecting peptide LRR (LRRCP) and a 48–63 residue C-terminal LRR (LRRCT) 
[126]. The assembly of VLRs entails greater recombination events in LRR modules and can 
efficiently generate more than 1014 unique repertoires at a level comparable to mammalian Ig. 
Thus, VLRs may be a source of single-chain domains alternative to conventional Ig-based 
antibodies [123]. Nevertheless no single domain antibody comprising only one engineered 
VLR domain has been so far reported.
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Having undergone evolution over millions of years, VLRs appear to have been optimized as suit-
able antigen receptors for humoral protection. Further analysis indicates that VLRs are extremely 
stable in harsh environments. Their antigen binding capability remained unchanged even after it 
was eluted from a column at a very basic pH (>11) [11]. In addition, the heat stability of VLRs is 
similar to shark IgNARs and camelids VHH. For example, eluted VLRs can be stored over 1 year 
at 4°C, 1 month at room temperature and 36 h at 56°C. However, the degradation of Ag-binding 
activity occurred when the incubation period was prolonged more than 1 h at 70°C [126].

Although VLRs were discovered less than a decade ago [122], they have provided new 
insights into the potential of ancestral antibodies in biotechnogical applications. Owing to 
a greater VLR library diversity as well as associated self-tolerance ability, VLRs can be effi-

ciently used to detect antigens that may not be recognized by mammalian Ig, for example, the 
sensitivity of VLRB mAb targeting against Bacillus anthracis (BclA) was superior to that of a 
high affinity conventional murine IgG [11]. Furthermore, the simple modular single polypep-

tide structures facilitate the production of VLRs antibodies through DNA engineering. VLRs 
combinatorial libraries of high affinity binders can be constructed through in vitro random 

mutagenesis and loop shuffling using a surface display technology approach, for instance, 
yeast display system [36]. Thus, VLRs may become alternatives for the developments of new 
reagents in diagnostic applications to overcome the lack of Ag recognition ability of conven-

tional monoclonal antibodies made from mammals.

5. Use of different recombinant antibodies for specific applications

To date, humans and mice remain the main source of complete antibodies for targeting dis-

eases. However, with the aid of DNA technology, a number of new antibody fragments have 
been engineered as smaller single domain fragments to improve immunoassays, immunosen-

sors and imaging probes in various applications. As described recently, the discovery of natural 
single heavy domain antibodies from camelids VHH and shark V

NAR
, and in addition lamprey 

VLRs offers some advantages over conventional antibodies. This range of natural antibodies is 
expected to open various applications: to trace molecule trafficking and to inhibit protein func-

tion inside the cell as intrabody, to apply them as therapeuticum and they can be used as detec-

tion units in biosensors or immunodiagnostics. In this section, we will review the deployment 
of different binders in specific diagnostic applications and to what extent these binders are used.

5.1. Applications of camelids V
HH

 domains or nanobodies®

To monitor infections, single domain antibodies naturally derived from camelids (nanobodies) 
may enable superior species-specific antigen detection than classical monoclonal antibodies in 
immunodiagnostic tests. Trypanosome infection causes African sleeping sickness and Chagas 
disease. Both are severe parasitic diseases caused by protozoa of the genus Trypanosoma. Sleeping 
sickness disease is mainly found in rural Africa. The antigenic variation strategy adopted by 
this parasite represents a major barrier to the immune system to eliminate it. Consequently, it 
is difficult for specific mAbs to detect genus-specific antigens [127]. By adoption of an in vitro 

selection method, novel nanobody clones were isolated that showed specificity to T. evansi at 

species level, and genus-specific reactivity against various Trypanosoma species [128].
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Cysticercosis is a serious tissue infection caused by larval cysts of the pork tapeworm, which 
is prevalent in many low-income countries [129]. Monoclonal antibodies that are currently 
deployed in sandwich ELISAs are mainly genus-specific against Taenia sp., but poorly specific 
at a species level to identify Taenia solium, the major Taenia species threatening human health 

[130, 131]. To circumvent such limitations, an in vitro selection of nanobodies from immu-

nized dromedaries was developed to recognize a specific marker on T. solium. After in vitro 

selection, the nanobodies showed no cross-reactivity against other livestock Taenia species, 
while having a very specific response to a specific 14 kDa glycoprotein (Ts14) in T. solium. 
Therefore, nanobodies showed potential as an alternative to genus-species mAb for develop-

ing unambiguous ELISA tests for human cysticercosis [97].

