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Abstract

Machine-learning (ML) methods are finding increasing application to guide human deci-
sion-making in many fields. Such guidance can have important consequences, including 
treatments and outcomes in health care. Recently, growing attention has focused on the 
potential that machine-learning might automatically learn unjust or discriminatory, but 
unrecognized or undisclosed, patterns that are manifested in available observational data 
and the human processes that gave rise to them, and thereby inadvertently perpetuating 
and propagating injustices that are embodied in the historical data. We applied two fre-
quentist methods that have long been utilized in the courts and elsewhere for the pur-
pose of ascertaining fairness (Cochran-Mantel-Haenszel test and beta regression) and one 
Bayesian method (Bayesian Model Averaging). These methods revealed that our ML model 
for guiding physicians’ prescribing discharge beta-blocker medication for post-coronary 
artery bypass patients do not manifest significant untoward race-associated disparity. The 
methods also showed that our ML model for directing repeat performance of MRI imaging 
in children with medulloblastoma did manifest racial disparities that are likely associated 
with ethnic differences in informed consent and desire for information in the context of seri-
ous malignancies. The relevance of these methods to ascertaining and assuring fairness in 
other ML-based decision-support model-development and -curation contexts is discussed.

Keywords: fairness, machine-learning, Bayesian model averaging, bias,  
variables selection

1. Introduction

With regard to cognitive computing and machine-learning (ML)-based decision-support 
tools, there is an emerging need for ethical reasoning about Big Data beyond privacy [1–3]. 
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Recent definitions of ‘algorithmic fairness’ [4–7] assert that similar individuals should be 
treated similarly. Such metrics comport with conventional lay-persons’ sense of the meaning 
of fairness. Algorithmic fairness definitions presuppose the existence of a use-case-specific 
metric on individuals and propose that fair algorithms should satisfy a Lipschitz condition 
with respect to this metric. However, such definitions for algorithms and artificial intelligence 
tools have not yet been aligned with existing statistical methods that have been established 
in the legal and regulatory communities. Furthermore, no generally accepted standards yet 
exist for ascertaining the presence or absence of disparities in machine-learning (ML) models 
that have been learned from historical observational data. There is a serious concern among 
policy-makers and members of the public that the rapid growth of ML may lead to the sys-
tematic promulgation of “bad models” that inculcate past injustices in subsequent decision-
making going forward [8–31].

Such concerns are heightened in the context of life-critical medical and surgical treatment. In 
one illustrative medical example, beta-blocker medications have been found to be important 
in the treatment of myocardial infarction and in coronary artery bypass (CAB) surgery in that 
they have been shown to decrease mortality. Their benefit is derived not only from improving 
the myocardial oxygen supply-demand balance but also from their ability to inhibit subse-
quent cardiac ventricular remodeling, mitigation of platelet activation, decrease in peripheral 
vascular resistance (PVR) and decrease in hemodynamic stress on the arterial wall, increase 
in diastolic coronary artery flow, membrane stabilization and shortening of the heart rate-
corrected QT interval (QT

c
) [32], prevention of atrial fibrillation and other arrhythmias, and 

other mechanisms.

In another typical example in clinical medicine, serial repeated MRI scans of the head and spi-
nal cord have been found to be relevant in the ongoing management of medulloblastoma [33]. 
As with any cancer, early detection and ongoing follow-up monitoring are essential to achiev-
ing a positive outcome. With its multi-planar capability and excellent high spatial resolution, 
MRI is the preferred imaging modality in the follow-up to assess response to treatment. The 
efficacy of repeated MRI scans is presently uncertain as regards improvement of survival or 
other outcomes. However, there can be considerable psychological value that attaches to find-
ing that a repeat scan is negative for recurrence, progression, or metastasis of the cancer, and 
repeat scans are routinely performed at regular intervals on this empirical basis, motivated by 
the wish to provide knowledge and reassurance. Conversely, the MRI-informed discovery of 
recurrence, progression, or metastasis is a much-feared possibility for parents of children with 
medulloblastoma, insofar as this finding portends shortened life-expectancy for the child and 
diminution of hope. In certain contexts, then, there is a disinclination to perform exams that 
could lead to bad news, for which there may be no effective mitigations or treatment options.

2. Background and methodology

Avoiding Type II (false-negative) errors is paramount in machine-learning model quality 
assurance and fairness determinations. Following this spirit, we have recently developed a 
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new framework for statistically ascertaining ML model fairness. The purpose of this chapter 
is to introduce the new three-method framework to the machine-learning community and 
illustrate its use with two practical examples from clinical medicine specialties (namely cardi-
ology and oncology). Our method involves joint application of the following methods to ML 
model-training and -test data, where the test data may be either (a) data arising from natural 
decision-making unaided by the ML model or (b) data arising from decision-making where 
human users are assisted by the ML model:

1. The Cochran-Mantel-Haenszel test;

2. Beta regression; and

3. Bayesian model averaging (BMA).

If the p-values for all three methods are non-significant, then the ML model is declared to 
be provisionally fair. However, if any of these methods show that statistically significant 
(p < 0.05) bias exists depending on one or more stratification variables, then the model is 
declared to have failed fairness checking, the model is placed into a “hold” status and not 
released, and further investigation is initiated into the nature of the detected bias and its pos-
sible causes.

