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Abstract

Characterization of native skin or cultured 3D skin models with respect to permeability 
plays an important role for the development and testing of pharmaceuticals and cosmet-
ics. Extensive efforts have been dedicated to determining the key parameters describing 
permeability and diffusion. Whereas respective methods are well established for native 
skin biopsies, only few are available for 3D skin models, as these have usually much 
lower dimensions. In this chapter, some fundamentals about permeation and diffusion as 
well as state of the art of measurement methods used for skin biopsies are summarized. 
An alternative method for the determination of the permeation in a membrane insert 
system and the use of a modular simulation to support permeability studies is presented 
and discussed.

Keywords: skin models, permeation, diffusion, membrane insert system

1. Introduction

Permeability studies are indispensable to characterize the transport of substances through the 

skin, either natural skin or cultivated 3D skin models. This is evident for dermal drug delivery 

systems, where drugs can be applied in the form of creams or patches on the skin. Furthermore, 

permeability studies play an important role in toxicity tests applied in drug development as 

well as substance testing. In this respect, human three-dimensional skin models have become 

an interesting tool.

Animal experiments are still a common method of testing drugs and also for skin, which is 

ethically controversial, cost-intensive and time-consuming. The fact is that drug testing on 
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human skin is more efficient in comparison to animal skin just like rat, mouse and guinea pig 
[1, 2]. Furthermore, in 2013 the European Regulation (EC) No 1223/2009 entered into force, 

which prohibits animal experiments for cosmetics products. Artificial skin models based 
on human cells are intended to replace animal experiments. Especially the barrier function 

between artificial and human skin can differ, so permeation and diffusion investigation in 
this area is necessary.

Most methods for determination of diffusion and permeability parameters have been devel-
oped for large biopsies and can hardly be applied for small-scale 3D skin tissue cultures. But 

this is indispensable, if multi-well test systems with several samples run in parallel or multi-

organ-chips are applied. Therefore, this chapter will first give a brief overview of standard 
methods used to investigate permeation and diffusion on the skin. Then an alternative method 
based on skin tissue cultures in a membrane insert system is introduced. By this, the perme-

ation coefficient of substances through a skin-tissue barrier can be determined. The diffusion 
coefficient is estimated via parameter optimization performed in COMSOL Multiphysics. This 
software tool helps to describe the physical effects of the experimental set-ups more precisely 
and can further be used to reduce the required amount of experiments significantly.

2. Penetration, diffusion and permeation through the skin

Penetration describes the entering of a substance into the skin. The entering process and depth 

of substance penetration through the skin depends on the physical and chemical character of 

the substance and the skin. The permeation of the skin is the pathway of a substance from the 

surface to the blood vessel. From a scientific point of view, it is the permeation of a substance 
through the skin layers. Diffusion is the physical process of randomized particle movement. 
If a concentration gradient exists, the particles move in the direction of lower concentration.

The human skin consists of three layers, the epidermis, dermis and subcutis. The stratum 

corneum (horny layer) is the upper layer of the epidermis and forms the main barrier of the 

skin. Substances such as drugs and chemicals penetrate through the skin barrier in three pos-

sible routes: the transcellular, the intercellular and the appendageal route (see Figure 1) [3–5].

The transcellular route leads the permeating substances directly through the cells. Here, the 

substances have to pass alternating lipophilic and hydrophilic layers. This is probably the 

Figure 1. Schematic illustration of the three possible pathways of a permeating substance through the stratum corneum.

Biomaterials in Regenerative Medicine246



most difficult way for substances, because they should have lipophilic and hydrophilic prop-

erties. Until now, it is not clear if hydrophilic substances choose this pathway [6].

Alternatively, there is a way through the intercellular spaces between the cells. This is called 

the intercellular route. The intermediate space consists of cholesterols, ceramides and free 

fatty acids [7]. Because of the fatty acids, lipophilic substances can pass easier through the 
intercellular route in contrast to lipophobic substances [8]. Another barrier in this intercellular 

space is the tight junctions [9]. These are networks of strands which are formed by membrane 

proteins connecting cells. They are located between the keratinocytes in the stratum granulo-

sum of the epidermis. An important function of the tight junctions, which are formed during 
the differentiation of keratinocytes, is to protect the skin from water loss [10].