Apart from diagnostic reagents for infectious diseases, nanobodies have been identified as 
alternative binders to analyze the compositions of substances in food and beverages indus-

tries. Due to their excellent thermal stability, nanobodies showed superior behavior to classi-
cal mouse mAbs in ELISA to measure caffeine concentration in hot and cold beverages [132].

Camelid sdAbs have recently been applied in ELISA methods to detect a wide range of small 
molecules, including explosive materials (trinitroluene or TNT) [133], agents of bioterror-

ism (Botulinum A neurotoxin) [90], toxins (ricin, cholera and staphylococcal enterotoxin B) 
[134], scorpion toxin [135] and viruses (HIV, rotavirus, Vaccinia and Marburg) [136–138]. 
Owing to the combination of several favorable properties, camelid nanobodies have also been 
employed as molecules to diagnose diseases. In small molecule development, the advanced 
features of highly stable and unique conformational structure of nanobodies have permitted 
overcoming many problems faced by traditional whole antibodies and scFv fragments such 
as cross-reactivity and nanoparticle agglutination. The development of biosensors coupled 
with nanobodies (nanoconjugates system) has enabled significant improvement in the per-

formance of a device to identify harmful bacteria (Staphylococcus aureus) to a nanometer scale 

within 10 min [139].

Nevertheless, mAbs remain the common binding agents to identify and trace tumor-associ-
ated proteins for noninvasive in vivo imaging. However, limitations, particularly large size 
(150 kDa) and Fc regions, result in mAbs poorly penetrating into solid tumors [140]. The emer-

gence of nanobodies offers the possibility of resolving such problems, and thereby enables 
nanobodies to diagnose tumor markers such as EGF receptor [141]. This will enable cancer 
staging predictions in blood circulation such as prostate-specific antigen [142]. More applica-

tions using camelids VHH targeting antigens from various diseases are summarized in Table 2.

5.2. Applications of shark V
NAR

 domains

Evidence that IgNAR is part of the shark adaptive immune response was demonstrated in a 
work where increasing levels of hen egg lysozyme (HEL) led to the development of specific 
IgNARs developed in the shark sera after 4–5 months of immunization [25]. The peculiar 
structure of the shark IgNAR variable domain renders it amenable to create synthetic pep-

tide mimetics to target specific epitopes that are inaccessible to conventional antibodies [118]. 
Therefore, V

NAR
 may be suitable as new molecular reagents for research, diagnostic and immu-

notherapeutic applications.
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Apical membrane antigen-1 (AMA1) is a highly polymorphic 83 kDa merozoite surface pro-

tein that is essential for erythrocyte invasion in malaria parasites [143]. A V
NAR

 isolated from 

a wobbegong shark showed high-binding affinity to Plasmodium falciparum AMA1 through its 

unique CDR3 region after undergoing affinity maturation [144]. The binding specificity of a 
monovalent V

NAR
 clone to P. falciparum AMA1 was comparable with commercially available 

Target antigens Diseases Applications Reference

VEGF-A
165

Neoangiogenesis Diagnostic and therapeutic [143]

HER2 Breast cancer Diagnostic [144, 145]

HPV-16 L1 protein Cervical cancer Diagnostic and therapeutic [146, 147]

HSP-60 Brucellosis (livestock) Diagnostic and vaccine [23, 148]

VCAM1 Atherosclerotic lesions Molecular imaging [149–151]

VEGFR2 Angiogenesis Therapeutic [152]

TNT Explosive Diagnostic [133, 153]

SEB Toxin Sensor and diagnostic [134]

Ricin Toxin Sensor and diagnostic [134]

BoNT/A Toxin Sensor and diagnostic [90, 154, 155]

Scorpion AahII Toxin Neutralizing and therapeutic [135]

EGFR Tumors Detection and imaging

DARC Malaria (by P. vivax) Diagnostic or therapeutic

LMM, ES, CSE, TSB, LLGPs, 
VF of T. solium

Neurocysticercosis Immunodiagnosis [97]

Heat-killed B. melitensis Riv1 

lysates

Brucellosis Vaccination, diagnostic, 
therapeutic

[141, 156–158]

Poliovirus type 1 Sabin strain 
particles

Poliomyelitis Diagnostic and therapeutic [159, 160]

CEA Colon cancer In vivo imaging [161–163]

