
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

CORE Metadata, citation and similar papers at core.ac.uk

Provided by IntechOpen

https://core.ac.uk/display/322434778?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Chapter 11

Carbon Dioxide Use in High-Pressure Extraction
Processes

Vânia Maria Borges Cunha, Marcilene Paiva da Silva,
Wanessa Almeida da Costa,
Mozaniel Santana de Oliveira,
Fernanda Wariss Figueiredo Bezerra,
Anselmo Castro de Melo,
Rafael Henrique Holanda Pinto,
Nelio Teixeira Machado, Marilena Emmi Araujo and
Raul Nunes de Carvalho Junior

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.71151

Abstract

This chapter describes the use of carbon dioxide at high pressures as an alternative for
the extraction of bioactive compounds in a more sustainable way, addressing some of its
physicochemical properties, such as pressure, temperature, density, solvation, selectiv-
ity, and its interaction with the solute when modified by other solvents such as ethanol
and water. This extraction process is considered chemically “green,” when compared to
conventional extraction processes using toxic organic solvents.

Keywords: supercritical CO2, high pressure, density, vegetable matrix,
bioactive compounds

1. Introduction

Separation technologies with fluids at high pressures are essentially vital to get new natural

products of vegetable or marine origin that have biological activity, so-called bioactive extracts.

Among the developed technologies, the supercritical fluid technology offers products free of

residual solvent and that typically present high quality, when compared to products obtained

by conventional techniques. The extracts of bioactive compounds can be obtained by extraction

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



of solid matrices (leaves, seeds, pulps, etc.) or by extraction/fractionation of liquid mixtures

(aqueous solutions, fish oils, microalgae oils, vegetable oil, deodorize distillates, etc.) [1–5]. In

processes at high pressures, which are near or above the critical point (pressure and tempera-

ture), the solvent density increases drastically and this is the most important parameter associ-

ated to the solvent power. As illustrated in Figure 1, carbon dioxide, a non-toxic substance,

acting as solvent, co-solvent, or anti-solvent, is the most important fluid used in the supercritical

fluid technology in extraction, separation, fractionation, micronization, and encapsulation pro-

cesses applied to obtain extracts concentrated with bioactive compounds for food, pharmaceuti-

cal, and cosmetic applications [6–9].

Carbon dioxide has a critical temperature near to room temperature, contributing to the

operating conditions (pressure and temperature) to extract thermolabile substances, such as

bioactive compounds. In addition, this substance is non-polar and to enlarge the application

spectrum to extract bioactive compounds, ethanol, water, or both are usually used as co-

solvents. Moreover, carbon dioxide acts as co-solvent when in the mixture it is used more than

60% of ethanol or water, and as anti-solvent, when the solute extract is not soluble in carbon

dioxide during the depressurizing step.

The information accuracy related to the physical (pressure, temperature, and density) and

transport properties (diffusivity, viscosity) and the accuracy of thermodynamic and mass

transfer relations used for the solvent, co-solvent, and solute reach directly the costs of invest-

ment in extraction/separation units in supercritical conditions. The thermodynamic phase

equilibrium determines the limits for the mass transfer among different phases, which are

Figure 1. Carbon dioxide applications.
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involved in various processes. The cubic equations of state are the most commonly applied

models for the correlation and prediction of phase equilibrium at high pressures and are

available in major commercial process simulators. In addition, they are used to calculate other

thermodynamic properties, for both pure substances and mixtures, among which, the liquid

and vapor phases density, enthalpy, and entropy.

This chapter intends to show the recent application scenarios of the carbon dioxide use at high

pressures as solvent, to obtain natural extracts enriched with bioactive compounds, including

the use of water as co-solvent to enhance the mixture solvating power. In this chapter, the

description of the experimental strategy used for the supercritical carbon dioxide extraction of

bioactive compounds from açaí berry pulp was emphasized. The primary properties of pure

carbon dioxide were also described and calculated using equations of state.

2. Diagrams of pure substances

2.1. P-T diagram

The pressure versus temperature (P-T) diagram describes the different aggregation states of

pure substances called solid, liquid, and vapor/gas.

