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Abstract

The fruit fly, Drosophila melanogaster (Meigen, 1830) has been established as a key model 
organism thanks in part to their considerable biological similarity to mammals and an 
abundance of available genetic tools. Drosophila have been used to model many human 
disease states and have been critical in elucidating the genetic mechanisms contributing 
to them. Part I of this chapter covered basic Drosophila biology and relevant genetic tools 
available to Drosophila researchers. Here in part II, we review the use of Drosophila as 
a model organism to study neurodegenerative disorders, cardiovascular diseases, kid-
ney diseases, cancer, metabolic disorders, and immune disorders, as well as key findings 
made in those fields thanks to Drosophila research.

Keywords: animal model, cancer, diseases, Drosophila, genetic techniques, heart, 
immunology, kidney, metabolic disorders, neurodegeneration

1. Introduction

Please refer to the Introduction of Part I, The fruit fly, Drosophila melanogaster: The Making 

of a Model.

In this two-part chapter, some of the many aspects that make Drosophila such a fundamental 
model organism are covered.

Part I covered the basic fly biology and key genetic tools.

Here, Part II provides an overview of important disease states that Drosophila is used to model 
and some significant advances made in those fields.

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



2. Drosophila melanogaster as model to study human diseases

Drosophila melanogaster is a widely used model organism to understand many molecular and 
developmental processes common to higher eukaryotes. A prerogative for a good model 
system is to share higher physiology within the molecular pathways with humans, and 
it is remarkable that approximately 75% of genes associated with human diseases have 
Drosophila homologs and share similarities in their functions, which is of particular interest 
for medical purposes [2]. Based on this genetic similarity, the fly is a valid tool for under-

standing the function of genes involved in human disorders. Clearly, Drosophila has the 

limitation of being an invertebrate system, as some biological processes evolved only within 
the vertebrate lineage. Despite this, Drosophila exhibits complex behaviors, and each phe-

notype observed must be contextualized considering that mammalian physiology is not 
very different from that of the tiny fly. It is not easy to choose an appropriate organism to 
model a disease due to the higher complexity of humans, and it is necessary to evaluate the 
nature of the pathology before choosing. Drosophila provides a good background for genetic 
and biological studies of different pathological conditions such as neurological, cardiac, and 
metabolic disorders (Table 1).

Organ system Diseases

Brain and nervous system

The Drosophila brain is two-lobed and contains approximately 
100,000 neurons. It is organized into several main structures 
including: supraesophageal ganglion (optic lobes and 
cerebrum) and a subesophageal ganglion. Flies also have a 
segmented nerve cord similar to a mammalian spinal cord 
(FLYBRAIN neuron Database)

• Neurodegeneration

 ○ Huntington’s disease

 ○ Amyotrophic lateral sclerosis

 ○ Spinocerebellar ataxia

 ○ Alzheimer’s disease

 ○ Parkinson’s disease

• Cancer

Immune system

Circulating immune cells called hemocytes (consisting of 
plasmatocytes, lamellocytes, and crystal cells) fight pathogens 
by encapsulating them, generating ROS, and/or producing 
antimicrobial peptides (AMPs). Many tissues are also capable of 
generating AMPs including the gut and fat body [72]

• Wound healing

• Cancers, including acute myeloid leukemia

• Autoimmune diseases

• Allergies

Digestive system

Consists of mouth parts for chewing, salivary glands to produce 
saliva, a crop (similar to a stomach), the proventriculus for 
grinding food, and a gut (midgut and hindgut) for digestion 
and nutrient and water absorption

• Intestinal infections

• Intestinal inflammation

• Cancer

Excretory system

Structures called Malpighian tubules and nephrocytes 
function similar to kidneys and filter nitrogenous waste from 
hemolymph. The tubules connect to the hindgut and excretory 
waste is eliminated along with digestive waste in the form of 
uric acid

• Nephrotic syndrome

• Polycystic kidney disease

• Kidney stones
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Drosophila has certain characteristics unique to insects such as an open circulatory system, 
exoskeleton, and tracheal system for gas exchange; however, they also share many similar 
organs and biological processes with mammals. The following summarizes the major organ 
and physiological systems in Drosophila and their comparative function to human diseases.

