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Abstract

The polymetallic deposits in the Nappes zone, Northern Tunisia occur in the contact 
between Triassic-Miocene/Eocene carbonate rocks and in the Upper Cretaceous lime-
stones. They can be divided into two groups: one is Pb-Zn mineralization with Hg and As 
in fractures with local intrusions of Neogene volcanics (e.g., Fej Hassene, Oued Maden), 
and the second is stratabound and karst Pb-Zn mineralization with arsenic and anti-
mony hosted in the continental Neogene strata or situated immediately below them (Aïn 
Allega, Sidi Embarek, Jebel Hallouf-Sidi Bou Aouane, Bazina, Jalta and Jebel Ghozlane). 
Pb-isotopic compositions of galenas display a homogeneous Pb isotope signature. 
Generally, Pb isotope ratios on ores from the Jalta, Jebel Ghozlane, Jebel Hallouf, Oued 
Maden and Fedj Hassene plot between samples of the Late Miocene igneous rocks and 
the sedimentary country rocks of the Nefza area and between the upper crust and oro-
gen curves. This intermediate position may imply potential mixing between end-member 
sources. Because the Pb-Zn mineralization is fault-controlled and spatially associated 
with the post-nappe Miocene series and the calculated model age is about 10.86 Ma, one 
is led to argue that the mineralization in the Nappes zone deposits occurred during the 
last paroxysmal phase of the Alpine folding (i.e., Miocene age).

Keywords: Pb isotopes, carbonate-hosted Pb-Zn deposits, mixing sources,  
Upper Miocene age, Nappes zone

1. Introduction

The Nappes zone (Figure 1), which constitutes the eastern prolongation of the Atlas orogenic 

belt of North Africa, is composed of thrust sheets that resulted from a major Neogene tectonic 
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event [2]. The thrust sheets moved during the Early to Middle Miocene from NW to SE along 

regional westerly dipping fault planes in shear zones that vary in strike from E-W to SW-NE 

[2, 3]. The Nappes zone comprises Mesozoic and Tertiary sediments and is characterized 

by a major thrust sheet of Oligo-Miocene “Numidian” flysch that overrides younger flysch 
strata mainly of Cretaceous and Eocene age [4]. This zone includes the following units: (1) the 

Numidian nappe consists of a thick series of siliciclastic flysches made up of sandstones and 
argillites, which is of Oligocene to Burdigalian age; (2) the Tellian units dated Late Cretaceous 

to Early Eocene. It is composed of three formations: the Abiod (marl and limestones), El Haria 

(marl and shale) and Metlaoui (limestones); and (3) the Miocene-Pliocene Molasse includes 

coarse conglomerates and red sandy shales [4]. The Late Miocene major orogeny resulted 

in the Neogene basins along NNE-SSW directions and the emplacement of the nappes. This 

compressive event was followed by the development of longitudinal faults and bimodal volca-

nism [5, 6]: (1) granodiorite and rhyodacites were likely emplaced in a Serravallian-Tortonian 

Figure 1. Geological zones, Triassic exposures and Pb-Zn deposits in Northern Tunisia (adapted from Jemmali et al. [1].)

Brown circle: Nappes zone Pb-Zn-Hg (As) deposits. Green circle: Domes zone Pb-Zn (Ba-Sr) deposits. Yellow circle: Reef 

Aptian zone Pb-Zn deposits. Blue circle: F-Ba (Pb-Zn) deposits. 

Contributions to Mineralization112



compressive context, and (2) basalts may relate to the following Messinian rifting event. In 

the Nappes zone, the Triassic outcrops (variegated clays, sandstones, dolostones, gypsum 

breccias) often occur at the base of the overlapping units (Aïn Jantoura, Hédil), as well as dia-

piric units cross-cutting the allochthonous formations (structural trend of Ghardimaou-Ain 
Draham-Cap Serrat, Jebel Zouza) [7].