Figure 2 is a schematic representation of the P-T diagrams for carbon dioxide and the substances

most commonly employed as co-solvent, ethanol, and water, in high-pressure extraction processes

Figure 2. Solid-liquid-gas-supercritical fluid phase diagram. TP = triple point. CP = critical point. Pc = critical pressure.

Tc = critical temperature. Tt = triple point temperature. Pt = triple point pressure.
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of bioactive compounds. The curves represent the boundaries (phase transition or phase equi-

librium) between the different states, known as saturation curves. The curve between the solid

and liquid phases is called fusion; the curve between solid and vapor phases is called sublima-

tion and that one between liquid and vapor phases is called vapor pressure (also known as

boiling curve).

The behavior of the thermodynamic diagrams of pure substances culminates in the determination

of the reference equilibrium points that has great importance in the development of thermody-

namic models for different processes applications. In the P-T diagram, there are two points: the

triple point, where the three phases are in equilibrium and the critical point, which is particularly

of fundamental interest for applications in processes that use solvents at high pressures.

The critical point of a pure substance is the maximum thermodynamic state reached by the

saturation curve between liquid and vapor phases. When the substance is in the state above

the critical temperature (Tc) and the critical pressure (Pc), it is called supercritical fluid, and when

the pressure is above Pc and the temperature below Tc, the thermodynamic state is called

subcritical liquid. The technology with fluids at high pressures consists in the use of substances

that act like solvent when they are in the thermodynamic state near or above the critical point. The

triple point of carbon dioxide is at pressure of 5.18 bar and at temperature of 216.58 K (�56.57�C),

and the critical point is at pressure of 73.7 bar and at temperature of 304.15 K (31�C) [10].

2.2. P-r-T diagram

Density (r) is the most important thermodynamic property to define the solvating power of a

solvent at high pressures, increasing the density of the solvent increases its solvating power. To

better understand the influence of density on the solvating power to increase or decrease the

solubility of an extract within a solvent at high pressures, one needs information concerning

the density as a function of system pressure and temperature.

Figure 3 shows the schematic representation of the density behavior (r = 1/V) of a pure

substance with temperature and pressure variations, where V is the specific volume (volume

per mass unit). In Figure 3, the density versus pressure isotherms are presented in descending

order from T1 to T9. The red line represents the saturation curve between the liquid and vapor

phases. The highest point of the saturation curve is the critical point. The dotted line within the

saturation curve is the two-phase region. In the saturation curve, there is a sudden difference

in the density between the liquid and vapor phases.

The behavior of the P-r-T diagram shows that the density at constant temperature increases

with the increasing pressure and at constant pressure increases with the decreasing tempera-

ture. In the region near the critical point, small variations of pressure and/or temperature cause

great variations in density. For carbon dioxide, the critical point is at the pressure of 73.7 bar

and at the temperature of 304.15 K (31�C); it makes carbon dioxide the most applied solvent to

extract thermo-sensible substances.

Below the critical temperature, in the subcritical region, the isotherms present two types of

behavior: for the vapor region, at constant pressure, the density increases with the decreasing

temperature and for the liquid region, the density varies very little with the temperature.
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3. Supercritical fluid extraction

The extraction/separation processes applied to solid matrix using carbon dioxide as solvent are

the most studied supercritical processes in the search for new natural products that have biolog-

ical activity, according to numerous applications described in the literature [1, 4–6, 11–18].

3.1. General process steps

Generally, the supercritical fluid extraction applied to a natural solid matrix consists of three

steps: the system supply of solvent/co-solvent, the extraction unit, and the extract separation

system from solvent/co-solvent. Figure 4 presents a general scheme of the supercritical fluid

extraction unit without solvent recycle. The system supply of solvent/co-solvent consists by a

booster air-driven fluid pump, a cooling bath, a co-solvent recipient, a co-solvent pump, and a

mixer. The extract separation system from solvent/co-solvent consists by a control valve for

extraction pressure reduction and a separation vessel to collect the extract.

Regarding the extraction, the supercritical solvent continuously flows through a fixed bed of

solid particles and dissolves the extractable components of the solid. The solvent is fed into the

extractor and evenly distributed at the inlet of the fixed bed. The system solvent and soluble

components leave the extractor and feed the precipitator/separator, where the solvent products

Figure 3. Pressure-density (P-r) phase diagram for carbon dioxide. CP = critical point (Pc, Tc, and rc). CP = critical point

(Pc, Tc, and rc).
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are separated by expansion (depressurizing), since at low pressures the density of the solvent

sharply decreases, therefore it decreases the solubilizing power of the solvent as well and the

products precipitate.