2.1. Neurodegenerative disorders

The Drosophila central nervous system (CNS) is composed of a bilaterally symmetrical 
brain with two cell types, neurons and glia, both originating from neural progenitors 
named neuroglioblasts. The fly CNS is considerably simpler than that of vertebrates and 
the neurodevelopment pattern is conserved among the organisms. Wnt, the mammalian 
homolog of the Drosophila wingless plays an important function during neuronal develop-

ment [7] and Notch signaling, which plays a pivotal role during neurogenesis and neuronal 
differentiation, is also evolutionary conserved [8]. Neurons attend to neurotransmission 
while glia sustain the neurons during development and adult life mainly by providing  

Organ system Diseases

Circulatory system

Drosophila has an open circulatory system. The tube-like heart 
(consisting of the dorsal vessel and the aortic arches) circulates 
hemolymph (insect blood) around the body cavity

• Congenital heart defects

• Cardiomyopathies

• Arrhythmias

• Channelopathies

• Heart failure

Respiratory system

Drosophila, like many other insects, does not carry oxygen in 
their hemolymph. Instead, a system of trachea connects directly 
with organs for gas exchange. Trachea open to the environment 
though tiny holes in the exoskeleton called spiracles

• Viral infection

• Respiratory disorders, including asthma and 
COPD (not discussed here)

Energy storage

Flies store glycogen and triglycerides in a specialized structure called 
the fat body. The fat body has functions similar to the mammalian 
liver and adipose tissue and is heavily involved in regulating 
growth, metabolism, and the immune system [16, 73–75].

• Metabolic disorders

• Non-alcoholic fatty liver disease

• Diabetes

• Cancer

Reproductive system

Flies have ovaries for egg production in females, and testes 
for sperm production in males. These structures develop from 
imaginal discs in the larva. A fertile female fly can lay hundreds 
of eggs

• Female reproductively

• Cancer

• Aging

• Epigenetics

Musculoskeletal system

Flies have an exoskeleton composed mostly of a chitinous 
cuticle and an outer waxy coating. The cuticle is produced by 
epithelial cells and can be hard like bone or softer (as in the case 
of larvae). Muscles attach to points inside the exoskeleton and 
allow the fly to move

• Parkinson’s disease (and other neurodegenera-

tive diseases affecting movement)

• Musculoskeletal disorders (not discussed here)

Table 1. The “Organ-Disease”.
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trophic factors [9, 10]. When studying neuropathies, it is relevant to consider the interac-

tion between neurons and glia, and research in Drosophila is contributing to this. In fact, 
the power of the neurodegenerative fly model is in the ability to explore the disease in 
a physiological context. While glia support neuronal survival and promote recovery in 
cases of neuronal damage, impairment of glial function induces non-autonomous neuro-

nal death. Glial anti-neurodegenerative functions suggest using them as targets in human 
neurodegeneration [11]. The Drosophila brain, in particular the visual system, is widely 
employed for research related to neurodegenerative diseases [12]. The nervous system of 
people suffering from these debilitating conditions exhibits the progressive loss of neu-

rons. The origins are disparate, and in many cases, they are unknown so it is necessary to 
intensify the research, aiming to understand how to treat them. Interestingly, insects lack 
the human hematoencephalic barrier allowing for pharmacological screening directed at 
the central nervous system. Depending on the mechanisms inducing the disorder and the 
symptomatology, we can differentiate several types of human neurodegeneration. Most 
neurodegenerative disorders are characterized by the presence of protein aggregates in 
the neurons that are different for the various classes of diseases. Despite identifying many 
causative factors, it remains to be determined how these proteins become neurotoxic. 
Thanks to the precious genetic tools available, the fly is an excellent model to explore the 
function of the genes coding for the proteins involved. In addition, the molecular path-

ways are remarkably conserved allowing for parallels with humans [13]. The simpler fruit 
fly CNS allows for a better understanding of the function of a gene involved in a disease 
and its relationship with the other neuronal patterns.

In order to characterize neuronal dysfunction in Drosophila, several approaches can be used 
including testing motility, individual and social behaviors, hearing, learning, and memory 
[14–16]. A histological method based on measuring the vacuoles in adult fly brains allows 
for the quantification of neuronal degeneration [17]; moreover, electrophysiological assays 
enable the analysis of synapse functionality [18]. Fruit flies affected by neurodegeneration 
share behavioral defects and reduced lifespans.

Drosophila is already used to investigate proteinopathies (protein misfolding diseases) such 
as Huntington’s disease, amyotrophic lateral sclerosis, and spinocerebellar ataxia [19–21]. 
The cause of Huntington’s disease (HD) is the expansion of CAG repeats in the huntingtin 

gene, leading to a polyglutamine (poliQ) repeats in the huntingtin (htt) protein. Htt is 
required for axonal transport and synapsis, and the fly homolog shares the same expression 
pattern and function [22]. The poliQ expansion is toxic also for Drosophila neurons; in fact, 
the fly gradually loses photoreceptors when human htt is expressed in the eye compart-
ment. When human mutated genes encoding for polyQ are expressed in Drosophila, there is 
a phenotype comparable to the human disease, for instance late onset, progressive loss of 
neurons and motility, and premature death, and the formation of large protein aggregates 
of mutant Htt visible also in neurons of Drosophila (Figure 1). The Drosophila HD model 
has contributed to some findings, for instance it uncovered that the histone deacetylase 
(HDAC) controls the level of neurodegeneration, making it an important achievement for 
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human poliQ diseases [23]. In the fly, as in humans, the neurodegeneration rate is related 
to polyQ repeat length [24]. Spinocerebellar ataxia (SCA) is another disorder originating 
from abnormal CAG repeats. Humans can be affected by several types of SCA and ataxin is 