The Nappes zone hosts numerous polymetallic deposits (Figure 1). The mineralization is 

associated either with the Late Miocene orogeny (emplacement of the nappes) or with the 

Neogene volcanism. Two groups of deposits are present there: (1) stratabound and karst 

Pb-Zn mineralization with arsenic and antimony hosted in the continental Neogene strata or 

situated immediately below them (Aïn Allega, Sidi Embarek, Jebel Hallouf-Sidi Bou Aouane, 

Bazina, Semene, Jalta, Bechateur, Ain el Bay, Chouichia) and (2) Pb-Zn mineralization with 

arsenic and mercury in fractures with local intrusions of Neogene volcanics (Fej Hassene, 

Oued Maden, Jebel Arja).

The current study represents a synthesis of Pb isotope data collected from papers published by 

Jemmali et al. [1, 8–10] of Jalta, Jebel Ghozlane, Jebel Hallouf, Oued Maden and Fedj Hassene 

deposits in the Nappes zone (Figure 1) and comparison to previously published Pb isotope 

ratios of Neogene igneous rocks and sedimentary cover rocks from the same zone. This will 

help constrain the source(s) of metals and the possible age of mineralization.

2. Setting and characteristics of the Nappes zone Pb-Zn deposits: 
case study

2.1. Jalta

The lithostratigraphic units consist mainly of (Figure 2): (1) the Triassic series consist of cha-

otic shales and dolomitic limestones containing gypsum and alunite; (2) the Upper Cretaceous 

and Eocene series are composed of marls and limestone, respectively; (3) Middle to Upper 

Miocene strata are represented by continental, detrital facies composed of gray conglomerates 

and lenticular limestones, lacustrine limestones, and blue marls alternating with conglom-

erates, overlying the Triassic, Cretaceous and Eocene deposits; (4) the continental Pliocene 

series lies on the Upper Miocene conglomerates; and (5) the Quaternary continental deposits 

are represented by alluvium.

At the regional scale, the location of the basin of Jalta is mainly controlled by two main struc-

tural trends [12]: N30 Ras El Korane-Thibar major fault on the northwest side and Messeftine 

N-S fault on the eastern side accompanied on the southern side by the secondary N140E 

Mateur fault. At the deposit scale, the main structural features in and around the Jalta district 

consist mostly of strike-slip faults and few normal faults [4, 13], having different orientations 
(Figure 2). NE-SW trending sinistral strike-slip faults with N40-N60 exist far from the Jalta 

mine. In the northwestern part of the district, NE-SW trending sinistral strike-slip faults are 

considered as a deep fault where Triassic rocks are in contact with Miocene series. NW-SE 

trending dextral strike-slip faults with N120-N150, with distensive components, cut the Jalta 
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mine and other areas around it. These sinistral and dextral strike-slip faults host mineraliza-

tion. In contrast, E-W trending normal faults, with a tectonic style of horst-and-graben struc-

tures, are more expressed outside west of the district and do not host Pb-Zn mineralization. 

All these sets of faults, especially the sinistral strike-slip faults, are due to the N-S directed 

deformation that affected the region during Miocene [4].

The Jalta mine has produced 75,000 tons of ore grading 59% Pb. The Pb-Zn mineralization in 

the Jalta deposit ([1, 10]; Figure 2) is located mainly near and along the contact of the Triassic 

rocks with the Miocene series. The mineralization mainly hosted by brecciated Triassic dolos-

tones is composed of galena, barite and minor pyrite, jordanite and sphalerite occurring as 

veins, stockworks, disseminated, karstic and breccias cement [10].

2.2. Jebel Ghozlane

Based on several studies [14, 15], the stratigraphy of Jebel Ghozlane consists mainly of (Figure 3): 

(1) the Triassic breccias composed of variegated clays, sandstones and dolostones; (2) the Upper 

Figure 2. Geological map of Jalta district (adapted after Crampon [11].).
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Cretaceous rocks consist of massive limestones with marl intercalations; (3) the Maastrichtian-

Paleocene is represented by a marl-bearing series; (4) the Lower Eocene rocks consist of marine 

limestones with Globigerina sp.; (5) the Upper Eocene consists of marls and (6) the Quaternary 

is represented by marine facies. NNE-SSW trending dextral strike-slip fault characterizes the 

contact between the Triassic and Eocene at Jebel Ghozlane, but in other parts of the area the 

main contact between them is an unconformity. At Jebel Daouda, thrust faults trending NE-SW 

separate the Upper Eocene rocks from the Cretaceous and Triassic rocks, and the Upper Eocene 

rocks from the Lower Eocene rocks at Jebel Touila.