The appendageal route describes the penetration of a substance through skin appendages like 

hair follicles and glands. Since hair follicles and glands build only a small part of the human 
skin, their relevance for skin permeation was neglected for a long time. Its importance was 

shown recently by a researcher as permeation is better in a skin area containing hair follicles 
and glands in comparison to an area without them. A specific characteristic of the hair follicle 
is it reservoir function. In follicles, substances can be stored up to 10 days and can penetrate 

gradually into the skin. This aspect is interesting for drug delivery over the skin. For example, 

alcohol prefers the appendageal penetration route, as it would otherwise evaporate quite fast 

on the surface of the skin. [11–14]

So far the penetration and permeation in the skin was described. To get more in detail, the phys-

ical aspect of diffusion and permeation will be explained. Diffusion is a transport process where 
molecules move via Brownian motion in a volume or area. It is driven by the concentration gra-

dient in the direction from higher to lower concentration [15]. Adolf Fick (1829–1901) verified 
the coherence between heat transfer and diffusion, which led to the Fick’s first law of diffusion:

  F = − D   ∂ C ___ 
∂ x    (1)

According to Eq. (1), the flux  F  in the one partial direction  x  is proportional to the gradient of 

concentration  C .  D  is the diffusion coefficient or diffusivity. [16, 17]

Permeation is an aspect of diffusion. Whereas diffusion is related to the movement of mol-
ecules in a system, permeation describes how fast molecules move through a system. An 

example is the permeation of a substance within a volume   V  
A
    and a donor concentration   c  

D
    

through a membrane with a surface  A . The acceptor concentration   c  
A

    of the permeating sub-

stance on the other side can be detected over the time  t . Eq. (2) for the permeation coefficient  P   

can be derived from the Fick’s law of diffusion [18, 19]:

    
 dc  
A
  
 ___ 

dt
   = P ∙ A   

 c  
D
  
 ___ 

 V  
A
  
    (2)

This equation can only be used for   c  
D
   ≫  c  

A
   . With respect to skin, the permeation coefficient is 

the preferred parameter, as it is easier to measure compared to the diffusion coefficient. Due 
to the different layers of the skin, permeation and diffusion coefficient changes all the time 
from layer to layer.
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3. State of the art for investigation of penetration, diffusion and 
permeation within the skin

To understand and investigate diffusion and permeation of the skin biopsies, several methods 
have been established. Some are summarized in the following.

The Franz diffusion cell is a well-known device to measure the permeation of a substance 
through a skin biopsy. This device consists of two chambers where the skin biopsy (or any 

other barrier) is fixed in between. The test substance can be applied to the top chamber 
(donor) of the skin; it permeates through the barrier into the bottom chamber (acceptor). The 
fluid in the bottom chamber is mixed by means of a magnetic stirrer. On this side, samples can 
be taken and the concentration can be analyzed. The concentration of the acceptor is plotted 
over the time and the permeation coefficient can be calculated according to Eq. (2). The whole 
system can be temperature-controlled. The usual size (height) of a Franz diffusion cell is in 
the range of 19–179 mm. Besides permeation investigation, this system is also used to test the 

quality of skin models and the effects of pharmaceutical substances on the skin. [18, 20–26]

Fluorescence recovery after photobleaching (FRAP) is a method to measure molecular diffu-

sion in tissues or gels, mainly for high molecular weight compounds. For this, the substance 

to be analyzed must be labeled with a fluorochrome. Mostly fluorescence-labeled proteins 
or FITC-dextranes (fluorescein isothiocyanate-dextranes) with different molecular sizes are 
used. The tissues or gels have to be soaked with this substance. This can be realized by storing 

the material in the fluorescence substance for some days or in case of a gel, to directly polym-

erize in the fluorescent substance. Then, a confocal laser is used to bleach out a certain area 
(mostly a line or a point) in the material. Because of diffusion, bleached molecules will move 
and change their position with fluorescent particles and the fluorescence recovers. After the 
bleaching process, the area will be scanned several times. The recovery time of fluorescence 
intensity is used to determine the diffusion coefficient of the substance in the material. For 
this, software for image analysis is used. [27–30]

Further examples for imaging methods for the determination of diffusion of molecules in skin 
are Fourier-transform-infrared (FTIR) spectroscopy [31, 32], two-photon fluorescence correla-

tion spectroscopy in combination with fluorescence correlation spectroscopy (FCS) [33, 34] 

and optical coherence tomography [35]. These methods are noninvasive and nondestructive. 