the mutated gene. Autophagy is a fundamental process to limit the poliQ aggregation, and 
in a fly model of SCA3, autophagy proteins are overexpressed allowing for a rescue of the 
toxicity [25]. Amyotrophic lateral sclerosis (ALS) is a disease characterized by loss of corti-
cal and spinal motor neurons [26]. Several genes are involved in ALS and most of them can 
be expressed in Drosophila to assess their contribution to neurodegeneration. A causative 
factor of ASL is a mutation in superoxide dismutase SOD1 [27], and interestingly, loss of 
Drosophila SOD1 causes neuronal death while human SOD1 expression increases the fly 
lifespan [28, 29].

Tauopathies, including Alzheimer’s, Parkinson’s, and others, refer to disorders caused by 
aberrant accumulation of the microtubule-associated protein tau [30]. Drosophila has a tau 

homolog and the pathways involved in tau neurotoxicity such as wnt, JNK, and TOR are 
shared with humans [31–33]. More than 30 transgenic fly models have been established 
that express various forms of human wild-type and mutant tau and have uncovered many 
potential mechanisms for tau toxicity in a variety of neurodegenerative diseases [34]. 
Alzheimer’s disease (AD) is one of the most common neurodegenerative disorders and yet 
its pathogenesis is still unclear. The tiny fly is once again a good organism to model this 
affliction because the AD-associated genes, such as APP and presenilins, are evolutionarily 
conserved. The brains of Alzheimer’s patients are marked by aggregation of beta-amyloid 

Figure 1. Human huntingtin aggregates in neurons. Photograph of a larval brain showing the formation of aggregates 
of mutant human huntingtin (HTT) with 93-polyQ repeats (red) in neurons using Elav-Gal4 to express UAS-HTTQ93. 
HTT aggregates are visualized by immunofluorescence with anti-HTT antibodies. OP: optical lobe, CB: central brain, 
and VNC: ventral nerve cord.
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protein and neurofibrillary tangles (NFTs) originating from hyperphosphorylation of Tau 
[35]. Tau expression induces learning and memory deficits in Drosophila,  mimicking AD in 
humans [36]. Some recent advances uncovered by Drosophila Alzheimer’s models include: 
explaining the mechanisms behind the phosphorylation of tau and its toxicity [37–40] along 
with ways to reverse it [41, 42], as well as linking DNA damage and oxidative stress trig-

gered by tau phosphorylation in causing neurotoxicity [33, 43]. Moreover, Drosophila 

models are helping researchers to uncover the interaction between beta-amyloid pro-

teins and tau and how they cause neuronal death [34]. Parkinson’s disease (PD) is charac-

terized by the progressive loss of dopamine neurons in the substantia nigra, a part of the 
brain responsible for motor control, as well as the formation of protein accumulations  
known as Lewy bodies, which are composed primarily of alpha synuclein [44]. Many mech-

anisms have been proposed for the cause of this neuronal death including disruptions in 
protein degradation, oxidative stress, mitochondrial dysfunction, autophagy and lysosomal 
dysfunction, and problems with calcium homeostasis [45] Furthermore, phosphorylated tau 
has been found to be associated with alpha synuclein in Lewy bodies [46, 47] and the two may 
function together to destabilize microtubules and damage axonal transport, also contributing 
to cell death [48]. Many fly models exist to study Parkinson’s disease [49]. The fly dopamine 
neurotransmitter is similar to the human version and its function in movement is conserved 
[50]. Homologs of several PD-related genes are present in Drosophila, allowing researchers to 
model this neurodegenerative disease [51]. Drosophila models are currently being used to test 
a variety of potential therapeutic approaches, including boosting antioxidant mechanisms, 
reducing the oxidative stress caused by dopamine metabolites, and using inhibitors for mem-

bers of the TOR pathway to improve Parkinson’s symptoms [49].

