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Abstract

Laser-induced breakdown spectroscopy (LIBS) has gained great attention over the past
two decades due to its many advantages, such as needless sample preparation, capabil-
ity of remote measurement and fast multielement simultaneous analysis. However,
because of its inherent uncertainty features of plasma, it is still a big challenge for LIBS
community worldwide to realize high sensitivity and accurate quantitative analysis.
Currently, many chemometric analytical methods have been applied to LIBS calibration
analysis, including univariate regression, multivariate regression, principal component
regression (PCR), partial least squares regression (PLSR) and so on. In addition, appro-
priate sample and spectral pretreatment can effectively improve the analytical perfor-
mance (i.e., limit of detection (LOD), accuracy and repeatability) of LIBS. In this chapter,
we briefly summarize the progress of these calibration methods and their applications
on LIBS and provide our recommendations.

Keywords: laser-induced breakdown spectroscopy, sample and spectral pretreatment,
calibration methods, chemometrics, calibration-free laser-induced breakdown
spectroscopy

1. Introduction

Laser-induced breakdown spectroscopy (LIBS), also sometimes called laser-induced plasma

spectroscopy (LIPS), has developed rapidly as an analytical technique over the past two decades.

LIBS is a kind of atomic emission spectroscopy, which uses a high-energy pulsed laser as the

excitation source. The laser is focused on the sample surface, thereby evaporating and atomizing

the sample and generating a plasma. The light emitted by the plasma is detected by a spectrom-

eter. One can obtain sample composition and concentration information by analyzing the plasma

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



emission spectra. LIBS most commonly used experimental instruments such as mainly lasers,

spectrometers, detectors and computers, as shown in Figure 1.

The laser which is the most widely used in LIBS is the Nd:YAG solid-state lasers operated in the

Q-switchmode. Typically, it is operated at the fundamental wavelength of 1064 nm, pulse energy

is 30–100 mJ, pulse width is 5~15 ns and repetition rate is 1~10 Hz. In addition, the researchers

tested the effects of lasers of different types and parameters on the LIBS. Trautner et al. [1]

investigated polyethylene (PE) and a rubber material from tire production by employing

157 nm F2 laser and 532 nm Nd:YAG laser ablation in nitrogen and argon gas background or in

air. The effects of laser wavelength on depth resolution of thin-film solar cell are investigated by

Choi et al. [2] using an ultraviolet (λ = 266 nm) and a visible (λ = 532 nm) nanosecond Nd:YAG

lasers. Labutin et al. [3] summarize nearly two decades of studies on femtosecond laser-induced

breakdown spectrometry (fs-LIBS). Picosecond pulse train and nanosecond pulse were com-

pared for laser ablation and LIBS measurements by Lednev et al. [4].

Spectrometers disperse the emitted radiation of the laser-induced plasma to get a spectrum in

terms of intensity as a function of the wavelength. The dominant spectrometer types used for

LIBS are multichannel fiber spectrometer and echelle spectrometer coupled with an intensified

CCD. The echelle spectrometer offers a wide spectral range, a high spectral resolution, and the

possibility of time-resolved. The plasma parameters (plasma temperature and electron den-

sity) are constantly changing with respect to the delay time, and an echelle spectrometer with

time resolution is needed when calculating these parameters. However, time-resolved broad-

band spectrometers are expensive and strongly dependent on external circumstances. The

multichannel fiber spectrometer is robust and reliable for the use in mobile and portable LIBS

instruments, providing an accredited spectral resolution, but their integration time is typically

much longer than the plasma lifetime.

In recent years, with the rapid development of lasers, spectrometers and detectors and the

urgent demand of in situ and online analysis, LIBS has developed rapidly. Compared with

many other types of elemental analysis techniques, LIBS has obvious advantages:

Figure 1. Aschematic of a general apparatus for laser-induced breakdown spectroscopy illustrating the principal components.
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1. Simple equipment: few instruments, low cost and easy integration.

2. Noncontact analysis: LIBS uses pulsed laser as the excitation source, which makes it

noncontact analysis, especially in the dangerous environment or space exploration field,

has broad application prospects.

3. No sample preparation: LIBS directly focused pulsed laser bombardment of the sample

without processing the sample.

4. Various samples: samples can be gas, aerosols, liquids and solids.

5. Nondestructive analysis: The laser converges to the surface of the sample, and only a small

amount of the sample is excited. It canbe consideredasnondestructive ornearnondestructive.

6. Three-dimensional analysis: LIBS can collect laser at different positions on the sample

surface or repeat measurements at the same location to analyze the sample surface and

its different depths of the sample composition and content.

7. Total element analysis: The laser energy can simultaneously excite all the elements in the

sample, so all elements in the sample can be analyzed simultaneously.

8. Remote analysis: The long-distance analysis of the LIBS can be achieved by remotely

transmitting the laser energy and collecting the plasma emission spectrum through the fiber.

9. Online analysis: LIBS is a very fast technology that provides analytical results in seconds,

making it particularly suitable for rapid analysis or online industrial monitoring.