Furthermore, some of them can detect molecules without fluorescence labeling. One big dis-

advantage is the equipment. For these imaging methods, special microscopes or also cost-

intensive tomographs are needed.

A method to investigate the penetration process of substances into the skin is tape stripping. 

After treatment of the skin with the substance of interest the stratum corneum is ripped of 

layer by layer with an adhesive film. Then, the amount of the substance can be analyzed. For 
this, there are different methods to determine the concentration of the substance. One method 
is to detect the substances directly on the film, for example titanium dioxide can be analyzed 
with X-ray fluorescent measurement and fluorescent-labeled substances can be detected via 
laser scanning microscopy. Another possibility is to remove the skin layer from the film and 
apply standardized analytical methods to determine the substance concentration. With tape 
stripping it is possible to observe where the substance of interest is localized and how deep 
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they can penetrate into the skin. It is minimal invasive and possible to investigate the penetra-

tion directly on human skin. A disadvantage of this method is the undefined thicknesses of 
the stripped layer. It varies from experiment to experiment and differs with the skin model or 
skin type. The thickness can be estimated by weighing. [36–39]

As mentioned before, the above methods all together provide a detailed characterization of dif-

fusion and permeation effects within the skin. But most of them can hardly be adapted to skin 
tissue models used in drug and substance testing. Here usually small culture devices, e.g. 12- or 

96-well plates are preferred, as they allow for handling of a large number of samples in parallel. 

Furthermore, most methods require treatment of the sample in one or the other way. Therefore, 

it is quite difficult to determine the time-depending changes of diffusion and permeation.

4. Skin tissue models

The need to evaluate skin permeation, test cosmetic products and toxicologically screen topi-

cally applied compounds is evident. Historically, several millions of animal experiments have 

been performed worldwide to address this purpose [40]. Since animal experiments are under 
massive debate, ethical and regulatory issues, but also severe differences between animal and 
human data pushed the development and commercialization of diverse in vitro skin models 

[41, 42]. Human skin equivalents (HSEs) can be categorized into two main groups: the epider-

mis-only and full-thickness models. For both, the differentiation of keratinocytes and hence 
development of the various layers of the epidermis is important to model actual skin barrier 

properties more closely. In this context, the direct exposure to air as well as the culture media 

that supply nutrients for cell growth and differentiation from below has been found to be 
beneficial [43]. Growing cells on a porous membrane is one of the most commonly used ways 

to accomplish this air-liquid interface culture. According to the Organization for Economic 
Co-operation and Development (OECD) test guideline 431 (skin corrosion) and 439 (skin 
irritation), currently validated skin models include EpiSkin™ (L’oreal, France), EpiDerm™ 
SIT (MatTek Corporation, USA), SkinEthic™ RHE (SkinEthic laboratories, France), EpiCS® 

(CellSystems, Germany) and LabCyte EPI-MODEL24 SIT (Japan Tissue Engineering Co., 
Japan). These 3D skin models are all composed of one cell type only, the keratinocytes, mim-

icking the epidermis of native human skin and are especially advantageous with respect 

to high reproducibility [44]. However still not validated, there are also commercially avail-

able full thickness skin models composed of an additional dermal layer (e.g., GraftSkin®, 

EpiDermFT®, and Pheninon®). The models described are nowadays widely used for animal-

free tests in drug development as well as, the chemical and cosmetics industries.

5. Determination of permeation and diffusion coefficients in 
membrane insert systems via measurement and simulation

A common method for in vitro cultivation of skin models is the use of a membrane insert 

system. This system consists of a plastic vessel with a permeable membrane at the bottom. It 
enables the cultivation of skin tissue models in airlift on the membrane and guarantees the 
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supply of nutrients from below. As the membrane insert system has two separate chambers, 

it can be used for permeation studies similar to the Franz diffusion cell. In the following, an 
experimental procedure for the determination of permeation coefficients in Transwell® sys-

tems (12 and 96 well) and simulations with COMSOL Multiphysics for estimation of diffusion 
coefficients will be discussed. Details can be found in [53].