2.2. Cardiovascular diseases

Drosophila melanogaster and humans share some aspects of heart development and function 
making the fly a good model for studying cardiovascular diseases, which are the leading 
causes of death worldwide. The heart precursors of Drosophila originate in the lateral meso-

derm and converge on the dorsal midline to form a linear tubular structure comparable to 
the early vertebrate embryo heart. In Drosophila, a simple contractile tube pumps the hemo-

lymph through the larval body cavity in an open cardiovascular system and regulates cardiac 
rhythm (Figure 2). The cardiovascular system has an anteroposterior polarity and it consists 
of the posterior portion named the dorsal vessel, corresponding to the heart, and the nar-

row anterior portion named the aorta, which facilitates the transport of hemolymph to the 
head [52]. The dorsal vessel is made up of two cell types: the cardiomyocytes, which are the 

inner contractile muscle cells, and the pericardial non-contractile cells, which flank the car-

diomyocytes. The human heart has four distinct chambers, likewise the fly heart is divided 
into four chambers, each one consisting of six myocardial cells [53] that have a sarcomere 
structure similar to mammalian cardiac cells. The hemolymph flow moves nutrients, immune 
cells, and molecules required for homeostasis; however, oxygen is transported through dif-
fusion from spiracles that invaginate from the cuticle into the interior of the animal. Despite 
the fly dorsal vessel being much simpler than the mammalian looped heart, the signaling 
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pathways involved are remarkably conserved [54]. Cardiogenic genes required for the proper 
development of the Drosophila embryonic heart were identified through genome wide screens 
[55] showing that many molecules important for heart development and morphogenesis are 
 conserved in humans [56]. Tinman is a homeobox transcription factor discovered in Drosophila 

and it is a master gene of cardiac development conserved in higher organisms [57, 58]. In addi-
tion, pannier and hand, which play crucial roles for heart specification as well as neuromancer, 
have counterparts in humans [59–61]. Moreover, these signaling pathways are required for 
some adult function both in Drosophila and in mammals suggesting that they have a con-

served physiology [62].

Even if most studies are based on the embryonic development of the fly heart, nowadays 
the focus is shifting to the function and structure of the Drosophila adult heart as a model 
of human heart defects. Indeed, the great availability of genetic tools in Drosophila allows 
for the identification of elements important for heart functions and facilitates the analysis of 
mutant isoforms associated with congenital heart defects [63]. The physiological mechanisms 
are conserved among Drosophila and vertebrates supporting the utility of the fly to investigate 
cardiomyopathies and arrhythmias [52]. The improvement of techniques for the measure-

ment of cardiac performance in Drosophila also permits the analysis of the effect of aging and 
the stress response on the heart [64]. Cardiac dysfunction can occur naturally in Drosophila, 
and this phenotype depends on age, just like in humans [64]. Some strategies allow heart 
rate monitoring in response to externally applied electric pacing in order to understand the 
effects of aging in adult flies. Insulin-IGF receptor (InR) and TOR signaling play an impor-

tant role in regulation of age-dependent cardiac performance [65]. Drosophila is also one of 
the most efficient model organism used to discern the mechanism underlying channelopa-

thies and cardiomyopathies as many impaired pathways are evolutionarily conserved [66]. 
Cardiomyopathies affecting Drosophila resemble those of humans both in terms of the genes 
responsible and the resulting effect. Such a similarity among the fly and humans is also found 
in the case of channelopathies and arrhythmias.

Several assay systems are helpful in characterizing Drosophila heart function, such as optical 
coherence tomography (OCT), an imaging of the Drosophila heart tube to observe contraction 
in vivo similar to clinical echocardiography [62]. In addition, semi-automated measurements 
allow researchers to record heart function to quantify cardiac impairment in Drosophila.

Figure 2. Cardiomyotube. Photograph of larval cardiomyotube with the cardiomyocytes visualized by the expression 
of the reporter hand-GFP.
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2.3. Kidney diseases

Despite millions of people suffering from kidney disorders, there is a disconcerting lack 
of therapies available to patients because the primary causes of kidney disorders are 
not completely characterized. Drosophila is advantageous to model renal disorders since 
many genes, proteins, and even some functions of the vertebrate kidney have parallels 
with the fruit fly. Despite many differences due the greater complexity of the human 
kidney, several orthologous genes have an important role in renal development and func-
tion, both in humans and in Drosophila [67]. For example, many genes encoding for elec-
trolyte transporting proteins affected in congenital renal disorders have fly counterparts 
[68, 69].

The insect Malpighian tubules and the nephrocytes are functionally analogous to the verte-
brate kidney; in fact, these two organs in Drosophila guide the metabolite homeostasis and 
the excretory process (Figure 3). Nephrocytes, which surround the heart and esophagus, are 
responsible for filtering the hemolymph, similar to the podocytes in the human glomerulus. 
In addition, nephrocytes have filtration diaphragms similar to the podocyte slit diaphragms 
that work as a filtration barrier in higher organisms [70, 71]. The Malpighian tubules, corre-
sponding to the tubular part of nephrons, are two pairs of elongated and thin tubes connected 
to the hindgut that secrete urine after absorption of water, ions, solutes, and organic metabo-
lites from the hemolymph. The principal cells and the stellate cells are the two main cell types 
in Malpighian tubules involved in excretion [72].