The Jebel Ghozlane deposit, which is among the largest of the Pb-Zn deposits in and near the 

Bechateur district, is situated along faults and a thrust-sheet boundary (Figure 3). It produces 

ca. 6680 tons of Pb and 53,128 tons of Zn pure metals. The deposit is hosted by Triassic dolos-

tones and Lower Eocene dolomitic limestones. The orebodies, which occur as vein, dissemina-

tion and breccia styles, are localized along N150-160 dextral strike slip-fault contact between 

the Triassic and Eocene rocks (Figure 2). The ore of the deposit consists of galena, sphalerite 

and minor pyrite, with barite and celestite as gangue minerals.

Figure 3. Geological map of Jebel Ghozlane. (Adapted from Melki et al. [15].)
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2.3. Jebel Hallouf

The stratigraphy of Jebel Hallouf consists of a Triassic-Miocene series overlain in fault con-

tact by the Kasseb Paleocene-Oligocene allochthonous unit, which in turn is overlain by the 

Neogene post-nappe continental series [4, 16] (Figure 4). The Triassic series consists of dolo-

mitic breccia and evaporates, unconformably overlain by Lower-Upper Cretaceous clay-rich 

limestones. Upper Cretaceous-Paleocene series consists mainly of marls, which in turn are 

overlain by Eocene limestones. The overlying Oligocene-Miocene strata are made of sand-

stones. Five successive extensional and compressional episodes have characterized the tec-

tonic evolution of Jebel Hallouf [17]: NE-SW-trending upright isoclinal open to closed folds, 

and a succession of closed-to-tight N30°–40°E oriented saline rock-cored anticlines and broad 

E-W to N-S-trending open-to-gentle synclines, truncated and/or accompanied by a series of 

ENE-WSW, NW-SE, E-W and N-S trending faults.

The Jebel Hallouf deposit was mined by the SOTEMI mining company between 1965 and 

1986 and has produced since its exploitation in 1910 the equivalent of 326,541 tons of Pb and 

14,207 tons of Zn metals. Mineralization is hosted by Campanian-Maastrichtian limestones. 

The style of mineralization consists of cavity-filling of karstic features that cut the mentioned 
host rocks on the north side of the Jebel Hallouf anticline. Vertical cavities developed from 

WSW-ENE and NNW-SSE joints were partially filled up by stratified mineralized calcite. The 
mineral association consists of calcite, sphalerite, galena, jordanite and pyrite.

2.4. Oued Maden

The lithostratigraphic units consist of a series of stacked nappe structures produced by 

regional westward intra-Miocene tangential over-thrusting and Upper Miocene to Pliocene-

Quaternary post-nappe tectonic phases [18]. Two main nappes are recognized [4]: (1) the 

Figure 4. Geological map of Jebel Hallouf (adapted from [16].).
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Numidian nappe consisting of Oligocene clay-rich sandstones and (2) the Ed-Diss nappe 

comprising Senonian (Upper Campanian-Lower Maastrichtian) and Eocene sediments. 

The autochthon beneath these nappes displays a normal stratigraphic sequence consisting 

of Santonian-Maastrichtian (Late Cretaceous) rocks (Figure 5). The Upper Santonian-Lower 

Campanian consists of thinly bedded gray marls with rare intercalations of marly limestones. 

These series are in fault contact with the underlying Triassic rocks and are overlain by thick 

succession of marls and limestones of Upper Campanian-Lower Maastrichtian age, followed 

by thick gray sulfide-rich limestones of Middle Maastrichtian age.