To date, a majority of the more than 50 predictive mathematical models that have been devel-
oped and deployed by the author’s team are ML models. The discovery, development, and 
validation of the models have primarily been performed using a HIPAA-compliant, de-
identified and PHI-free, epsilon differential privacy-protected, secondary-use-assented, 
EHR-derived, ontology-mapped, longitudinally electronic master person identifier (eMPI) 
linked repository of the serial care-episode health records associated with 100% of patients 
cared for at 814 U.S. health institutions who have established HIPAA business-associate 
agreements and data-rights agreements with our corporation. This data warehouse cur-
rently comprises more than 153 million distinct persons’ longitudinal records and more 
than 400 million episodes of care from January 1, 2000 to the present time. New case mate-
rial accrues into the data warehouse from each of the contributing health networks’ and 
institutions’ systems on a daily basis, encrypted end-to-end, and auto-mapped to a stan-
dard ontology and pre-cleaned upon arrival. The data warehouse is not a “claims” dataset 
but instead encompasses a majority of the content of the patients’ EHR records, from flow-

sheet and monitoring data and waveforms, to all medications dispenses and prescriptions, 
all lab results, all procedures, all problem list entries and diagnoses, and all claims—with 
each data element or item or transaction date-timestamped with minute-level time preci-
sion and with successive episodes for a given person longitudinally linked via a key that is 
encrypted from the eMPI. A typical ML project for us begins with a cohort extracted from 
the data warehouse. Cohorts for studies we undertake tend to comprise from 20,000 to sev-
eral million cases and a comparable number of controls, all meeting inclusion-exclusion cri-
teria for the project and governed by a project specification and written, version-controlled 
protocol. The datasets comprised of these cohorts of historical, outcomes-labeled, de-iden-
tified cases and controls are separated into randomized, independent “training” and “test” 
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subsets. A typical ML project for us begins with several hundred input data variables or 
document types selected from the EHR data model, which includes more than 10,000 data 
type categories.

2.1. Cohort selection

Two representative examples serve to illustrate the application of Bayesian and frequentist 
methods for assessing fairness in ML models, one involving a very large cohort (beta-blocker 
usage in coronary artery disease post-coronary artery bypass (CAB)) and one involving a 
comparatively small cohort (MRI in pediatric medulloblastoma (brain cancer)).

A post-CAB cohort included those cases who were discharged alive with hospital LOS 
between 3 and 28 days, black or white race only, between January 1, 2012 and December 31, 
2016, aged between 40 and 69 years at the time of CAB surgery, with no known prior use 
of beta-blocker within 1 year prior to CAB. Excluded were patients receiving percutaneous 
and MIDCAB (usage rates for which might be, or are, confounded by geography, operative 
risk and preoperative comorbidities, and other factors); in-hospital percutaneous coronary 
intervention (PCI), PCI to CAB conversion, urgent-emergent CAB; known prior AMI, prior 
PCI or prior CAB; patients with heart rate <45 bpm or AV block (ICD-10-CM diagnosis codes 
I44.x, I45.x; ICD-9-CM diagnosis codes 426.x); patients with implanted pacemaker; patients 
having eGFR <50 mL/min/1.73m2; persons with previously diagnosed heart failure, asthma, 
or active malignancy; patients who were transferred to other medical institutions without 
discharge prescription; and patients at institutions having fewer than 100 open CAB cases 
annually meeting the criteria above during 2012–2016. Patients treated at a total of 14 out of 
814 institutions participating in this data warehouse met the criteria for inclusion in the ML 
model development and analysis.

A medulloblastoma cohort included cases who were discharged alive, black or white race 
only, between January 1, 2000 and December 31, 2016, aged between 0 and 21 at the time of 
resection of the brain tumor. Patients treated at a total of 33 out of 814 institutions participat-
ing in this data warehouse met the criteria for inclusion in the ML model development and 
analysis.

2.2. Data extraction

Exploratory analyses to characterize available data often require full table scans, which, in 
conventional RDBMS tables having billions of rows, may entail runtimes of many hours, 
even with bitmapped indexes and careful query optimization. Laboratory tests and vital 
signs and flowsheet items in our data warehouse are each multi-billion-row tables. Premature 
dimensionality or cardinality reduction may interfere with discovering the best ML model. 
Therefore, a 64-node Hewlett Packard Vertica® system was the means whereby the data ware-
house was physically stored for the present work. Extracts were performed using standard 
SQL queries on this massively parallel vertical database. Although many racial and ethnic 
categories were represented in the data warehouse, for the present work racial categories 
were restricted to black and white, for reasons of adequacy of sample size.
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A total of 30,116 complete post-CAB cases were retained, and no imputation was used. 
Median age was 64 years and 13.6% were black, with M:F ratio 2.57. From this extract, males 
were retained for analysis (median age 64 years, 11.1% black). Matching was performed on a 
per-hospital basis by race in a 1:9 ratio (Black:White), to minimize bias arising from regional 
differences in the prevalence of Black individuals. Matching was performed on U.S. census 
division (nine geographic regions) and on age with 5-year binning. Matching was addition-
ally performed on diabetic status. This resulted in of 11,358 actual cases used for subsequent 
training dataset modeling and analysis. The remainder of the data was used as an indepen-
dent test dataset.

A total of 1207 medulloblastoma cases were retained. Median age was 5.8 and 15.2% were 
black, with M:F ratio 1.71.

2.3. Feature selection

In our two examples, exploratory machine-learning, including logistic regression, was per-
formed using raw data comprised of 326 data elements from the de-identified EHR-derived 
extracts, supplemented by derived variables that were transformed. The LASSO procedure 
[34] was used for dimensionality reduction. Predictor variables with a category-wise Wald 
test p-value ≤0.05 were retained in the models.

In the post-CAB beta-blocker example, transformed continuous-variable features (6) in the 
model included: ln(inter-beat interval), RMSSD(HR), ln(nbr_dx), ln(nbr_meds), ln(LOS_
days), and ln(AST). Transformed binomial-variable features included the following: AST/
ALT <1.1, max(HR) < 110, range(HR 48 hr prior to discharge) > 30 bpm, range(RR 48 hr prior 
to discharge) > 18 bpm, range(MAP 48 hr prior to discharge) > 22 mmHg, max(SBP) dur-
ing hospital stay) < 150 mmHg; diabetes; concomitant calcium channel blocker; perioperative 
inotrope or mechanical circulatory assist; concomitant CYP2D6 substrate or inhibitor (esp. 
antidepressants, antipsychotics, COX-2 inhibitors, amiodarone, or cimetidine); history of sub-
stance abuse; and history of syncope, vertigo, postural hypotension, or falling.