Nephrotic syndrome refers to ultrafiltration dysfunction leading mostly to extra pro-
tein in the urine and deficiency of protein in blood [73]. Given the evolutionary  conservation 
of the  diaphragms and their regulative mechanisms, Drosophila is a good option to 
look into this kind of disease. Some events during the renal development are shared 

Figure 3. Excretory system in larvae. Malpighian tubule and nephrocyte are composing the filtration barrier; hemolymph 
is filtrated by nephrocyte. Nd: nephrocyte diaphragm, fp: foot process, bm: basal membrane, and el: extracellular lacunae.
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between the fly and humans and the molecular pathways are conserved. All the genes 
playing a pivotal role in renal development, such as Kruppel and Cut involved in cell spec-

ification, Dwnt in tubulogenesis, and Sns, a nephrin-like protein, in cell  differentiation, 
have a counterpart in mammals. One of the fundamental phases of Malpighian tubules 
formation is a mesenchymal-to-epithelial transition that resembles the steps of kidney 
development [74]. This makes the fruit fly organ able to provide insights on disorders 
affecting the tubular nephrons such as polycystic kidney disease and renal agenesis [75, 76].  
Drosophila is also useful to study nephrolithiasis, also known as kidney stones, since 
insects also produce stone formations like calcium phosphate and calcium oxalate [77]. 
A simple method exists to score the filtration and the uptake of a secreted fluorescently 
tag ged protein (ANFRFP) that accumulates in nephrocytes to assess the renal function in  
Drosophila [75].

The similarities among the species definitely allow the use of the Drosophila renal structure 
as a model to better understand the basis of human kidney impairments and consequently to 
develop personalized therapeutic agents. Furthermore, immune and inflammatory responses 
are trigger factors of kidney diseases so they should be taken into account when analyzing 
these pathologies [78].

2.4. Cancer and growth

The fly is a simple model to improve the understanding of tumor biology and progression 
[79–83] as the available genetic tools support the analysis of the mechanisms underlying 
growth regulation in an intact epithelium rather than in cell cultures. The advantage is 
remarkable since cell-cell and cell-environment interactions contribute to tissue size regu-

lation. The Drosophila cell cycle can escape the normal control system leading to the typi-
cal cancer hyperproliferation. Reproducing human tumors in Drosophila allowed for the 
identification of many oncosuppressor genes that regulate cell division and differentia-

tion [84]. In the fly, the tumor hallmarks mimic the human ones: autonomous proliferation 
signals and overgrowth, irregular cell morphology, bypassed apoptosis, and metasta-

sis [85]. In spite of these similarities, there are several limitations including lack in flies 
of processes such as telomere maintenance and angiogenesis that participate in cancer  
development.

A great conservation across species is detected in regards to the signaling pathways affecting 
growth. Initial studies using activated proto-oncogenes such as the receptor tyrosine kinase (ret), a 
gene responsible for medullary thyroid carcinoma (MTC), allowed researchers to perform genetic 
screens for suppressors or enhancers of the rough eye phenotype, which indicates an overprolif-
eration of cells in the eye [86]. These studies evolved to include tumors that were induced by the 
activation of growth signaling pathways, such as PI3K and EGFR in glia, which resemble human 
glioma [87], or studies involving tuberous sclerosis, an autosomal dominant disorder character-

ized by benign tumors in multiple organs induced by the loss of function activity of the TSC1 
and 2 tumor suppressor genes [88]. A large number of studies also demonstrated how the Hippo 
pathway, which regulates growth through the activation of Yki, is highly conserved and required 
for cellular proliferation as well as for apoptosis, has a human counterpart that retains sequence 
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and function, and is mutated within the context of cancer [89, 90]. The same goes for Salvador, a 
gene promoting apoptosis, and Archipelago [91–94]. The two organisms also share PTEN, a tumor 
suppressor that plays a crucial role in carcinogenesis both in humans and in flies [95].

New studies defined how the loss of cell polarity could be considered a hallmark of malig-

nancy [96]. Members of discs large (dlg) and lethal giant larvae (lgl) were identified as tumor 
suppressors in the fly by promoting cell invasion if mutated, with a similar role also seen in 
human neoplasm [97]. The role of proteins involved in cellular adhesion, such as Rho1 and 
E-cadherin, was also shown to be conserved and relevant for migration and invasion helping 
the study of the metastatic process [98, 99]. Other well-studied oncogenes in Drosophila that 

promote overgrowth and cell survival are Ras and Notch and were also shown to play a role in 
cellular polarity [100]. Dpp, the homolog of human bone morphogenetic protein/transform-

ing growth factor-beta (BMP/TGF beta), is also responsible for epithelial integrity [101] and 

implicated in a model for cancer in Drosophila. All these parallelisms provide the potential to 
dissect in vivo the interacting patterns causing the tumor growth.