Figure 2. The number of articles published in the Web of Science search by laser-induced breakdown spectroscopy (LIBS)

in 1963–2016.
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Because of many advantages of LIBS, it has been applied to a number of analytical domains, for

example, various alloys [5–7], slags [8, 9], soil [10], rocks [11, 12] and isotopes [13]. We searched

for all scientific papers from 1963 to 2016 on Web of Science with laser-induced breakdown

spectroscopy (LIBS). The statistical results are presented in Figure 2. It can be seen that LIBS has

developed rapidly since 1990.

2. Pretreatment of samples and spectra

2.1. Sample pretreatment

One of the most widely cited advantages of LIBS is that it does not require sample prepara-

tion, but this may also be the biggest limitation for improving its consistancy. In general,

LIBS performance may be enhanced using two main approaches: pretreatment of samples

and spectra. Many homogeneous solid samples require no sample preparation, for example,

glass, alloy and plastic. For powder samples (e.g., cement [14], soil [10] and coal [15]) which

can press the cake directly, it must be consistent with the standard sample preparation

process used for calibration during the pressing process. Comparing with solid samples,

the direct analysis of liquid samples by using LIBS has many disadvantages: splash, less

excitation and fluctuation of liquid level. The simplest way to change a liquid sample into a

solid sample is to freeze it [16, 17]. Sobral et al. [18] investigated the detection sensitivity of

Cu, Mg, Pb, Hg, Cd, Cr and Fe traces in water and ice samples under the same experimental

conditions by using LIBS. Another effective way that can be used for liquid analysis in a

solid matrix configuration consists of using an absorbent substrate, for example, plant fiber

spunlace nonwoven [19], absorbent paper [20], thin wood sample [21, 22] and membrane-

based filter paper [23]. Now LIBS analysis of aerosols is mainly of two categories: direct

analysis and enrichment. However, the detection limit and the statistical results of the direct

analysis are still relatively poor. On the other hand, the substrate-based collection does not

provide as instantaneous information and does allow one to achieve lower detection limits

by increasing the sample flow rates and sampling times.

2.2. Correction and removal of continuum background

The detected plasma emission spectrum at a given wavelength in a spectrum is the sum of the

analyte signal and the continuum background. The analyte signal is often overwhelmed by the

continuum background, which interferes the true intensity of signal and compromises spectral

clarity and hence reduces the accuracy of quantitative analysis. Zou et al. [24] developed a

modified algorithm of background removal based on wavelet transform for spectrum correc-

tion and applied to low-alloy steel samples. This method can effectively improve the quality of

the signals and the accuracy of the regression model. Sun et al. [25] presented a method that

can automatically estimate and correct varying continuum background emission. Simulations

and experiments were made to successfully prove the efficiency of the method. The proposed

method scarcely needs people’s intervention and can automatically and flexibly estimate

varying continuum backgrounds over a very wide spectrum range. Another way to deduct a

continuous background is to add a polarizer to the collected light path. Penczak et al.’s [26]
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research results show that the continuous background of the Al plasma emission spectra

induced by 800 nm femtosecond pulse laser is strongly polarized. The use of a polarizer can

effectively filter the continuous spectrum, thus improving the signal-to-noise ratio and the

signal-to-back ratio of the characteristic spectrum.

2.3. Spectral normalization

In order to increase the stability of the signal, the analyte signal intensity can be normalized

using a parameter representative of the actual plasma conditions. In general, there are three

main standardized methods [27]: (1) normalization by using the intensity of an internal

standard line; (2) normalization by using a reference signal; and (3) compensation for the

plasma conditions. Castro et al. [28] used 12 different types of data normalization to reduce

the interference matrix and to improve the calibration models. Their findings show that the

application of normalization modes was useful to compensate for the differences among

sample matrices. Models without normalization presented two- to fivefold higher errors.

Karki et al. [29] studied the analytical performance of six different spectrum normalization

techniques, namely internal normalization, normalization with total light, normalization

with background along with their three-point smoothing methods for quantification of Cr,

Mn and Ni in stainless steel. The final results show the superiority of internal normalization

technique over normalization with total light and normalization with background tech-

niques irrespective of whether it is Cr, Ni or Mn analysis. Wang et al. presented three

spectrum standardized methods in order to improve the reproducibility of LIBS measure-

ments which are named the spectrum standardization approach [30], the sampled spectrum

standardization approach [31] and the multivariate spectrum standardization method,

respectively. In spectral standardization, a particular example is the use of acoustic signals

[32, 33] or laser-induced plasma image [34].

2.4. Automatic identification of emission lines

LIBS can excite all the elements of the spectrum of the sample, so reliable and fast identifica-

tion of emission lines in laser ablation of multicomponent samples is crucial. Labutin et al.