RSV protein F Acute lower respiratory tract Therapeutic [164]

CD105 Angiogenesis related tumors Diagnostic and therapeutic [165, 166]

Ts14 glycoprotein T. solium cysticercosis Diagnostic [97]

vWF Thrombosis Therapeutic www.ablynx.com

TNFα, IL-6R, IgE Rheumatoid arthritis Therapeutic www.ablynx.com

RANKL Bone metastasis Therapeutic www.ablynx.com

RSV Bronchiolitis and pneumonia Therapeutic www.ablynx.com

DR5 Solid tumors Therapeutic www.ablynx.com

Not stated Alzheimer’s disease Therapeutic www.ablynx.com

Table 2. The applications of camelids VHH against specified antigens from various diseases.
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binding reagents, derived from conventional polyclonal sera, monoclonal antibodies, small 
fragments (Fab and scFv) and peptides [145]. Foley and co-workers demonstrated the heat 
stability of purified recombinant V

NAR
 was superior to that of conventional mAbs by targeting 

immobilized P. falciparum AMA1 in various formats at 45°C, and the refolding property of 
V

NAR
 was retained when the temperature increased to 80°C. The excellent stability property at 

extreme pH and resistance to proteolytic cleavage was further evidenced by incubating V
NAR

 

with homogenized murine stomach tissues under in vivo conditions [9]. From this point of 
view, it was purposed that V

NAR
 domains have potential for development as alternate binders 

for malaria diagnostic platforms.

Human periodontal disease is an advanced gingivitis caused by the bacterial pathogen 
Porphyromonas gingivalis [146]. Late treatments often lead to dental loss due to the accumula-

tion of lysine gingipain (KgP). KgP is a high molecular weight polyprotease produced by  
P. gingivalis [147]. This bacterial toxin is responsible for destruction of dental tissue of host by 
suppressing the secretion of specific lytic enzymes from the immune system [148]. Nuttall and 
co-workers [149] identified two distinct clones specific to KgP from a naïve wobbegong shark 
V

NAR
 phage display library with synthetic CDR3 loops. The high stability and binding affinity 

toward P. gingivalis KgP indicated the potential for V
NAR

 sdAbs as a valuable source of single 

domain binding reagents [149].

In recent studies, shark V
NAR

 domains have been reported to detect markers from viral 
diseases at greater sensitivity compared to mAbs and scFvs. Ebola virus hemorrhagic 
fever (EVHF) is a highly lethal disease caused by Bundibugyo virus (BDBV), Sudan virus 
(SUDV), Tai Forest virus (TAFV) and Zaire Ebolavirus (ZEBOV) [150–152]. Shark V

NAR
 and 

murine scFv phage display libraries have been generated against specified markers on Zaire 
Ebolavirus. The results indicated that the sensitivity and thermal stability of shark V

NAR
 

sdAbs against viral nucleoprotein (NP) of ZEBOV was superior in comparison to murine 
mAbs and scFvs. [116].

As in the case with camelids nanobodies, highly diversified shark V
NAR

 libraries have also 

been used to detect different kind of toxins, including staphylococcal enterotoxin B (SEB), 
ricin and botulinum toxin A (BoNT/A) complex toxoid [153] and cholera toxin (CT) [113]. In 
addition, V

NAR
 sdAbs have been reported to recognize immunosilent targets in human, for 

example, the 70 kDa translocase of outer membrane (Tom70) [154]. Owing to the findings of 
negligible cross-reactivity with other antigens and superior heat stability, shark V

NAR
 domains 

may be a potent source of sdAbs with thermal stability over conventional antibodies in diag-

nostic and biotherapeutic applications [155, 156]. The applications of recombinant shark V
NAR

 

sdAbs against specified antigens from various diseases are summarized in Table 3.

5.3. Applications of lamprey VLRs

The variable lymphocyte receptors (VLRs) discovered from jawless fish had recently attracted 
interests and is leading to the development of new monoclonal antibodies for biomedical 
applications [11, 36, 157]. Despite possessing an unusual structure, VLRs have been shown to 
have excellent binding ability to specified targets (Table 4).