The choice of the operating condition (P and T) is a determining factor that contributes to

the maximization of the extracts solubility in the supercritical solvent, and consequently the

extraction yields. Thus, increasing the density of the supercritical fluid, the solubility of the

solvent maximizes. The solubility increasing can also occur when a co-solvent is added, which

changes the solvent power and, in this way, the new solvent is a mixture [19, 20].

To design a high-pressure fluid extraction process of valuable compounds from new natural solid

matrices, it is necessary to define the size of the extraction unit and some important parameters

have to be determined to obtain the optimum process conditions for each application. Brunner

Figure 4. Scheme of a supercritical fluid extraction plant applying solvent/co-solvent. CO2 cylinder (1); cooling bath (2);

booster (CO2 pump-3 and Compressor-4); mixer (5); CO-solvent pump (6); co-solvent recipient (7); extraction unit (8);

control valve (V-5); separation vessel (9); flow meter (10).
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[19] and Kiran et al. [21] described the most important parameters, and among the variables that

determine the process, operating conditions (pressure and temperature), amount of solvent,

conditions of solvent removal from extract (precipitation), pretreatment of solid matrix, and other

mass transfer parameters can be highlighted.

In general, the parameters that define the behavior of the mass transfer at processes at high

pressures are related to the configuration of the bed: particle size, height, and diameter, prepa-

ration of the raw material, solvent flow, among others, which contribute to define the shape of

the kinetic extraction curves. The phenomenological discussions about supercritical fluid extrac-

tion mass transfer applied to solid matrices have been discussed in the literature [19, 22–24].

3.2. Supercritical carbon dioxide extraction of bioactive compounds: a case study

The experimental strategy used for the supercritical carbon dioxide extraction process of

bioactive compounds is based on the previous results collected by our research group in

obtaining açai extracts [25].

Açaí is a dark purple, berry-like fruit from typical Amazon palm tree Euterpe oleracea Mart.,

integrated in the daily dietary habit of the native people.

Recently, many studies have suggested its use as a functional food or food ingredient due to its

antioxidant activity, explained by the high content of phenolic compounds, such as anthocya-

nins, specially cyanidin-3-glucoside and cyanidin-3-rutinoside, flavones, and phenolic acids

[26–28]. Phenolic constituents are generally associated with health-promoting properties and

prevention of diseases [29–33]. Anthocyanins constitute a group of pigments, also important in

the food industry, for the replacement of artificial colors [34–36].

The supercritical extraction experiments of the lyophilized açaí pulp under development were

carried out in a Spe-ed™ SFE commercial unit (Allentown, PA, USA: model 7071 from Applied

Separations) which is coupled to the solvent + co-solvent delivery system of Laboratory of

Supercritical Extraction (LABEX), Faculty of Food Engineering-UFPA. The schematic repre-

sentation of the supercritical extraction system is shown in Figure 5.

The first step consisted of the extraction with supercritical CO2 (pure) to obtain extracts rich in

fatty acids and byproducts of the residual solid matrix (defatted pulp). Analyses of the content

of bioactive compounds (anthocyanins and total phenolic compounds) were performed. The

second stage that is under development consists of the extraction with supercritical CO2

combined with water as co-solvent applied to the residual solid matrix to obtain extracts

concentrated in anthocyanins.

In the first stage, Batista et al. [25] subjected samples of lyophilized açaí pulp to the supercrit-

ical carbon dioxide extraction process. Among the results, the study of the process variables

(temperature, pressure, and solvent density) that maximize the extraction yield of açaí oil, the

quantification of the total anthocyanins content and total phenolic compounds content, and the

evaluation of the allelopathic potential of the extracts obtained can be highlighted.