From 1900 to 1955, about 11,500 tons of Pb and 89 tons of Cu pure metals (with ca. 350 g/t Ag) 

were produced from open pit and underground workings [18]. Mineralization occurs as open-

space fillings of veinlets and stockwork structures superimposed on the NE-SW-trending Groura 
and Ferza faults cutting across the Triassic dolostone and the Campanian-Maastrichtian lime-

stone country rocks. The Groura and Ferza faults (Figure 5) are part of a regional major structure 

referred to as the Ghardimaou-Cap Serrat fault (Figure 1). The ore mineralogy is dominated by 

galena, sphalerite, pyrite and sulfosalts (mainly tetrahedrite).

2.5. Fedj Hassene

The lithostratigraphic units of Fedj Hassene (Figure 6) consist of: (1) Triassic series consist of 

limestone, dolostone and gypsum-bearing red argillite breccia, locally truncated by regional E-W 

striking faults; (2) Aptian gypsum-bearing dolomitic breccias; (3) Albian marls and limestones; 

(4) Cenomanian limestones and marls capped by a Turonian succession of marls and limestones; 

(5) Eocene nummulitic limestones; (6) Oligocene marls and sandstones; and (7) continental 

Neogene marls, sandstones and conglomerates. The Cretaceous ends with thick Coniacian-

Santonian marls followed by a succession of Campanian-Maastrichtian marls and limestones. 

The major structure in the Fedj Hassene deposit is the Ain el Kohla ESE-WNW-trending fault.

Figure 5. Geological map of Oued Maden. (Adapted from Slim-Shimi [19].)
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During the lifetime of the mine that exploited the Fedj Hassene deposit until 1992, about 

55,600 tons of Zn and about 300 tons of Pb pure metals have been produced. The Zn-Pb min-

eralization mainly occurs as ESE-WNW-trending veins and stockworks enclosed in Upper 

Cretaceous limestones. The mineralization consists mainly of sphalerite and galena with 

minor amounts of pyrite and chalcopyrite.

3. Data source

The lead isotopic compositions obtained on galenas from the abovementioned deposits are 

listed in Table 1 and plotted on conventional covariation diagrams in Figures 7 and 8. The Pb 

isotope ratios range between 18.695 and 18.894 for 206Pb/204Pb, 15.661 and 15.684 for 207Pb/204Pb, 

and 38.718 and 38.917 for 208Pb/204Pb. When it is plotted on conventional isotopic diagrams, 
Pb in the ore samples from the two deposits (Jalta and Jebel Ghozlane) defines two distinct 
fields (Figures 7 and 8). However, the radiogenic nature of the Pb characterizes the Oued 

Maden. The ore samples are quite homogeneous for each deposit and have higher 206Pb/204Pb 

values than samples from the Late Miocene igneous rocks of the Nefza area. The 207Pb/204Pb 

versus 206Pb/204Pb ratios plot between the orogene and upper crustal curves but close to the 

upper crustal reservoir in the plumbotectonics model of Zartman and Doe [22] (Figure 7), 

whereas the 208Pb/204Pb ratios versus 206Pb/204Pb plot slightly above the orogen curve. The 

narrow range of data may suggest a well-mixed source (see discussion). The compositional 

variation of Jalta and Jebel Ghozlane (two distinct fields), Jebel Hallouf, Oued Maden and 
Fedj Hassene may be due to an input of Pb from different sources and mixing of multiple 
metal-bearing brines. The samples from Jebel Hallouf, Jalta, and Jebel Ghozlane suggest ore 

deposition from a similar hydrothermal fluid. A comparison of the Pb isotope ratios of ore 
samples in the studied deposits has been made with previously published Pb isotope values 

of Late Miocene igneous rocks and sedimentary country rocks from the Nefza area (Figure 7).  

Some of the ore samples have Pb isotope ratios that plot very close to previous results by 

Decrée et al. [21].