As anticipated, the communication between neighboring cells must be taken into consider-

ation when analyzing a tumor tissue. Competitive interactions occur among cells with different 
growth rates in a process known as cell competition, which was first described in Drosophila 
using ribosomal proteins [102, 103] and then characterized using dMyc, the fly homolog of 
human cMyc [104]. Cells expressing higher levels of Myc behave as supercompetitors: they 
survive and acquire a proliferative advantage inducing apoptosis in the weaker nearby cells, 
termed losers [105–107]. The mechanisms controlling overproliferation and metastasis are com-

parable to those involved in cell competition since in human cancer, cells overexpressing Myc 
acquire the capacity to grow more than normal and to invade the neighboring normal cells. 
Since then, a few additional oncogenes and tumor suppressor genes have been associated with 
a competitive behavior, and cell competition is now thought to have an important role in human 
cancer [108–112]. This similitude underscores the utility of using flies for studying how cells 
compete for survival.

More studies are arising on the connection between the insurgence of tumors and diet or obesity. 
Recent studies linked the growth of prostate tumors and the status of obesity [113]. Caloric restric-

tion reduces the growth of tumor cells in rodent models through reduced systemic insulin and 
IGF-1 signaling [114], while the activation of PI3K induces tumors to be resistant to diet restriction 
[115] suggesting an important relationship between PI3K signaling in tumors and the nutrients 
in the tumor environment. The exact link between obesity and cancer has not yet been estab-

lished and the fly may facilitate this research thanks to the ability to combine obesity and tumor 
models in Drosophila. Insulin signaling is the main regulator of metabolic homeostasis, and it 
is also involved in cancer development and progression [116] but we have yet to understand 
how hyperinsulinemia promotes tumor formation. Interestingly, the oncogenes Src and Ras were 
overexpressed in a Drosophila model of obesity and increasing the level of insulin exacerbates the 
malignant phenotype due to wingless activity [117]. The interplay between obesity and cancer is 
an important area of study to understand the relevance of fat to tumor growth, since fatty acids 
are unable to penetrate the biological membranes and need to be cleaved by lipases (lipolysis). 
Recent studies indicate that in the peritumoural area, an increase in adipose triglyceride lipase 

Drosophila melanogaster - Model for Recent Advances in Genetics and Therapeutics140



(ATGL) that mediates lipolysis results in tumor survival [118, 119]. The ability to manipulate flies 
genetically and the possibility to change the composition of lipids or nutrients in their food will 
likely put Drosophila as a key model to investigate the relationship between obesity and cancer 
and the mechanisms that control cellular overgrowth. Cancer research can only benefit from the 
ability to create specific disease models in Drosophila. This approach lets researchers detect onco-

genes and tumor suppressors, allowing a detailed in vivo analysis of the mechanisms triggering 
cancer. From these findings, drug therapy compounds can then be developed and tested.

2.5. Metabolic disorders

Hepatic diseases affect a large proportion of the population worldwide making it crucial to 
investigate the underlying pathogenic mechanisms that still remain unclear. Identification 
of the molecular defects underlying liver disease requires studies in model organisms, and 
recently Drosophila has been proposed for this purpose [120].

The use of the fruit fly in the study of hepatic disorders is partially restricted due to the 
absence of a homologous organ for the liver. The fat body in Drosophila acts as storage for 
sugar and fat and also performs metabolic functions similar to those of the mammalian hepa-

tocytes, regulated by insulin through an evolutionarily conserved mechanism [121, 122]. 
During starvation, triglycerides are transported from the fat body into the hemolymph where 
they are captured by the oenocytes, clusters of hepatocyte-like cells that are important for 
lipid metabolism [123]. Therefore, some functions of hepatocytes are performed by oeno-

cytes, which are located near the body wall surface and play a prominent role in the fly lipid 
processing. Drosophila homologs of genes specifically expressed in human hepatocytes are 
expressed in larval oenocytes and the fat metabolism pathway is similar among the organisms 
[123]. An interesting aspect regarding lipid metabolism is the interaction between oenocytes 
and fat cells, as oenocytes control lipolysis in fat cells through a feedback similar to that in 
mammals [123]. Underfed Drosophila stores many fat droplets resulting in the accumulation 
of triacylglycerols in the liver, a condition called steatosis, and forms an excellent model for 
understanding human non-alcoholic fatty liver disease (NAFLD) [124]. Moreover, the rela-

tionship between oenocytes and fat cells needs to be elucidated because it contributes to the 
pathogenesis of metabolic syndrome [125], and fly modeling can be useful for this purpose.