5.1. Measurement and simulation.

The scheme of a permeation experiment in a membrane insert system is shown in Figure 2. 

The tissue barrier is established on the membrane. It is composed of agarose gel or 3D tissue 

to validate the method. The 3D tissues consist of a collagen matrix with human fibroblasts 
within and HaCaT cells on the top of the matrix. On top of the barrier, the donor is applied. 
The donor contains the substance to be analyzed, which permeates through the barrier. The 

acceptor, which collects the permeating substance, is located on the other side of the mem-

brane in the receiver vessel. Temperature, humidity and mixing are parameters that influence 
the permeation and should be kept constant. It is recommended to perform the experiment on 

a shaker in an incubator with 37°C and ≥90% humidity (conditions for human cell culture). To 
avoid hydrodynamic pressure, the fluid surface in the insert (donor) and in the receiver ves-

sel (acceptor) should be on the same level. The used volume for the experiment in 12 and 96 

Transwell® systems is shown in Table 1. Sampling, like in the Franz diffusion cell, is difficult 
because of the small volume in the acceptor. A solution is the use of fluorescence-labeled sub-

stances, by which the permeate concentration can be detected via fluorescence measurement 
in the receiver vessel. A more elaborate possibility is to run several permeation experiments 

in parallel and take a sample from one vessel per time point. Then, the concentration of the 

substance can be measured analytically.

The permeation experiment was simulated with COMSOL Multiphysics. This program is 
based on the finite element method and offers different physic simulation modules. This 

Table 1. Liquid volume in the acceptor and the donor in different membrane insert systems with a barrier of 2 mm 
thickness.

Figure 2. Schematic sketch of a membrane insert system.
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structure enables the computation of different physical problems in one simulation. The 
permeation experiment was simulated with the module “transport diluted species”, which 

uses the Fick’s law to simulate diffusion processes. In order to determine the diffusion coef-
ficient, a parameter optimization was performed with the “optimization module”. Some 
simplifications have to be done in order to simulate the experiment. In the experiment, the 
permeating substance passes through a barrier and a membrane. For the simulation, these 

two phases were resumed as one homogenous material. It is not possible to resolve the dif-

ferent phases, as investigations that are more detailed would be necessary. The diffusion 
coefficient of the permeating substance in the liquid phases (in donor and acceptor) was 
determined in preliminary mixing tests and was found to be 1 × 10−9 m2/s. This parameter 

represents the molecular distribution in the mixing process. Furthermore, the geometry of 

the membrane insert system was simplified. In reality, the system is slightly conical. The 
simplified geometry is a cylinder. All boundaries of the geometry were set as “no slip”. The 
concave surface of the agarose gel was approximated with a spherical shape. In Figure 3, 

the geometry and the mesh of the 96- and 12-well Transwell® systems are shown.

5.2. Influence of different settings and validation of the system.

Different membrane insert sizes influence the permeation within the system. Investigations 
with fluorescein sodium salt and 2% agarose gel in 96- and 12-well membrane insert systems 
are shown in Figure 4a. The time course of the acceptor concentration in the 12-well system 

was steeper in comparison to the 96-well system. Therefore, the fluorescein sodium salt per-

meates faster through the barrier in the 12-well system compared to the 96-well system. A 

reason for this is the concentration gradient in the gap between the membrane and the bot-

tom of the receiver vessel. Because of the ratio “volume to permeation surface” and the gap 

size, the concentration will be balanced faster in case of the 12-well system. The gradient 

can be reduced by increasing the mixing frequency and amplitude. However, this is limited 

due to spillover of the liquid. By simulating these experiments, the different concentration 
distributions below the membrane can be visualized. In Figure 4c and d the concentration at 

different time points is plotted over the length below the membrane from the middle point 
to the edge of the receiver vessel (see red line on Figure 4b). The concentration difference 
between the middle and edge in 12-well systems is higher than that in 96-well systems. This 

indicates a better and faster concentration balance in the larger system, which explains the 
accelerated permeation.