Figure 6 shows the experimental results of the 50, 60, and 70�C isotherms on dry basis and

their standard deviations. In this study, the highest global yield was equal to 45.4 � 0.58%,
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Figure 5. Experimental protocol for the bioactive compounds extraction.
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Figure 6. Global yield on dry basis versus density of supercritical CO2 extraction of lyophilized açaí berry oil. ( ) 50�C, ( )

60�C, and ( ) 70�C isotherms [17].
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obtained at 70�C and 490 bar, while the lowest global yield was equal to 9.07 � 0.6%, obtained

at 60�C and 190 bar. The density is related to the CO2 solubility and is directly influenced by

temperature and pressure. Here, the most important parameter was the density, since when it

increased (in all isotherms), the oil global yield also increased.

The analysis of the phenolic compounds in the lyophilized açaí berry pulp showed an increase

in its content comparing the samples before and after the extraction with supercritical CO2, in

different conditions. Its highest content was equal to 7565 mg/100 g and was obtained in the

condition of 70�C and 350 bar. The standard deviation for each condition was lower than

0.18% (Figure 7). Regarding anthocyanins, there was also an increase in its content. Before the

extraction with supercritical CO2, the total concentration was equal to 96.58 � 0.11 mg/100 g,

and after the extraction, it reached up to 137.5 mg/100 g of sample in the condition of 50�C and

220 bar. The standard deviation was lower than 0.15%. Figure 8 shows the values obtained and

their specific deviation. It can be inferred that since the extracts of the lyophilized acaí berry

pulp obtained by supercritical CO2 are rich in phenolic compounds and anthocyanins, it pre-

sents great potential in nutraceutical applications.

The results of the fatty acid profile analysis of açaí extracts indicate a low saturated/unsatu-

rated ratio except for the condition of 70�C and 320 bar. The SFA content reached 99.67% at the

condition of 70�C and 320 bar.
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Figure 7. Total phenolic compounds content in lyophilized açaí berry pulp before and after extraction with supercritical

CO2. ( ) 50�C, ( ) 60�C, and ( ) 70�C isotherms [17].

Carbon Dioxide Use in High-Pressure Extraction Processes
http://dx.doi.org/10.5772/intechopen.71151

219



4. High-pressure carbon dioxide properties

4.1. Thermodynamic properties

The influence of the density in the solvation power by the tunable operating conditions (P, T) is

the most important thermodynamic effect in the high-pressure fluid processes.

Above the critical point, the supercritical extraction process can operate over a wide range of

operating conditions (P, T) and the simplest density behavior can be obtained through an

isotherm, being possible to select a wide range of operating pressures, as shown in Figure 3

of the item 2.2 for the isotherms T1 > T2 > T3 > T4 > T5.

The density is defined by the inverse of specific volume, and for practical purpose, could be

calculated by volumetric properties (P-V-T) using equation of state.

4.1.1. P-V-T diagram calculation with equations of state

To describe the P-V-T diagram behavior, it is necessary to use precise equations of state (EOS)

with specific parameters for pure substances. In the case of carbon dioxide, the equations of

Bender [19] and Span and Wagner [37] are the most used. The Bender equation is presented

below, where the parameters were determined from experimental PVT data of carbon dioxide.

Table 1 shows the parameters of the Bender equation.
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Figure 8. Total anthocyanins compounds content in lyophilized açaí berry pulp before and after extraction with super-

critical CO2. ( ) 50�C, ( ) 60�C, and ( ) 70�C isotherms [17].
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ð1Þ

where

ð2Þ

ð3Þ

ð4Þ

ð5Þ

ð6Þ

ð7Þ

ð8Þ

ð9Þ

Figure 9 shows the calculation with Bender equation [19] of state for the P-V-T diagram

isotherms and saturation curve, including an isotherm close to the critical temperature of the

carbon dioxide. The calculations were performed using a Microsoft Excel spreadsheet. The

equation presents accuracy in calculations when compared to data taken from IUPAC Inter-

national Thermodynamic Table.