Figure 6. Geological map of Fedj Hassene. (Adapted from Sainfeld [20].)
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Deposit name 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb

Jalta 18.8210 15.6770 38.8740

18.8230 15.6760 38.8750

18.7200 15.6650 38.7300

18.8200 15.6740 38.8708

18.8510 15.7290 39.0610

Oued Maden 18.8900 15.6800 38.9070

18.8940 15.6840 38.9170

18.8840 15.6750 38.8880

Fedj Hassene 18.7920 15.6660 38.8490

18.7880 15.6630 38.8620

18.7880 15.6630 38.8380

Jebel Hallouf 18.8200 15.6780 38.9140

18.8200 15.6800 38.9130

18.8200 15.6760 38.8690

Jebel Ghozlane 18.7140 15.6680 38.7250

18.7030 15.6680 38.7430

18.7020 15.6670 38.7390

18.7020 15.6670 38.7320

Table 1. Lead isotope composition of galena from Jebel Ghozlane [1, 8], Jalta [1, 10], Oued Maden, Fedj Hassene and 

Jebel Hallouf [8].

Figure 7. Plots of 207Pb/204Pb vs. 206Pb/204Pb for the Pb-Zn deposits in Jalta, Jebel Ghozlane, Jebel Hallouf, Oued Maden 

and Fedj Hassene compared to the Late Miocene igneous rocks and sedimentary country rocks from the Nefza area [21]. 

Curves of growth trends for Pb isotope ratios are from the plumbotectonic model of Zartman and Doe [22].
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4. Discussion

4.1. Source(s) of metals

The restricted range of isotopic ratios in the studied ore deposit cluster may suggest that Pb 

originated from a well-mixed source. Overall, the Pb isotope ratios of ore samples plot within 

the field defined by Late Miocene igneous rocks and sedimentary country rocks implying 
potential mixing between end-member sources originating from the abovementioned similar 

metal source(s) (Figure 7). The Late Miocene igneous rocks correspond to the basement of 

the Atlasic foreland from which they are originated [23]. The plausibility of basement rocks 

as the deep-seated source of Pb in the studied ore deposits is supported by the similarity of 

Pb isotopic ratios between the Late Miocene igneous rocks and the abovementioned deposits, 

as well as the presence of jordanite, orpiment and realgar minerals. Jordanite is also pres-

ent in the Lengenbach Pb-Zn-As-Tl-Ba deposits, which are hosted in Triassic dolostones in 

the Swiss Alps, for which it was proven that Pb and other metals were leached from base-

ment rocks [24]. Another support for the plausibility of basement rocks as the deep-seated 

source of radiogenic Pb in the studied deposits is the presence of inherited faults connected to 

deep-seated faults cutting the Mesozoic-Cenozoic cover and the Triassic salts (Figure 3) and 

Figure 8. Plots of 208Pb/204Pb vs. 206Pb/204Pb for the Pb-Zn deposits in Jalta, Jebel Ghozlane, Jebel Hallouf, Oued Maden 

and Fedj Hassene compared to the Late Miocene igneous rocks and sedimentary country rocks from the Nefza area [21]. 

Curves of growth trends for Pb isotope ratios are from the plumbotectonic model of Zartman and Doe [22].
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 possibly extending into the basement, like the NE-SW Ghardimaou-Cap Serrat, the NE-SW 

Ras El Korane-Thibar and the N-S basement faults. However, the occurrence of the studied 

deposits mainly in Upper Cretaceous limestones and Miocene conglomerates also suggests 

plausible late remobilization of metals.

Nevertheless, the positions of the 208Pb/204Pb–206Pb/204Pb data slightly above the orogen curve 

(Figure 8) imply some contribution of Th-derived Pb (cf. [25]). The likely source of Th-derived 

Pb is the rocks in the Hercynian fold belt of North Africa, which include monazite-bearing 

Paleozoic metasediments and Hercynian granitoids [26]. These Paleozoic rocks are host to 

some of the world’s economically significant base metal deposits [27], have been deformed 

and/or emplaced during the Hercynian orogeny, and form the basement exposed in scattered 
inliers of the Atlas systems in Morocco and Algeria [28, 29]. Thus, it is plausible that basement 

rocks in Northern Tunisia are similar to those in Algeria and Morocco. If that is the case, and 

following the plumbotectonic models [22], the source of Pb in galena of the studied deposits 

can be inferred as follows. Lead in the northern African Paleozoic basement rocks, which 

were deformed and/or emplaced during the Hercynian orogeny, became part of a well-mixed 

multi-source upper crust reservoir. Evidence to this is the rather homogenous Pb isotope data 

from Zn-Pb ores hosted in pre-Hercynian metasediments and from Hercynian granitoids [27]. 