In the medulloblastoma repeat MRI example, binomial-variable features included the fol-
lowing: clinical trial enrollment, prior evidence of recurrence or metastasis of tumor, renal 
impairment such as would be a safety contraindication for MRI contrast, high-risk histology, 
SHH or WNT genomics, tumor extent at resection, PFS duration, recent 99mTc scan, recent 
123I-mIGB scan, and public payor (Medicaid).

3. Comparing model-guided and natural decision-making

Personalized patient care decisions require considering numerous clinical information items 
and weighing and combining them according to patient-specific risks and likely benefits. 
Additionally, considerations of disease etiology and progression as well as on comorbid 
conditions and concomitant medications or prior treatments that may affect the underlying 
biological processes or constrain subsequent therapeutic options are required. Yet further, 
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guidelines regarding treatment modalities, risk factors, complications, patient caregiver 
support, living situation, and costs also influence care decisions. Natural, model-unassisted 
decision-making yields therapeutic treatment allocations that are the basis of the initial ML 
models. However, once one or more ML models are deployed and integrated with the users’ 
workflow and decision-making, the guidance and evidence that the models present to the 
users tends to alter their decision-making and change the rates of allocating specific treat-
ments or diagnostic procedures to individual patients. It is important to assess the fairness 
of ML models not only prior to their initial commissioning and deployment but also to reas-
sess model fairness in a periodic and ongoing manner post-deployment. Depending on the 
degree to which an ML model influences users’ decision-making it is possible that differences 
between strata may increase during deployment, and the model-guided data that accrues 
during the post-deployment period may cause later versions of the ML model to manifest 
statistically significant biases that were not present in the initial ML model version that was 
based on purely natural decisional data.

In the post-CAB beta-blocker example, the ML score output would later be consumed by 
prescribers in computerized physician order-entry (CPOE) apps used to advise the imple-
menting of care in the perioperative CAB patients. Markov Chain Monte Carlo sampling of 
11,358 cases in the “training” dataset was performed to determine the rate of historical dis-
charge beta-blocker usage in each decile of ML-model-generated score values. In the serial 
MRI medulloblastoma follow-up example, the ML score output would later be consumed by 
prescribers in computerized physician order-entry (CPOE) apps used to advise the imple-
menting of care in pediatric medulloblastoma patients. Markov Chain Monte Carlo sampling 
of 1207 cases in the “training” dataset was performed to determine the rate of historical serial 
MRI usage in each decile of ML-model-generated score values.

4. Evaluation approach

The purpose of fairness auditing in our two examples was to examine the questions (1) 
whether black patients were less likely to receive beneficial therapy or diagnostic procedures 
when compared with white patients and (2) whether, in connection with ML model-training 
on observational data from a large, representative collection of hospitals, an ML decision-
support model would manifest a statistically significant untoward disparity of therapy or 
diagnostic procedures prescribing based on race. It was first necessary to determine whether 
the ML models were adequately calibrated in ‘test’ cohorts different from the ML model-
discovery ‘training’ cohorts. Controlling for age distribution, geographic differences, gender, 
common contraindications for the treatment-of-interest (discharge beta-blocker post-CAB), 
and other factors [34–42] is important, to insure adequate statistical power for these assess-
ments and to mitigate confounding [27, 43]. Establishing that the ML model was adequately 
well-calibrated for each racial group prior to performing procedures to evaluate the presence 
of discrimination or disparities was performed using the Hosmer-Lemeshow test by model 
score deciles. For black subjects, the model’s HL was χ2 = 10.9, df = 8, p-value = 0.21, while for 
white subjects, HL χ2 = 10.1, and p-value = 0.26, confirming that the ML model scores showed 
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good calibration across the deciles of score values providing the recommendations for dis-
charge beta-blocker prescribing. The distribution of discharge beta-blocker medications in 
the subset of the cohort who received them was as follows: metoprolol, 68.2%; carvedilol, 
14.1%; labetalol, 11.5%; atenolol, 4.7%; propranolol, 0.87%; nebivolol, 0.28%; bisoprolol, 
0.17%; nadolol, 0.08%; acebutolol, 0.04%; and pindolol, 0.02%. This distribution is consistent 
with recently published guidelines [44–47]. Kruskal-Wallis non-parametric ANOVA revealed 
no statistically significant racial group-associated differences in the proportions of these cat-
egories of beta-blockers. Corresponding controlling for age distribution and other factors was 
performed for the medulloblastoma example. Hosmer-Lemeshow evidence of model calibra-
tion was confirmed for the medulloblastoma ML model. With calibration determined to be 
adequate, we then proceeded to evaluate potential ML model biases using three methods: 
Cochran-Mantel-Haenszel test; beta regression; and Bayesian Model Averaging.

4.1. Cochran-Mantel-Haenszel test

Linear regression with normally distributed errors is probably the most commonly used 
analysis tool in applied statistics. The pervasiveness of linear regression is based on the fact 
that random variations in observed data can frequently be well-approximated by a normal 
distribution with constant variance. If the response variable in a regression model is a rate or 
percentage, however, the assumption of normally distributed errors is not valid. Because the 
analysis of rates and proportions is an important issue for many applications, establishing 
statistically valid analysis tools for dependent variables whose values are on the bounded 
interval [0,1) has high importance. This is particularly so in applications that assesses the fair-
ness and equitability of proportions of allocated services or resources, including allocations 
that are mediated by decision-support tools and artificial intelligence (AI) models originating 
in ML from existing data. Such models aim to represent the relationship between a binary 
exposure (exposed vs. unexposed) and a binary outcome (success vs. failure). Sometimes the 
relationship between the two binary variables is influenced by another variable (or variables). 
One way to adjust for such influence is to stratify on that variable and perform stratified 
analysis.