The reproducibility of the suggested method is an important aspect. The permeation coef-

ficient determined in different permeation experiments with fluorescein sodium salt through 
2% agarose gel differed up to 40.9%. Although the value seems to be quite high, it is still 
within the range of deviation of permeability experiments with Franz diffusion cells reported 
in the literature [24]. It was found that small concentration variations during the preparation 

of the donor substance can cause large variation. By using one stock solution for different 
experiments, the deviation can be reduced to 29%. Further reasons for the deviation can also 
be small pipetting errors and variations of the barrier, for example, variation of the gel con-

centration or volume.
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The membrane itself also has an influence on the permeation. Same experiments as described 
above were carried out with different membranes in a 12 Transwell® system. Membranes con-

sisting of polycarbonate (PC) with 0.4 and 3.0 μm pore size showed a quite similar permeation 

coefficient of 8.03 and 8.1 × 10−8 m/s. For polyethylene (PE) membranes with 0.4 μm pore size 

the mean value of the permeation coefficient was 5.94 × 10−8 m/s and for PE with 3.0 μm pore 

size it was 8.59 × 10−8 m/s (see Figure 6a). Except for the PE membrane with pore size of 3.0 μm 

there is no significant difference. The reason for this is the pore density of the membrane. In 
total, the pore surface of PE membranes with 0.4 μm pore size is 0.25 mm2 per 1 cm2 and for 

the other membranes 6.3–7.05 mm2 per 1 cm2. The material of the membrane seems not to 

influence the permeation.

The suggested method is sensitive enough to determine a cover layer of HaCaT cells of 3D 

skin tissue. To prove this, in a permeation experiment different 3D tissue model was tested in 

Figure 3. Geometry of the 96 a) and 12 b) Transwell® system and the used mesh c) and d) implemented in COMSOL 
Multiphysics.
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a 12 Transwell® system. The 3D tissues consisted of a collagen matrix with different constel-
lations of cell layers. Human primary fibroblasts were integrated into the collagen matrix and 
HaCaT cells were seeded on the top. A representative example of the 3D tissue is shown in 

Figure 5.

The results show that the permeation coefficient decreases when additional cell layers are 
added in the tissue model. The permeation coefficient of fluorescein sodium salt through col-
lagen matrix (without cells) is 2.18 × 10−8 m/s, 1.85 × 10−8 m/s in tissue models with fibroblast 
and 1.67 × 10−8 m/s in models with HaCaT cells (see Figure 6b). These results represent very 

well the barrier function of keratinocytes of the skin [3].

The particle size influences the permeation behavior through gels and biomaterials. It is well 
known that smaller molecules permeate faster through a matrix mesh than larger particles. 

This was already observed for permeation experiments through sclera [19], human epidermal 

membrane [45], human skin [33] and rat skin [3]. Fluorescein sodium salt and fluorescein iso-

thiocyanate-dextrans (FITC-dextran) were used to vary the molecular size from 376 g/mol up 

Figure 4. Permeation in 12- and 96-well membrane insert systems. (a) Experimental results of permeation of fluorescein 
sodium salt through 2% agarose. (b) Geometry of the 12 and 96 Transwell® system for the simulation and the position 

of the concentration measurement. (c) and (d) the concentration distribution at different time over the length at the red 
lined position on (b) ((c) 96 and (d) 12 Transwell® system).
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to 40,000 g/mol for permeation experiments in a 96 Transwell® system. The results show simi-

lar correlations between permeation coefficient and molecular size as the studies mentioned 
above. There is almost a linear relationship between these two factors, which is well described 

by the Navier–Stokes equation (see Figure 7). An exception is FITC-dextran 40,000 g/mol, 

which deviates from the linearity.

These experiments were simulated with COMSOL Multiphysics, where the diffusion coef-
ficient is fitted on the experimental data. The simulation based on Fick’s law is quite accurate 
for the permeation of substances with a small molecular size from 376 g/mol up to 4000 g/

mol. The simulation shows good agreement with the experiment which is exemplary shown 

Figure 5. Hematoxylin and eosin stain of 3D tissue model consisting of collagen matrix with fibroblast and HaCaT 
seeded on the top.