Then, Pb in the well-mixed multi-source upper crust reservoir was partly recycled back into 

the mantle and/or passed on to favorable host rocks in an orogeny [22, 30]. The orogeny in 

this case is the Maghrebides fold-thrust belt, which was formed during the Alpine orogeny 

and where the studied Pb-Zn deposits are hosted primarily in Triassic carbonate rocks and 

partly also in the cover rocks. A second source may be the sedimentary cover rocks, and the 

Pb isotope ratios of the studied ore deposits are plotting near to the Pb isotope values defined 
by the second source (Figure 7). The current Pb isotope data support Decrée et al. [23] conclu-

sion, suggesting that mixing between end-member sources originating from the basement 

igneous rocks and the sedimentary cover rocks was responsible for providing metals for the 

Nappes zone deposits.

4.2. Age of mineralization

The governing mechanisms during the first phase of halokinesis which has taken place 
likely during Jurassic to Middle Cretaceous [31] were presumably controlled by Jurassic-

Lower Cretaceous normal faults inherited from Tethyan rifting [32]. The salt diapirs have 

been active again during the Alpine orogeny (Early-Middle Miocene compressional events 

produced folds, nappe emplacement and bimodal volcanism and restarted the halokinetic 

phenomena [31]). Because the Pb-Zn mineralization in the Nappes zone is associated with 

the post-nappe Miocene series, one is led to conclude, therefore, that the mineralization 

is related to the last paroxysmal phase of the Alpine folding (i.e., Miocene age). Because 

the Pb-Zn mineralization in the studied deposits is fault-controlled and spatially associ-

ated with the post-nappe Miocene series, one is led to hypothesize that the mineralization 

occurred during the last paroxysmal phase of the Alpine folding (i.e., Miocene age). The 

calculated model ages using the Pb isotope model of Stacey and Kramers [33] range from 2.7 

to 21.6 Ma with a median of 10.86 Ma (excluding negative values of Oued Maden), indicating 

an Upper Tertiary-Quaternary age. This age, which was attributed to the F-(Ba-Pb-Zn) ores 
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of the Zaghouan district [14, 34, 35] and to the polymetallic mineralization of the Nappes 

zone [23, 36] and which is similar to that recently proposed for the world-class Touissit-Bou 

Beker district of northeastern Morocco [37], coincides with the Serravallian-Tortonian mag-

matism event [38] and with the mid-Miocene Alpine compressional tectonics in Northern 

Tunisia [39]. Thus, the Tertiary orogeny in this case, as mentioned before, is represented by 

the Maghrebides fold-thrust belt, which was formed during the Alpine orogeny. Similarly, a 

genetic link between the Messinian mafic magmatism and Sidi Driss Pb-Zn deposit has been 
proposed by Decrée et al. [40]. In the Oued Maden deposit, the Pb-isotopic data give nega-

tive model ages. This implies that an anomalous Pb was introduced to characterize ore Pb 

in the Oued Maden deposit, which gave negative or excess model age suggesting significant 
radiogenic contamination. This kind of highly radiogenic Pb known as J-type Pb [41] could 

be derived from high U and Th crustal source reservoirs. Accordingly, resulting radiogenic 

Pb was likely stored in basement rocks before being remobilized and redeposited in the cover 

rocks in the studied area.

5. Conclusions

This study presents a lead isotope database of 18 galena samples from the selected deposits 

belongs to the Nappes zone, Northern Tunisia. The isotopic signatures of these carbonate-

hosted Pb-Zn deposits reflect the source(s) of metals and the probable age of mineralization. 
The current Pb isotope data support suggests that mixing between end-member sources origi-

nating from the basement igneous rocks and the sedimentary cover rocks was responsible 

for providing metals for the Nappes zone deposits. The calculated model indicates an Upper 

Tertiary-Quaternary age for the emplacement of the mineralization. This study may be useful 

for mineral exploration and archaeological correlation of metal artifacts.
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