i ai i ai

1 0.22488558 11 0.12115286

2 0.13717965 � 103 12 0.10783386 � 10�3

3 0.14430214 � 105 13 0.43962336 � 10�2

4 0.29630491 � 107 14 �0.36505545 � 108

5 0.20606039 � 109 15 0.19490511 � 1011

6 0.45554393 � 10�1 16 �0.29186718 � 1013

7 0.77042840 � 10�2 17 0.24358627 � 108

8 0.40602371 � 105 18 �0.37546530 � 1011

9 0.40029509 19 0.11898141 � 1014

10 �0.39436077 � 10�3 20 0.50000000 � 101

Table 1. Bender equation constants for CO2 [19].
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However, for applications of supercritical technology, it is necessary to calculate other thermo-

dynamic properties. The thermodynamic properties of the pure solvent (density, enthalpy, and

entropy) and the thermodynamic properties of the solute/solvent mixture, among which the

equilibrium compositions, enthalpies, and mixing entropies, must be calculated in the operat-

ing conditions throughout the process. The cubic equation of state, also called Van der Waals

type equation, represents an alternative, since the Bender-type equation described above is

complex. In these cases, the cubic equations of state of Peng-Robinson (PR) [38] and Soave

Redlich-Kwong (SRK) [39] are presented as the most commonly applied options in process

simulations (Table 2). These equations of state use various thermodynamic properties and the

following physical properties of the pure substance: critical pressure, critical temperature, and

the acentric factor, which are tabulated, in the case of carbon dioxide.

Table 3 shows the calculated values of the carbon dioxide densities for some isotherms above the

critical point using the equations of Peng-Robinson [38] and Soave-Redlich-Kwong [39]. The

computational package PE 2000 developed by Pfohl et al. [40] was used for calculations.

The results are compared to data taken from IUPAC International Thermodynamic Table and

from NIST Chemistry Webbook (NIST Standard Reference Database). The Peng-Robinson equa-

tion of state presented the best results for the carbon dioxide density calculation in the conditions

of pressure and temperature of Table 3when compared with different databases.
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Figure 9. P-V-T diagram of carbon dioxide calculated with Bender EOS and compared to IUPAC data (symbols).
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Figure 10 shows the calculation with Peng-Robinson [38] equation of state for P-V-T diagram

isotherms and saturation curve, including an isotherm close to the critical temperature of the

carbon dioxide. The Peng-Robinson equation of state was able to describe all the phases of the

carbon dioxide P-V-T diagram for the isotherms studied when compared to data taken from

IUPAC International Thermodynamic Table.

Cubic equations

Table 2. Cubic equations of state.

Pressure (bar) Temperature (�C/K) CO2 density (kg/m3)

PR SRK NIST IUPAC

100 36.85/310 617.3 563.0 683.4 686.5

200 847.8 763.8 855.5 857.0

300 941.1 846.6 921.5 922.7

100 46.85/320 418.1 390.6 444.6 449.4

200 781.5 707.9 801.5 803.1

250 845.3 763.8 848.0 849.5

300 893.0 805.9 882.4 883.7

400 963.2 868.2 933.2 934.4

100 66.85/340 260.5 246.2 258.1 258.6

200 643.2 589.3 678.7 680.5

250 731.7 666.7 751.9 753.3

300 794.4 721.8 800.6 801.8

400 882.9 799.6 866.7 867.9

Table 3. Carbon dioxide density calculated with different equations of state.
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From a process point of view, the accuracy of the cubic equations of state was good, consider-

ing that the operating conditions commonly applied in CO2 extraction at high pressures are

close to the values of temperature and pressure used in Table 3.

4.2. Other high-pressure carbon dioxide properties

The application of the high-pressure fluid extraction technologies in both laboratory and

industrial scales requires not only the knowledge of the physical and thermodynamic proper-

ties of the solvent, but also requires the understanding of thermal and transport properties

behavior. Among them, the most commonly cited are viscosity, diffusivity, thermal conductiv-

ity, and dielectric constant.

The dielectric constant describes the ability of a solvent to be polarized. The dielectric constant

value is associated with the ability to dissolve electrolytes or polar compounds. The dielectric

constant increases with temperature for most substances [41]. The dielectric constant of super-

critical carbon dioxide with approximate value of a hydrocarbon alone does not characterize it

as an important solvent; it only identifies it as a non-polar substance. Its solvation power is

mainly related to the considerable increase of its density in the supercritical region with the

properties as viscosity and diffusivity complementing the characteristics that makes supercrit-

ical carbon dioxide a differentiated solvent.
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Figure 10. PVT diagram of carbon dioxide calculated with Peng-Robinson EOS and compared to IUPAC data (symbols).
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Under supercritical conditions, the thermal conductivity is influenced by both temperature and

pressure and at constant pressure this property increases with increasing temperature, and on

the other hand, at constant temperature, the thermal conductivity increases with pressure [42].