The Cochran-Mantel-Haenszel test (CMH) is a test of the similarity of the mean rank (across 
the outcome scale) for groups in stratified 2 × 2 tables with possibly unbalanced stratum sizes 
and unbalanced group sizes within each stratum. The CMH test has the advantage of only 
moderate assumptions for calculating the p-value, namely, that the conditional odds ratios of 
the strata are in the same direction and similar in magnitude.

Cochran-Mantel-Haenszel (CMH) procedure tests the homogeneity of population propor-
tions after taking into account other factors. The CMH test has been utilized for many years in 
the courts and by regulatory agencies [48–52]. The “training” and “test” data were arranged 
as a 2 × 2 × N arrays, where race and beta-blocker status comprised the first two dimensions 
and hospital was the third dimension. In this manner CMH examines one factor (race) and 
one outcome (discharge beta-blocker), across N subgroups (hospitals). The CMH chi-square 
tests if there is an interaction or association between the 2 × 2 rows and columns across the N 
categories. The null hypothesis is that the pooled odds ratio is equal to 1.0, there is no interaction 
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between rows and columns. Rejection of H0 indicates that interaction exists. Calculation of the 
CMH test may be performed via the cmh.test() function in the R package ‘lawstat’ (https://
cran.r-project.org/package=lawstat) or by other conventional means.

In the post-CAB beta-blocker analysis (Table 1), the CMH statistic = 5.84, df = 1, p-value = 0.016, 
MH Estimate = 1.23, Pooled Odds Ratio = 1.35, such that, rather than representing a disadvan-
tage, black race in this male cohort conferred a slight advantage, with a modest increase in the 
likelihood of receiving discharge beta-blocker post-CAB compared to men who were white.

In the medulloblastoma repeat MRI analysis (Table 2), the CMH statistic = 39.8, df = 1, p-value 
<0.0001, MH estimate = 0.33, Pooled odds ratio = 0.35, such that children of black race in this 
cohort have a statistically lower likelihood of receiving serial MRI exams compared to chil-
dren who were white.

4.2. Beta regression

Note that if the we see very different odds ratios for the strata, that suggest the variable used 
to separate the data into strata (race, in these examples) is a confounder and, if so, the Mantel-
Haenszel odds ratio is not a valid measure of significance. To test whether the odds ratios in 
the different strata are different, we calculate Tarone’s test of homogeneity using the rma.mh() 
function from the R package metafor. If some odds ratios are <1 and other odds ratios are >1, or 
if the Tarone test p-value <0.05, then the CMH test is not valid or appropriate. Thus, a disadvan-
tage of CMH is that the circumstance of violation of its assumptions does occur comparatively 
often (for example, if the stratifying factor can confer protection for one value and excess risk 
for another value). Therefore, we sought additional methods that do not have this limitation.

One such alternative method that is able to address model rates and proportions is beta 
regression. Beta regression is based on the assumption that the response is beta-distributed on 
the unit interval [0,1). The beta density can assume a number of different shapes depending 
on the combination of parameter values, including left- and right-skewed or the flat shape of 
the uniform density. Beta regression models can allow for heteroskedasticity and can accom-

modate both variable dispersion and asymmetrical distributions. An additional advantage is 
that the regression parameters are interpretable in terms of the mean of the outcome variable.

The measure of association between the predictor variables and the outcome from the beta 
regression is expressed as a relative proportion ratio [53–56]. Beta regression is a model of 
the mean of the dependent variable y (likelihood of discharge beta-blocker) conditioned on 
covariates x (race, ML model-guided recommendation for beta-blocker, and the interaction 

Race Beta-blocker + Beta-blocker - Prevalence (BB+)

Actual (Training) (%) Model-guided (Test) (%)

Black 953 307 75.6 73.3

White 7039 3059 69.7 67.8

Table 1. Prevalence of discharge beta-blocker utilization, post-CAB.
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between these), which we denote by μ
x
. Because y is on the open interval (0, 1), we must 

ensure that μ
x
 is also in [0, 1). We do this by using a link function for the conditional mean, 

denoted  g (∙)  . This is necessary because linear combinations of the covariates are not other-

wise restricted to [0, 1). Beta regression is widely used because of its flexibility for modeling 
variables whose values are constrained to lie between 0 and 1 and because its predictions are 
confined to the same range [53, 54]. Beta regression models were proposed by Ferrari and 
Cribari-Neto [55, 56] and extended by Smithson and Verkuilen [54] to allow the scale param-

eter to depend on covariates. We have:

  g ( μ  
x
  )  = x𝛽, or, equivalently,  μ  

x
   =  g   −1  (x𝛽)   (1)

where   g   −1  (∙)   is the inverse function of  g (∙)  . Here the default logit link implies that

  ln  { μ  
x
   /  (1 −  μ  

x
  ) }  = x𝛽, and that  μ  

x
   = exp  (x𝛽)  /  {1 + exp  (x𝛽) }  . (2)

Using a link function to keep the conditional-mean model inside an interval is common in the 
statistical literature. The conditional variance of the beta distribution is:

   var (y |  x) =  {  μ  
x
    (1 −  μ  

x
   )  }  /  (1 + ψ) .   (3)

The parameter ψ is known as the scale factor because it rescales the conditional variance. We 
use the scale link to ensure that ψ > 0.

Beta regression models have applications in a variety of disciplines, such as economics, the 
social sciences, and health science. For example, in political science and in the law, beta 
regression has been utilized in determining noncompliance with antidiscrimination laws [52]. 
In psychology, Smithson [57] used beta regression to evaluate jurors’ assessments of the prob-

ability of a defendant’s guilt and their verdicts in trial courts. Beta regression has also been 
used to model quality-adjusted life years in health cost-effectiveness studies [58, 59].