Cooper and co-workers demonstrated high specificity of recombinant VLRs for BclA, a major 
anthrax spore coat which could be produced from an immunized sea lamprey (Petromyzon 
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marinus) using hybridoma technology [11]. Bacillus anthracis is the causative agent for anthrax 
and the only pathogenic species in the genus Bacillus [158]. Due to their extreme dormancy and 
durability, anthrax spores have long been considered ideal biological weapons [159–161]. In 
this work, the recombinant monoclonal VLRs were shown to be capable of identifying bacteria 
at a genus level, by differentiating the C-terminal domain of BclA Bacillus anthracis from non-

coated bacteria of Bacillus cereus [11].

Target antigens Diseases Applications Reference

Kgp protease (P. gingivalis) Periodontal disease Neutralization [173]

rhTNFα Pro-inflammatory cytokine Therapeutic [114, 181]

AMA1 (P. falciparum) Malaria Diagnostic [168, 169]

Nonfibrillar oligomer 
formation

Alzheimer’s disease Modeling [182]

Zaire ebolavirus viral 
nucleoprotein

Ebolavirus Haemorrhagic 
Fever

Diagnostic [116]

HBeAg Hepatitis B virus Immunolocalization and 
diagnostic

[183]

Cholera toxin Toxin Diagnostic [113]

SEB Toxin Sensor and diagnostic [177]

Ricin Toxin Sensor and diagnostic [177]

BoNT/A Toxin Sensor and diagnostic [177]

Tom70 Human immunosilent target 
processes

Detection [178]

GPCR’s ion channels Therapeutic www.adalta.com.au

Anti-thrombotic drug targets Cardiovacular disease Diagnostic and therapeutic www.adalta.com.au

www.adalta.com.au

Blood brain barrier Therapeutic www.ossianix.com

Gastrointestinal tract Therapeutic www.ossianix.com

Myostatin Neurological disease Therapeutic www.ossianix.com

Uveitis Therapeutic www.elasmogen.com

Table 3. The applications of shark V
NAR

 against specified antigens from various diseases.

Target antigens Diseases Applications Reference

BclA glycoprotein B. anthracis spores (anthrax) Diagnostic [11]

HEL, β-gal, cholera toxin subunit B, 
R-phycoerythrin, and B-trisaccharide

Complex protein antigens Affinity determination [39, 189]

C1q and C3 proteins Cytotoxicity for bacteria and 
tumor cells

Binding interaction [190]

Table 4. The applications of lamprey VLRs against specified antigens from various diseases.
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In another study, a large library of recombinant VLRs was constructed to target lysozyme, 
β-gal, cholera toxin subunit B, R-phycoerythrin and B-trisaccharide antigens using yeast sur-

face display technologies [36]. This high-throughput technology platform offers the poten-

tial of rapid identification and isolation of monoclonal VLRs that specifically bind to target 
 antigens with affinities in the micromolar to nanomolar range [36]. Using such display meth-

ods, the specificity of selected VLR antibodies can recognize the target antigen with high 
binding affinity up to 100-fold compared to conventional mouse mAb [36]. These data indi-
cate that the function of VLRs is comparable or perhaps better than that of mammalian IgG 
antibodies. Therefore, it is speculated that VLRs may be an alternative reagent for the future 
development of therapeutic and diagnostic applications.

6. Conclusion

The fields of antibody engineering have undergone major advancements in the past few 
decades. New surface display technologies, in particular phage display and yeast display, 
are powerful tools that could facilitate the isolation of new antibodies with high specificities 
for a broad range of targets. Due to their affinity, which often is similar to conventional anti-
bodies and reliable production, recombinant antibodies are becoming increasingly impor-

tant in the field of diagnosis and therapy for targeting a wide range of diseases such as 
cancer, inflammatory, autoimmune and viral diseases. In view of natural scaffold design, 
previous studies showed that the sdAbs repertoires derived from animals such as camelid 
VHHs, shark V

NAR
s and lamprey VLRs contain several advantages over conventional antibod-

ies. One of the unusual characteristics shared among the sdAbs is that they possess better 
penetration ability. This feature allows the sdAbs to effectively penetrate into antigen clefts 
(enzyme active sites, viral capsids and cell surface receptors) which are not easily recognized 
by the concave surfaces of CDR loops of complex conventional antibodies. To date, due to 
their ability to target both refractory antigens and immunosilent epitopes, the engineered 
antibody fragments coupled with latest screening technologies have extensively been used 
in positron emission tomography and high-sensitivity (nonradioactive, noninvasive) laser 
technologies for medical imaging. To sum up, it is believed that with rapid progress in anti-
body engineering technologies, sdAbs will become indispensable as clinical and research 
reagents in the next decades.
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