Carbon dioxide and other supercritical solvents have low viscosity and high diffusivity values.

The viscosity and thermal conductivity of gases and liquids differ by one to two orders of

magnitude, and the diffusivity values of gases and liquids differ by four orders ofmagnitude [41].

In the supercritical state, the substances have intermediate characteristics between the proper-

ties of a gas and a liquid, which contributes to more favorable hydrodynamic properties than

the liquids, with diffusion coefficients close to those of a gas, which provides a fast and

efficient mass transfer. Another feature of the supercritical fluid includes its low viscosity,

which facilitates the penetration of the fluids into a solid matrix. Therefore, high diffusivity

and low viscosity lead to a faster extraction time providing a dissolving power so that the

supercritical fluid is considered a solvent.

Table 4 shows that supercritical fluids are characterized by transport properties (viscosity and

diffusivity) between gases and liquids. The viscosity of a supercritical fluid is smaller than the

viscosity of a gas and the diffusivity of the liquid is greater than the diffusivity of a supercrit-

ical fluid. In summary, the scheme of Figure 11 shows the basic properties of supercritical

carbon dioxide, which become fundamental in high pressures extraction processes.

Unit Gas SCF Liquid

Viscosity Pa s 10�5 10�4 to 10�5 10�3

Diffusivity cm2/s 10�1 10�3 to 10�4 10�6

Table 4. Order of magnitude of transport properties.

Figure 11. Carbon dioxide properties.
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5. High-pressure carbon dioxide applications

The most cited drawback of using supercritical carbon dioxide as solvent is the high invest-

ment cost for equipment acquisition and operation. However, the extraction with supercritical

carbon dioxide presents a lower extraction time because of its diffusivity and low surface

tension, greater selectivity in the compounds of interest and little or no consumption of organic

solvents [43–46].

5.1. Essential oil extraction

Essential oils have been used to prevent or treat human diseases for several centuries. The

extraction of the volatile compounds present in edible or medicinal aromatic plants is gener-

ally carried out by hydrodistillation; however, the authors report that some compounds may

undergo hydrolysis during the extraction period [47]. Although there are other techniques for

isolating essential oils, the use of CO2 as supercritical fluid has been considered a “chemically

green” unconventional extraction technique that does not alter or degrade the substances

present in oils because it uses relatively low temperatures in the extraction process.

Guan et al. [48] performed a comparison between conventional extraction methods and extrac-

tion with supercritical CO2 and observed that the extraction using supercritical CO2 as solvent

was less effective with recovery rate of 57.36% for eugenol compared to steam distillation with

58.2%, but it was more effective when compared to hydrodistillation with recovery rate of

48.82% and Soxhlet extraction with 57.24%. However, when compared with the extraction of

eugenol acetate, the extraction with supercritical CO2 presented higher yields in relation to the

other extraction methods.

Extraction of chemically active volatile molecules with supercritical CO2 is very widespread

[49–51]. This is due to the possible applications as agents that promote biological activities [52],

such as antioxidant activity [53], anti-inflammatory activity [54], insecticidal activity [55], and

phytotoxic activity [56]. In Table 5, some studies in the literature on the extraction of essential

oils with supercritical CO2 can be observed.

Aromatic plant Bioactive compounds References

Juniperus communis L. Germacrene D and 1-octadecene. [57]

Satureja hortensis γ-Terpinene, thymol, and carvacrol [58]

Myrtus communis L. Methyl eugenol, 1,8 cineole, and beta- caryophyllene [59]

Leptocarpha rivularis α-thujone, β-caryophyllene, and caryophyllene oxide [60]

Piper nigrum L. β-caryophyllene, limonene, sabinene, 3-carene, β-pinene, and α-pinene [53]

Camellia sinensis L. 9-Thiabicyclo[3.3.1]non-7-en-2-ol, tricosane, heneicosane, tetracosane, and

dibutyl phthalate

[61]

Table 5. Published studies on extraction of essential oils using CO2 as supercritical fluid.
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As given above, it is observed that the process of extraction of essential oils using supercritical

CO2 is ecologically a cleaner method than the conventional ones, and it has been seen as one of

the most viable alternatives.