It is necessary to improve assays examining the function of the fat body and oenocytes to 
solidify Drosophila as a liver disease model. To date, the analyses are based on evaluating lipid 
accumulation depending on different nutritional conditions. Fly lipid homeostasis can be 
monitored by Raman scattering microscopy that allows for the visualization of the lipid con-

tent in larval oenocytes and in the fat body by in vivo imaging [126]. Oil Red-O and BODIPY 
are dyes permitting the assessment of lipid content [123, 127].

Several proteins that contribute to lipid metabolism in Drosophila, including proteins respon-

sible for lipid storage, transport, and utilization, have counterparts in higher organisms [128, 
129]. This similitude makes the fruit fly helpful in describing the main pathways control-
ling homeostasis and provides an opportunity to examine metabolic disorders affecting 
humans such as diabetes and obesity [122]. For example, the main regulator of sugar and 
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fat metabolism is the nutrient-sensing target of rapamycin (TOR) both in Drosophila and in 

mammals [130]. Flies are able to regulate carbohydrate metabolism by cellular storage of 
excess nutrients. The hormone insulin controls hemolymph sugar levels and maintains car-

bohydrate homeostasis through a phylogenetically conserved signaling pathway [122, 131]. 
Drosophila insulin induces an increase in fat cell mass, just as in mammals, because insulin 
acts on triglyceride storage and on fat body cell number. Shaggy is a serine/threonine protein 
kinase orthologous to glycogen synthase kinase 3 (GSK3), and it is responsible for the lipid 
accumulation in Drosophila fat cells while the transcription factor Drosophila FOXO (dFOXO) 
influences the adipocyte cell number [121]. Both of these key factors are regulated by the con-

served insulin pathway [121]. Dilp2, 3 and 5, members of the Drosophila insulin-like peptides 

(Dilps) are expressed in the insulin-producing cells (IPCs), a cluster of cells in the brain that 

function similarly to human pancreatic β cells [132]. Additionally, the adipokinetic hormone 
participates in fly glucose regulation with a glucagon-like function [55]. Functional changes 
to these metabolic regulators in Drosophila cause a phenotype similar to metabolic impair-

ment as well as affecting body size [132, 133]. The resemblance between Drosophila and mam-

mals helps to elucidate the main mechanisms of metabolic homeostasis involved in common 
pathologies such as type 2 diabetes mellitus (T2DM), which is characterized by insulin resis-

tance, hyperglycemia, and defects in lipid metabolism [134]. High-glycemic diets promote 
obesity, a disorder characterized by excessive fat storage. Drosophila fed a high fat diet store 
fat in the fat body and in the midgut [135]. This condition changes the animal physiology and 
lifespan mainly due to insulin resistance [136, 137]. Moreover, obesity is considered among 
the risk factors for diabetes, cardiac diseases, and several types of cancer [138, 139]. Insulin 
resistance is also related to NFALD, the most frequent chronic hepatic disorder [140]. NAFLD 
originates from metabolic impairment highlighting the strong relationship between the liver 
and metabolism and the subsequent need to examine the pathways linking them [124].

Drosophila has facilitated the study of metabolic pathways thanks to the availability of several 
assays of metabolic function, including some that are available for use only in Drosophila, 
which allow for the quantification of lipids, sugars, ATP, and mitochondria. In spite of the 
anatomical differences between flies and humans, the identification of novel genes and path-

ways in the fruit fly could arrange for new therapies to treat metabolic disease in humans.

2.6. Immunological diseases

The mechanism of the innate immune system is fairly conserved across species, and Drosophila 
is a leading organism for elucidating the process of defense from pathogens and its evolu-

tion [141]. Since the adaptive immune response of vertebrates could hide some aspects of the 
innate immunity, it is beneficial to use Drosophila to detail the regulation of innate immunity 
because this organism does not have an adaptive one [141]. Pathogenic microorganisms, such 
as bacteria, fungi, nematodes, and viruses, can infect Drosophila, priming an immune reaction. 
Despite the greater refinement of mammalian immunity, Drosophila and humans share gen-

eral defense strategies like epithelial barriers, phagocytosis, and antimicrobial peptides. The 
fly’s first line of defense against to pathogens is a physical barrier represented by the epithelia 
of the epidermis, trachea, and gut. Clotting factors in the hemolymph provide a second bar-

rier because they can entrap invaders by means of their protein filaments [142]. Epithelia then 
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release antimicrobial peptides (AMPs) and reactive oxygen species (ROS), triggering a local 
immune response [143, 144]. Beside their toxic activity, ROS are involved in wound healing 
and tissue repair both in Drosophila and mammals [145]. In addition to epithelia, blood cells 
and the fat body are also required for Drosophila immunity. The external agents are phagocy-

tized by hemocytes; the circulating blood cells and different types of hemocytes are involved 
in this reaction. Plasmatocytes are monocyte-like cells, which able to phagocytose pathogens, 
apoptotic bodies, and other foreign particles. Crystal cells, another type of hemocyte, are 
involved in the production of melanin, a protein involved in both encapsulating and killing 
microorganisms as well as being implicated in wound healing. Hemocytes differentiate into 
lamellocytes if a more specialized response is required, and lamellocytes can trap larger para-

sites, producing a cellular capsule around it in a process named encapsulation [146, 147]. In 
Drosophila, the majority of blood cells have phagocytic activity.