Figure 6. Permeation through different membranes and 3D skin tissues. (a) Results of permeation experiment with 
fluorescein sodium salt through 2% agarose gel on different membranes (n = 3). The 12 Transwell® system was used and 

membranes consisting of polycarbonate (PC) and polyethylene (PE) with pore sizes of 3.0 and 0.4 μm were tested. (b) 

Results of permeation experiments with fluorescein sodium salt through different 3D tissues in a 12 Transwell® system 

(n = 6). The 3D skin tissue consisted of collagen (Col.), collagen with primary human fibroblast (Col. + F.), collagen with 
HaCaTs (Col. + H.) and collagen with primary human fibroblast and HaCaTs (Col. F. + H.).
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in Figure 8a. In the case of larger molecular size, the simulation is different from experimental 
results. A closer look shows that the experimental data increased and flattened faster com-

pared to the simulation (see Figure 8b). A possible reason for this effect could be the presence 
of particle size distribution in the substance. The migration of smaller particles reduces the lag 

time in the beginning of the permeation process, where large particles can increase the friction 

and slows down the diffusion. Especially the second effect leads to abnormal diffusion [46, 47]. 

This cannot be simulated with equations based on Fick’s law.

Figure 7. Permeability coefficient plotted over stokes radius. Results of permeation experiment in 96 Transwell® system 

with fluorescein sodium salt and FITC-dextran through 2% agarose gel.

Figure 8. Simulation of permeation experiment with different molecular sizes. Results of permeation experiments 
and simulations with COMSOL Multiphysics of (a) fluorescein sodium salt and (b) FITC dextran 10,000 mg/mol in 96 
Transwell systems through 2% agarose gel.
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6. Conclusion and prospective

The studies have shown that the membrane insert system is a possible alternative for per-

meation studies. An advantage of the system is the small size. The membrane insert system 

of 96-well plates from CORNING has a cultivation surface of 0.143 cm2 and a height of 2 cm. 

This reduces significantly the number of cells, materials and substances needed for the culti-
vation. In comparison to the Franz diffusion cell, the handling of such a system is easier and 
one experiment can be run with a large specimen number. A time-intensive mounting process 

of the samples (skin) is no longer required and the experiment can directly execute in the 

system. The sensitivity of this system is good enough to differ between 3D tissues as well as 
different cell layers and to detect different molecular sizes of the substance.

It should be considered that the permeation is detected through a membrane and the size of 

the system influences the permeation properties. The specimen has to cover up the whole 
membrane, otherwise the substance will pass by. Unlike the imaging and stripping method, 

it is not possible to measure the diffusion and penetration inside the membrane insert system. 
Alternatively, the diffusion can be calculated or estimated by simulation. Furthermore, this 
method can be used to investigate changes in the permeation behavior of the skin model dur-

ing the cultivation or it can also be adapted for other systems, which use membrane insert 

systems. An example is the Two-Organ-on-a-Chip, a variant of TissUse’s Multi-Organ-Chip 
platform [48–52]. This device enables the integration of skin models in a membrane insert sys-

tem. Therefore this method can be used to investigate the permeation process into an organ-

on-a-chip system in order to understand the substance distribution.

With the help of the simulation in COMSOL Multiphysics, it is possible to calculate the dif-
fusion process in the membrane insert system. It is limited to small particle sizes and normal 

diffusion described by Fick’s law. Otherwise, it is possible to optimize the simulation by inte-

gration of abnormal diffusion. Furthermore, the simulation is an attractive tool to support 
the experiments. On the one hand, it can be used to understand physical phenomena and to 
reduce experimental effort. On the other hand, it is modular and can be integrated into a more 
complex system to support permeation studies.
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Appendices and nomenclatures

EC  European regulation

FITC dextran fluorescein isothiocyanate-dextrans
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FRAP  fluorescence recovery after photobleaching

FTIR  Fourier-transform-infrared

HaCaT  human adult low calcium high temperature

HSE  human skin equivalents

OECD  organization for economic co-operation and development
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