5.2. Phytosterols extraction

Phytosterols (plant sterols) are non-volatile triterpenes. The great majority of these compounds

are formed by carbon with one or two carbon-carbon double bonds [62]. And the most

common phytosterols found in plants are β-sitosterol, campesterol, and stigmasterol [63].

These compounds have various biological activities such as lowering the total serum or plasma

cholesterol levels and the low-density lipoprotein cholesterol levels. In addition, they have

antitumor activities inhibiting the development of colon cancer [64, 65].

For the extraction of these phytosterols, the supercritical CO2 has been shown to be an efficient

technique for extraction of fixed oils from vegetable matrices. Studies report that this solvent

may be superior to obtain oils in relation to the conventional extraction, exhibiting a recovery

rate of phytosterols of 836.5 mg/100 g versus 30.5/100 g using a Soxhlet-type extraction

apparatus [66]. A very important parameter for the extraction of phytosterols with supercriti-

cal CO2 is the increase of the pressure, because it favors the solvation power and consequently

the solubilization of these compounds, with a recovery rate of up to 7262.80 mg.kg�1 [67].

Table 6 presents some articles published in the literature on the extraction of phytosterols

using supercritical CO2.

5.3. Carotenoid extraction

Carotenoids are tetraterpenes present in plants that have several applications in food [72],

cosmetic [73], and pharmaceutical [74] areas. Some of the benefits provided by these pigments

are: antioxidant activity and strengthening of the immune system against degenerative dis-

eases such as cancer, cardiovascular diseases, muscle degeneration, inflammation, hyperten-

sion, insulin resistance and obesity [75, 76].

Because of their hydrophobic characteristics, carotenoids are usually extracted using organic

solvents such as hexane and petroleum ether. Carotenoids with hydrophilic characteristics can

be obtained with more polar solvents such as acetone, ethanol, and ethyl acetate [77]. The

Plants Phytosterols References

Cucurbita pepo convar Desmosterol, campesterol, stigmasterol, β-sitosterol, spinasterol, Δ7,22,25-

stigmastatrienol, Δ7-stigmastenol, Δ7,25-stigmastadienol, and Δ7-avenasterol

[68]

Brassica napus β-sitosterol, campesterol and brassicasterol [69]

Hippophae rhamnoides L. β-sitosterol [70]

Sesamum indicum L. β-sitosterol + sitostanol, cholesterol, campesterol + campestanol +24-methylene

cholesterol, Δ-5 avenasterol and stigmasterol, while lower levels of Δ-5,24

stigmastadienol, brassicasterol, clerosterol + Δ-5-23 stigmastadienol, Δ-7

avenasterol, eritrodiol and Δ-7 stigmasterol

[71]

Table 6. Phytosterols extracted using supercritical CO2
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techniques used to extract this compound may be maceration, Soxhlet, microwave-assisted

extraction [78, 79], ultrasound-assisted extraction [80], pressurized liquid extraction [81, 82],

and supercritical fluid technology using low temperature. The process is performed in a short

time in relation to conventional processes and does not use toxic solvents to collect the

compound of interest [83]. In Table 7, some published works that used supercritical CO2 to

obtain carotenoids are shown.

5.4. Fatty acids extraction

Fatty acids (FA) belong to the lipid class and differ according to the size of the C chain (2–80), the

presence or absence of double bonds (saturated or unsaturated) or their radical function as the

groups hydroxyl, epoxy, and halogen atoms [89]. Ingestion of FA is essential to have an adequate

energy balance in the human organism in addition to reducing the risk of some diseases such as

diabetes [90], hypertension [91], coronary diseases [92], and inflammation [93].

Some of its applications are in food, nutraceutical, and cosmetic industries, and in the produc-

tion of lubricants, biodiesel, and glycerol [94–96]. Some of the extraction methods that can be

used to obtain FA are mechanical extraction [97], extraction by supercritical fluids and organic

solvent [98], microwave-assisted extraction [99], and supercritical CO2 extraction [98]. Table 8

shows some studies that used supercritical CO2 to obtain the main classes of the FA group.