Where necessary, outcome observations (the proportion of cases receiving discharge beta-
blocker post-CAB) were transformed to the open unit interval (0, 1), adding a very small 
amount (0.001) to the zero-valued observations and subtracting the same amount from the 
one-valued observations. Beta regression was performed via the betareg() function in the R 
package ‘betareg’ (https://cran.r-project.org/package=betareg) but may also be accomplished 
by other similar algorithms in other statistics packages. Beta regression (Table 3) produces 

Race MRI + MRI - Prevalence (MRI+)

Actual (Training) (%) Model-guided (Test) (%)

Black 112 71 61.3 63.4

White 837 187 81.7 80.9

Table 2. Prevalence of serial MRI utilization, post-medulloblastoma resection.
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estimated coefficients of the covariates and an estimated scale parameter. The coefficient of the 
factor variable for race = Black is significant at the p < 0.05 level and positive. Thus we conclude 
that, rather than posing a hazard, Black race in these 14 institutions during this 5-year period, 
actually conferred a slight advantage in terms of the likelihood of a male patient’s receiving 
standard-of-care discharge on a beta-blocker, status-post open coronary artery bypass.

Corresponding beta regression (Table 4) was performed for predictive recommendations 
from our second example ML model derived from repeat MRI pediatric medulloblastoma 
data from 33 institutions.

Covariate Estimate Std error p-Value

(Intercept) −2.399 0.220 < 0.0001

Black 0.036 0.219 0.7813

Score_percentile 5.030 0.293 < 0.0001

Black:Score_percentile −0.387# 0.290 0.1821

(phi)_(Intercept) 2.232 0.289 < 0.0001

(phi)_Black 0.061 0.122 0.6162

(phi)_Score_percentile −0.023 0.410 0.9562

This shows that the rate of serial MRI exams increases with Score_percentile and in the mean equation there is potentially 
a weak, mildly negative interaction (annotated as #) between Score_percentile and black race. This is weak evidence 
consistent with the hypothesis that a disparity may exist under our initial, empirically discovered ML model, between 
black and white children with medulloblastoma with regard to recommendation of serial MRI scans in treatment follow-
up. Precision (phi) is not significantly asymmetric or heteroskedastic in this example dataset.

Table 4. Beta regression of serial MRI utilization, post-medulloblastoma resection.

Covariate Estimate Std error p-Value

(Intercept) −1.136 0.067 < 0.0001

Black 0.201 0.067 0.0026

Score_percentile 4.875 0.119 < 0.0001

Black:Score_percentile −0.033# 0.118 0.7780

(phi)_(Intercept) 2.434 0.160 < 0.0001

(phi)_Black −0.093 0.099 0.3466

(phi)_Score_percentile 2.394 0.255 < 0.0001

This shows that discharge beta-blocker rate increases with Score_percentile and is slightly higher (for blacks), and there is 
no significant interaction (annotated as #) between Score_percentile and black race. This evidence corroborates that from 
the Cochran-Mantel-Haenszel test, regarding the absence of disadvantage under the ML model for black men compared 
to white men for post-CAB discharge beta-blocker recommendation. Precision is asymmetric and heteroskedastic. 
Precision (phi) increases with Score_percentile.

Table 3. Beta regression of discharge beta-blocker utilization, post-CAB.

New Insights into Bayesian Inference80



4.3. Bayesian model averaging

In our experience, beta regression and CMH are sufficient for ascertaining the fairness of 
ML-derived models in many situations. However, if the strata are markedly unbalanced 
or if the data are not satisfactorily fitted by a beta distribution, these methods may give 
either false-positive or false-negative results. Also, percentage outcomes that are based on 
the binomial model are often overdispersed, meaning that they show a larger variability 
than expected by the binomial distribution. Beta regression models usually account for 
overdispersion by including the precision parameter phi to adjust the conditional variance 
of the percentage outcome, but this fixed parameterization involves an ad hoc choice by the 
analyst and may be unstable or yield poor goodness-of-fit when the data are heteroskedas-

tic. Yet further, beta regression tends to require relatively large sample sizes to power inter-

pretations of statistical significance. Therefore, we seek additional methods that are robust 
against these conditions. In that regard, Bayesian model averaging (BMA) offers particular 
advantages.

BMA is a relatively recently developed method that addresses model uncertainty in the 
canonical regression variables selection problem [60–64]. If we assume a linear model struc-

ture, where y is the dependent variable to be predicted, α
i
 are constants, β

i
 are coefficients, and 

ε is a normal IID error term with variance σ2 then we have:

  y =  α  
i
   +  X  

i
    β  

i
   + ϵ, ε ~ N (0,  σ   2  I)   (4)

High dimensionality interferes with stable variables selection. Small cohort size or collinearity 
of potential explanatory variables in matrix X may increase the risk of over-fitting and reten-

tion of some variables  Xi ∈  { X }   which should not be included in the model. Stepwise variables 
elimination starting from the null linear model that includes all variables may be statistically 
unsupportable if the cohort size is small.