Some fly macrophages originate via self-renewing and others from progenitor cells that are 
located in the lymph gland, a specialized hematopoietic organ. The great importance of the 
lymph gland in controlling the blood cell homeostasis makes this Drosophila organ compa-

rable with the hematopoietic stem cell niche in the bone marrow [148, 149]. ROS levels have a 
crucial role in the regulation of Drosophila hematopoiesis [150]. Moreover, the signaling path-

ways regulating blood cell differentiation are conserved from Drosophila to humans [151, 152]. 
These similarities with vertebrate hematopoiesis underscore the utility of the fly to elucidate 
the basis of hematopoietic injury, necessary because an impairment in hematopoietic differ-

entiation and homeostasis causes several diseases such as leukemia. Drosophila has already 
been used to study acute myeloid leukemia, a widespread form of leukemia, in particular to 
identify the genes promoting the disease. AML1 is one of the transcription factors activating 
myeloid differentiation and it has a counterpart in the fly [153]. When AML1 is fused with 
the repressor ETO, the differentiation is inhibited while the proliferation of multilineage pro-

genitors is activated, leading to acute myeloid leukemia. AML1-ETO expression in Drosophila 

causes the same effect, confirming the fly as a good genetic model for leukemia [153, 154].

The great availability of genetic tools in the fly contributed to defining the innate immune 
system and to establishing that it is a specific mechanism. In fact, Drosophila can respond 
specifically to pathogens, discriminating between classes of surface molecules on differ-

ent intruders. AMPs have different targets, for instance drosomycin acts on fungi, defen-

sin on Gram-positive bacteria, and drosocin on Gram-negative bacteria [155]. Moreover, the 
sequences of AMPs are conserved between humans and insects [156]. Not only is the defense 
mechanism evolutionarily conserved, but also is the molecular pattern promoting innate 
immune reactions. Toll and Imd are the two master genes of Drosophila immunity, but FoxO, 

JAK/STAT, and JNK transduction also play a part [157]. After pathogen detection, Toll and 

Imd induce a cascade of events that finally release the antimicrobial peptides in fat body cells 
through the activation of the NF-κB transcription factors Dif, homolog of Dorsal, and Relish, 
respectively [155]. Toll encodes an interleukin 1 receptor-like protein that in Drosophila acts 
in parallel during two different processes: the dorsoventral specification and the immune 
response regulation [158]. Toll is activated by fungi and most Gram-positive bacteria and 
has a pivotal function both in the humoral response and in phagocytosis. Dissecting Toll 

signaling in Drosophila helped to understand toll-like receptors that play an important role 
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in inflammatory responses [159–161]. The Immune deficiency (Imd) signaling is mainly 
involved in the Drosophila reaction to Gram-negative bacterial infection [162]. The flies are 
also helpful in examining the defense against viral infection as they share with humans some 
proteins, named restriction factors, involved in the reaction to viral infection. Restriction fac-
tors, for instance Pastrel in Drosophila, are induced in host cells by virus infection and they 
can recognize specific viral elements, but the mechanism by which they act in insects is not 
very clear yet [163].

In order to examine immunity in the fly, an efficient and simple procedure has been devel-
oped to elucidate the physiological effect after infection and to quantify the pathogen load. 
It consists in scoring bacterial load, fly mortality, and also evaluating the effect on immune 
transcription factors after the direct introduction of bacteria in the fly body cavity, eluding the 
epithelial barrier [164].

The innate immunity contributes to Drosophila homeostasis and it is regulated by endocrine 
and metabolic systems. Since immune dysfunction leads to several human diseases, includ-
ing autoimmune disorders, allergy, and intestinal infections, it is fruitful to use this model 
organism to better understand how all these systems are regulated. The fruit fly is also used to 
investigate the association between the microbiome and host, trying to characterize the resis-
tance and tolerance mechanisms that are conserved in humans [165–167]. Circadian rhythms 
also participate in immune regulation both in Drosophila and in humans providing another 
similarity between organisms [168].

3. Conclusions

As illustrated throughout these two chapters, Drosophila melanogaster has been an invaluable 
tool for unlocking mechanisms contributing to the pathogenesis of many diseases such as can-
cer, diabetes, obesity, neurodegenerative disorders, kidney disease, immunological impair-
ments, and many others. Given the advances in the field of genetics, new tools and techniques 
are continually being developed that will keep flies at the forefront of biomedical research.
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