5.5. Extraction with supercritical CO2 modified with ethanol/water

The extraction with supercritical CO2 modified with water in different proportions is carried

out to obtain bioactive compounds of high polarity, because as mentioned above, CO2 is an

Raw material Carotenoid References

Tomato juice Lycopene and β-carotene [84]

Hemerocallis disticha Lutein and zeaxanthin [85]

Dunaliella salina 9-cis and trans-β-carotenes [86]

Undaria pinnatifida, Haematococcus pluvialis, and

Chlorella vulgaris

Fucoxanthin, astaxanthin, lutein, and β-carotene [87]

Fucus serratus and Laminaria digitata Xanthophyll and fucoxanthin [88]

Table 7. Published studies about carotenoid extraction using CO2

Raw material Fatty acid Reference

Cucurbita ficifolia, Bouché ω6-linoleic acid, palmitic acid, oleic acid [100]

Farfantepenaeus paulensis Palmitic acid, oleic acid, stearic acid, palmitoleic acid, and linoleic acid [101]

Cannabis sativa L. Linoleic acid and linolenic acid [102]

Chaetoceros muelleri Myristic acid, palmitic acid, and palmitoleic acid [103]

Saw Palmetto Lauric acid, mystiric acid, and oleic acid [104]

Table 8. Published studies about fatty acids extraction using CO2
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non-polar molecule and does not have “power” to solubilizate polar substances as is the case

of the phenolic compounds (phenolic acids and flavonoids) [105, 106]. As previously men-

tioned, parameters of processes, such as temperature and pressure, can influence the extraction

of bioactive compounds. Besides these two parameters, anthocyanins are also important for

the extraction of phenolic compounds. Solvent flow rate, percentage of co-solvent, co-solvent

type (ethanol or water), and extraction time are parameters that directly implicate the yield of

these substances at the end of the extraction process [107].

Further examples of extraction of phenolic compounds using supercritical CO2 modified with

co-solvents can be analyzed in the studies [106, 108, 109]. They extracted various flavonoids

like quercetin, catechin, epicatechin from cranberry, blueberry, and raspberry. Table 9 presents

some studies in which supercritical CO2 modified with ethanol/water were used to extract

chemically active phenolic compounds.

6. Conclusion

Carbon dioxide can be safely applied in high-pressure extraction processes due to its numerous

advantageous characteristics. It is neither toxic nor inflammable, being able to act as solvent, co-

solvent, or anti-solvent, which allows it to be used in natural products and foodstuff processing

that require treatments intending to preserve their nutritional and sensory properties. Since it is a

non-polar substance, it is suitable for extraction of non-polar bioactive compounds when used in

pure form. When associated with a polar co-solvent, it can be used for extraction of polar

compounds such as phenolic compounds and anthocyanins. Therefore, these characteristics

make carbon dioxide the most important fluid used in high-pressure processes for extraction,

separation, fractionation, micronization, and encapsulation, applied to obtain concentrated

extracts with bioactive compounds for food, pharmaceutical, and cosmetic applications.

Raw material Compounds References

Myrciaria cauliflora Anthocyanin [8]

Elderberry (Sambucus nigra) Anthocyanins [110]

Vitis vinifera var. Malvasia nera Anthocyanins [111]

Arrabidaea chica Anthocyanins and luteolin [112]

Scutellaria lateriflora L. Baicalin, dihydrobaicalin, lateriflorin, ikonnikoside I, scutellarin, oroxylin A

7-O-glucuronide, oroxylin A, baicalein, wogonin

[113]

Vaccinium myrtillus L. Delphinidin 3-O-galactoside, delphinidin 3-O-glucoside, cyanidin

3-O-galactoside, delphinidin 3-O-arabinoside, cyanidin 3-O-glucoside,

petunidin 3-O-galactoside, cyanidin 3-O-arabinoside, petunidin

3-O-glucoside, peonidin 3-O-galactoside, petunidin 3-O-arabinoside,

peonidin 3-O-glucoside, malvidin 3-O-galactoside, peonidin

3-O-arabinoside, malvidin 3-O-glucoside, malvidin 3-O-arabinoside and

malvidin 3-O-xyloside

[114]

Table 9. Phenolic compounds extracted with supercritical CO2 modified with ethanol/water.
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