BMA addresses the problem by estimating models for all, or a very large number of, pos-

sible combinations of   { X }   and constructing a weighted average over all of them. If there are K 

potential variables, this means estimating 2K variable combinations and therefore 2K models. 
The model weights for model averaging arise from posterior model probabilities which, in 
turn, are denoted by Bayes’ theorem:

   p ( M  
i
   |  y, X) =   

p (y |   M  
i
  , X )   p ( M  

i
  ) 
  _____________ 

p (y  |  X) 
   =   

p (y |   M  
i
  , X )   p ( M  

i
  ) 
  ________________  

 ∑ 
j=1

  
 2   K 

   p (y |   M  
j
  , X )   p ( M  

j
  ) 

     (5)

Here,  p (y  |  X)   is the integrated likelihood, which is constant over all models. Therefore, the 
posterior model probability (PMP)  p ( M  

i
    |  y, X)   is proportional to the marginal likelihood of the 

model  p (y  |   M  
i
  , X)   (the likelihood of the observed data, given model M

i
) times a prior model 

probability  p ( M  
i
  )  ; that is, how probable the machine-learning analyst believes model M

i
 to 
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be before looking at the data. Renormalization then leads to the PMPs and thus the model 
weighted posterior distribution for any statistic θ (for example, the coefficients β

i
):

   p (θ | y, X )   =  ∑ 
i=1

  
 2   K 

   p (θ |   M  
i
  , y, X )   p ( M  

i
   | X, y )     (6)

The model prior p(M
i
) is elicited by the machine-learning researcher and reflects prior beliefs 

[65, 66], some of which may come from published research literature [67]. In the absence of 
other guidance or historical knowledge, a routine option is to assume a uniform prior prob-

ability for all models  p ( M  
i
  )  ∝ 1  to represent the absence of a well-established prior.

The expressions for posterior distributions  p ( θ  |   M  
i
  , y, X)   and for marginal likelihoods  p ( M  

i
    |  y, X)   

depend on the model estimation framework. Routine practice is to use a Bayesian linear 
model with a prior structure called Zellner’s g prior [68, 69]. For each candidate model M

i
 a 

normal-distributed error structure is assumed, as in Eq. (1). The need to determine posterior 
distributions requires that one specify priors on the model parameters. In practice, one sets 
provisional priors on the constants and on error variance, typically distributed as p(  α  

i
   ) ∝ 1, 

meaning complete prior uncertainty about the prior mean, and  p (σ)  ∝  σ   −1  .

The most influential prior is the one on the coefficients β
i
. Before analyzing the data (y, X), the 

analyst proposes priors on the coefficients β
i
, typically normally distributed with a specified 

mean and variance. In the context of ML model fairness evaluations, we assume a prior mean 
of zero for the coefficients to assert that not much is known about them. In our work, their 
variance structure is defined by Zellner’s g:

   β  
i
   ∣ g ~ N (0,  σ   2    (  1 __ g    X  

i
  ′   X  

i
  )    

−1

 )   (7)

The hyperparameter g embodies how certain the analyst is that coefficients are zero: A small 
g means small prior coefficient variance and therefore implies the analyst is quite certain that 
the coefficients are indeed approximately zero. By contrast, a large g means that the analyst is 

very uncertain about whether the variables’ coefficients are statistically significant, as in the 
case of our work on ML model fairness evaluations with regard to racial bias.

In general, the more complicated the distribution of marginal likelihoods, the more difficul-
ties a Bayesian (Gibbs, Markov Chain Monte Carlo) sampler will encounter before converging 
to a good approximation of posterior model probabilities (PMPs). The quality of approxima-

tion may be inferred from the number of times a model got drawn versus their actual mar-

ginal likelihoods. Partly for this reason, BMA retains a pre-specified number of models with 
the highest PMPs encountered during MCMC sampling, for which PMPs and draw counts 
are stored. Their respective distributions and their correlation indicate how well the sampler 
has converged. While BMA should usually compare as many models as possible, some con-

siderations might dictate the restriction to a subspace of the 2K models. By far the most com-

mon setting is to keep some regressors fixed in the model setting, and apply Bayesian Model 
uncertainty only to a subset of regressors. However, due to physical RAM memory limits, 
the sampling chain can retain fewer than 1000,000 of these models. Instead, BMA computes 
aggregate statistics on-the-fly, usually using iteration counts as surrogate model weights. For 
model convergence and some posterior statistics BMA retains only the ‘top’ (highest PMP) 
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models it encounters during the iterations executed. Since the time for updating the iteration 
counts for the ‘top’ models grows linearly with their number, the sampler becomes consider-
ably slower the more ‘top’ models that are retained. Still, if they are sufficiently numerous, 
those best models can accurately represent most of posterior model cumulative probability. In 
this case, it is defensible to base posterior statistics on analytical likelihoods instead of MCMC 
frequencies.

For the post-CAB beta-blocker at discharge example, Table 5 shows features of the 10 top-
ranked models generated by BMA MCMC sampling, together with the cumulative inclusion 
probability for each feature summed over the models evaluated.

With regard to prescribing of beta-blocker medication at discharge from hospital post-CAB 
coronary revascularization, Bayesian model averaging yields evidence that models omit-
ting race have higher Posterior Model Probability (PMP) than models that retain race as a 
feature, and race exhibits low inclusion probability. These findings are compatible with the 
results of CMH and beta regression and support the hypothesis that no untoward racial bias 
is present in this ML model. Were this ML decision-support model put into production use 
to guide prescribing, it is unlikely that it would manifest racially discriminatory or unjust 
recommendations.

For the medulloblastoma follow-up example, Table 6 likewise shows features of the 10 top-
ranked models generated by BMA MCMC sampling, together with the cumulative inclusion 
probability for each feature summed over the models evaluated.

Variable M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 Incl. 

Prob.

Severe CHF X X X X X X X X X X 1.00

Asthma X X X X X X X X X X 1.00

Bradycardia X X X X X X X X X 1.00

Heart block X X X X X X X 1.00

Pacemaker X X X X X X 0.91

Hypotension 
(SBP < 105 mm)

X X X X X 1.00

Polypharmacy 
(Nmeds > 10)

X X X X X X 0.88

Pressors or inotrope X X X X X X X 0.79

IABP or VAD X X X X X X 0.62

Urgent-emergent X X X X X X 0.54

Age X X X X 0.21

Race X X 0.13

Posterior Model 
Probability

0.021 0.012 0.011 0.010 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Table 5. BMA of discharge beta-blocker utilization, post-CAB.
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With regard to repeat MRI in follow-up of pediatric medulloblastoma, Bayesian model 
averaging yields evidence that some models that include race have higher Posterior Model 
probability (PMP) than models that omit race as a feature, and race exhibits relatively high 
inclusion probability among the 1000 top-ranked models. These findings are consistent with 
the results of CMH and beta regression. The evidence suggests that the ML model manifests 
biases which, if put into production use to guide prescribing, may reproduce or exaggerate 
disparities that were present in the historical observational data from which the ML model 
was learned.

5. Discussion

Machine-learning methods are finding increasing application to guide decision-making, 
including decisions that arise in health care. ML decision-support guidance can have impor-
tant consequences on outcomes, including employment [50, 51, 70, 71], banking [10], pre-
dictive policing and law enforcement [2, 11, 12, 21, 49, 72–74], and criminal sentencing [48]. 
Recently, growing attention has focused on the potential that machine-learning might learn 
unjust, unfair, or discriminatory representations from observational data and inadvertently 

Variable M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 Incl. 

Prob.

Clinical trial X X X X X X X X X X 1.00

Age X X X X X X X X X 0.99

Prior 
recurrence

X X X X X X X X 0.97

Renal 
impairment

X X X X X X X 0.96

High-risk 
histology

X X X X X X X 0.94

SHH/WNT 
genomics

X X X X X X X X 0.70

Tumor extent X X X X X X X X 0.85

PFS X X X X X X X 0.46

99mTc scan X X X X X 0.32

mIGB scan X X X X X X X 0.29

Race X X X X X X X X 0.58

Public payor X X X X 0.17

Posterior Model 
Probability

0.032 0.024 0.017 0.011 0.010 <0.01 <0.01 <0.01 <0.01 <0.01

Table 6. BMA of serial MRI utilization, post-medulloblastoma resection.
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perpetuate or propagate injustices that are manifested in the historical data that are utilized to 
train the machine-learning models [2, 7]. Despite the increasing attention to this issue, as yet 
it is unclear whether the goals of fairness and accuracy in ML are conflicting goals [5, 19, 24]. 
In that connection, the impact of race/ethnicity on health services access, long-term risk factor 
control, and cardiovascular outcomes among patients has been the subject of intensive study 
for decades [75–83]. However, significant disparities in cardiovascular management have 
received less attention [84–89]. Similarly, the current literature has directed scant attention to 
disparities in cancer care subsequent to diagnosis. In the present era of artificial intelligence, 
Big Data, and machine-learning, it is a priority that ML-based decision-support tools not 
manifest untoward disparities. Sensitive methods having statistical power adequate to detect 
disparity are essential to achieving this goal. Moreover, it is important that such methods be 
aligned with generally-accepted governance practices in the courts and regulatory agencies.

The present work sets forth a three-pronged approach for ascertaining the presence or absence 
of disparity in ML models, by race, age, gender, or other attributes. We sought to discover 
strengths and limitations of methods for detecting unfairness in ML-model-guided decision-
support and, when unfairness is identified, discovering the sources and magnitudes of the 
disparate effects. In health services, numerous clinical contexts and models and treatment 
use-cases merit such analyses. However, for simplicity we selected two contexts in which 
strong consensus does exist regarding what the preferred treatment should be, and in which 
the consensus has prevailed and remained constant for a sufficient period of time, such that 
observational data are available for analysis and such that minimal change in the consensus 
has occurred during the time period for which data are available for analysis. We selected 
cardiac care and cancer care contexts in which disparities with respect to race are feasible 
evaluate.

Other factors such as socioeconomic status and health services access patterns remain to be 
studied. The frequency and tenure of accessing the health system are confounded by race 
and socioeconomic factors. Patients’ frequency and tenure also influence what medications 
patients have been prescribed previously [76], including some medications that may have 
been discontinued or substituted due to side-effects or non-efficacy reasons, events that influ-
ence subsequent considerations for devising or adjusting the patients’ medications regimen 
when new circumstances arise. Nonetheless, we examined one example intervention that has 
been regarded as ‘standard if care’ for a long time and whose marginal cost in the U.S. context 
is so small as to be negligible (beta-blocker medications at hospital discharge post-CAB) and 
another intervention whose marginal cost in the U.S. is significant (serial MRI exams of head 
and spinal cord).

Beta-blockers have been found to be important in the treatment of myocardial infarction and 
in coronary artery bypass surgery in that they have been shown to decrease mortality. Their 
use post-CAB has been standard care for many years [47], conditioned on the absence of 
significant clinical contraindications to their use in a particular patient. However, prescrib-
ing a beta-blocker at the time of discharge from hospital post-CAB remains less consistent 
than it should be. Of note is that most beta-blocker medications are extensively metabolized 
by the liver (esp. CYP2D6) and are affected by liver function. Indeed, the concomitant use of 
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CYP2D6-inhibiting medications or the presence of liver disease may contraindicate or restrict 
the use of beta-blockers. Our ML modeling process determined the statistical significance 
and retention of AST and the AST/ALT ratio in the ML predictive model, consistent with 
this anticipated relevance of liver function to prescribers’ decision-making, recapitulated in 
the model. However, alcohol use, hepatitis, non-alcoholic steatosis, cirrhosis, and other liver 
conditions are known to exhibit racial imbalance. Slightly elevated prevalence of cirrhosis in 
has been reported in the U.S. black population (viz., QT

c
 prolongation and the risk of ven-

tricular arrhythmias, see [40]). At the outset of the present study, we were concerned that such 
imbalances might confound the ML modeling process or give rise to an ML model that could 
exacerbate under-prescribing of beta-blockers to black individuals.

By using the Cochran-Mantel-Haenszel test, beta regression, and Bayesian Model Averaging, 
not only was no untoward racial disparity found in the post-CAB cohort, but, with regard 
to the likelihood of receiving standard-of-care discharge beta-blocker after CAB, there was 
unexpectedly a slight benefit associated with black race.

By using the Cochran-Mantel-Haenszel test, a statistically significant and unexpected racial 
disparity was detected in the medulloblastoma ML model in regard to serial repeat MRI exams 
following initial cancer treatment. This was corroborated by beta regression and confirmed by 
Bayesian model averaging analysis, wherein many BMA-generated models retained race as a 
statistically significant predictor of serial MRI utilization. Potential reasons for the disparity 
are the subject of ongoing study.

Presently, we explicitly exclude race as an input variable from both of the ML models dis-
cussed as examples above, as a matter of assuring that the models will not perpetuate clinical 
differences in utilization rates associated with race or ethnicity manifested in the observa-
tional data used to train and validate the models. Naturally, race is only one factor that might 
be considered as a basis for potential unfairness. Attention should be directed also to other 
attributes that are candidate predictors in ML models, such as age, gender, chronicity/tenure 
or survival phase, payor class, or previous exposure to treatments or procedures that them-

selves might be subject to disparities, inequitable rationing, or unjust differential access or 
provisioning rates between groups. Confounding may arise from other factors [90–109], such 
as the vigor or effectiveness with which informed consent is sought by the treating physicians. 
Such confounding may be affected by racial or cultural differences between the family and the 
person performing the consenting process. This merits ongoing evaluation by model develop-
ers and model users, to insure that good and fair ML models are not erroneously disparaged 
or rejected for invalid reasons.

As revealed in the example of medulloblastoma treatment follow-up, quantitative Bayesian 
and frequentist surveillance for potential model unfairness may detect phenomena that are 
not evidence of injustice per se but instead reflect cultural, educational, religious/spiritual, 
coping style, family structure, economic, comorbid anxiety/depression rates, rurality, inabil-
ity to leave work, or other underlying sociodemographic differences. Such differences in deci-
sion-making are worthy foci of bioethical, epidemiological, and other evaluations, but are not 
necessarily differences that merit sanction or suppression. Autonomy of patients’ and fami-
lies’ decision-making must be respected. Thus, fair, equitable, nondiscriminatory  offering of 
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options and access to services to all does not compel equal utilization of services by all [110]. 
Nonetheless, financial barriers to care may prevent minority and underserved populations 
from accessing follow-up care at rates commensurate with other groups. Enhancing insur-
ance coverage or addressing out-of-pocket costs may help address financial barriers to follow-
up care, including repeat screening to detect recurrence or progression.

Compared to CMH and beta regression, BMA is able to achieve adequate power with smaller 
sample sizes. Moreover, BMA does not have the odds ratio homogeneity, parametric distri-
butional, or other disadvantages of CMH or beta regression. Our BMA analytical approach 
meets the primary goals for defining a statistical approach to assessing fairness of ML models. 
Specifically:

1. It captures information from the endpoint scale on the interval [0,1);

2. It provides an interpretation that is readily understood;

3. It has power at least equivalent to the CMH test or beta regression;

4. It avoids assumptions in the calculation of the significance of treatment differences; and

5. The interpretation is based on the same foundation as the calculation of the p-value.

We suggest that that this approach is superior to the stratified dichotomous approach as it 
captures the entire spectrum of the outcome scale, and therefore will be generally more pow-

erful. While it remains valuable to use a combination of two or more methods (including 
frequentist methods, such as CMH and beta regression) in a correlative manner to insure con-
sistent determination of fairness of ML models, BMA has become for us a preferred compo-
nent of fairness testing owing to its modestly greater statistical power when some strata have 
small size or there is marked unbalancing among strata. Bayesian methods, including BMA, 
are essential components of auditing processes and policy-setting processes for ML decision-
support models, and are valuable adjuncts to conventional frequentist methods, which are 
less well-suited to the combinatorial challenges of high dimensionality in model variables 
selection in the Big Data era.

In summary, we propose that these frequentist and Bayesian methods, including BMA, may 
be valuable for other outcomes types and other contexts and use-cases, to detect disparities 
in a fashion similar to how statistical tests have historically been used in the courts and in 
public policy-making and regulation [52, 111]. Based on our success with the present example 
use-case, we particularly recommend that BMA may be valuable for other use-cases in health 
services-related ML modeling, to determine the covariate sources of ML-model-based deci-
sion-support disparities that are discovered, to measure the magnitudes of such effects, and 
to perform model-curation quality assurance so as to insure that such disparities can be elimi-
nated [18] or kept to minimum levels. Such methods may help to promote and quantify algo-
rithmic fairness [8–31], assist in proper governance of ML-based decision-support tools, and 
insure that ML modeling does not inadvertently learn and replicate unfair practices that are 
extant in observational datasets that are mined, thereby avoiding perpetuation of injustice by 
artificial intelligence or cognitive computing. These methods appear to be adequately sensitive 
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and effective in terms of statistical power for cohort sizes such as are practically available. The 
frequentist methods have the advantage of general acceptance in the public sector and a long 
history of use in the courts and in regulatory settings. However, they are not well-suited to 
Big Data with high dimensionality and significant missingness rates for individual predictor 
variables. By contrast, BMA does not yet have a history of use in the courts or in other public-
policy or regulatory settings. Nonetheless, confirmation by BMA of the statistically negligible 
role of race in our post-CAB cohort and a likely significant role of race in our medulloblastoma 
cohort suggests that BMA should be an important addition to the toolbox supporting fairness-
assurance of ML models in these and similar contexts and can also help courts and regulators 
ascertain fairness of decision-support models in actual application. Correspondingly, BMA 
can help model developers to defend against allegations of unfairness as they arise.
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