[35] applied an algorithm to automatically identify emission lines in LIBS. The algorithm is

implemented by three parts: simulation of the set of spectra corresponding to different

temperature and electron density, searching the best correlated pair of a model spectrum

and an experimental one, and attributing the peaks with certain lines. Ukwatta et al. [36]

consider the problem of element detection as a multilabel classification problem, using

support vector machines (SVMs) and artificial neural networks (ANNs) for multielement

classification. The proposed algorithm is evaluated by using the LIBS image obtained from

the experiment. The accuracy of the machine learning method to identify the elements

correctly can reach 99%. Mateo et al. [37] developed the software package SALIPS, which

can quickly and semiautomatically identify the spectrum peak and give the element compo-

sition of the analytical sample. The software package simulates the spectrum by using the

relative intensity of the atomic line in the NIST database. In order to facilitate visual compar-

ison, it can present both the simulated and experimental spectra on the same plot.
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3. Calibration methods of LIBS

A number of calibration methods have been applied to various research fields and physical

state samples of LIBS quantitative analysis. We cannot involve all published research articles,

and only a few of the most commonly used calibration methods are reviewed.

3.1. Univariate analysis

The fitting area intensity I corresponding to the transition between lower level El and upper

level Eu of an atomic species α can be expressed as:

I ¼ FNI
α
Aul

gu

UI
α
Tð Þ

exp �
Eu

kBT

� �
(1)

where F is the experimental parameter, NI
α
is the atomic number density, Aul is the transition

probability, gu is the upper-level degeneracy and UI
α
Tð Þ is the partition function at the temper-

ature T. For the same sample, if the temperature and density of each laser-induced plasma are

constant, then I is proportional to the elemental concentration C. If there are a series of samples

with different C, one can establish a calibration line between spectral intensity and element

concentration.

Ci ¼ b0 þ b1Ii þ ei (2)

where b0 and b1 are model parameters, ei is the random error and i is the number of samples.

The parameter bCi is the estimate value of Ci, namely

bCi ¼ b0 þ b1Ii (3)

and

ei ¼ bCi � Ci (4)

In the regression analysis, the best estimate of b0 and b1 is obtained based on a set of I and C,

which makes the bC and C to the nearest degree. For example, Bhatt et al. [38] choose Ce II 413.38,

418.65, and 439.16 nm to establish a univariate linear calibration curve, as shown in Figure 3.

Correlation coefficient R, also called the Pearson coefficient, is often used to denote the corre-

lation between I and C, which is defined as:

R ¼

Pn

i¼1

Ii � I
� �

Ci � C
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1

Ii � I
� �2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1

Ci � C
� �2

s (5)

Correlation coefficient Rj j ≤ 1, and it is closer to 1, indicating the better relevance. Most of

the LIBS papers report R2 which provides fast information about the correlation of the
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data and consequently a fast first knowledge about the prediction ability of the model

since poor correlation necessarily implies poor predictive ability. However, it should be

noticed that a model with a value of R2 close to 1 may indeed have a poor accuracy for

prediction [39].

Precision is described by the standard deviation (SD), the relative standard deviation (RSD in %)

and the root-mean-square error (RMSE), which can be expressed as:

SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1

Ci � C
� �2

N

vuuut
(6)

RSD %ð Þ ¼
SD

C
� 100 (7)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1

bCi � Ci

� �2

n

vuuut
(8)

In order to describe the lower limits of a quantitative model, the limit of detection (LOD) can

be calculated by the following equation:

LOD ¼ 3
σC

I
(9)

where σ is the standard deviation of the background and C=I is the reciprocal of the slope of

the calibration curve. The calculated values of LOD for different elements are presented in

Table 1.

3.2. Multivariate analysis

3.2.1. Multiple linear regression

For LIBS, the line of an element is not one. If there are m variables and n samples, then

Figure 3. Simple linear regression calibration curves for Ce [38].
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Ci ¼ b0 þ b1Ii1 þ…þ bmIim þ ei i ¼ 1; 2;…; nð Þ, (10)

Q ¼
Xn

i¼1

e2i ¼
Xn

i¼1

Ci � bCi

� �2
(11)

where I is the intensity of different spectral lines from the same element, ei is residual, Q is the

sum of squares of the residuals and bCi is the estimate value of Ci. One can get b0, b1,…,bm when

Q value achieves the minimum value.

For example, Chen et al. [40] used the multiple linear regression method to quantitatively

analyze chromium in potatoes. The characteristic line of Cr can be considered that the concen-

tration of Cr (Ci) has a relationship with the intensity of Cr and/or the other corresponding

elements. They normalize the quantitative analysis of Cr by considering the influence of the Ca

matrix. Four independent variables (ICr, IPCr, ICa and IPCa) are used to test the performance

of different linear regression methods, where ICr is the intensity of Cr I 425.43 nm, IPCr is the

sum of three Cr lines (Cr I:425.43, Cr I 427.48 and Cr I 428.97 nm), ICa is the intensity of Ca I

431.86 nm and IPCa is the sum of five Ca lines (Ca I 422.67, Ca I 428.30, Ca I 430.25, Ca I

430.77, and Ca I 431.86 nm). Different combinations of the four independent variables were

selected for unary, binary, ternary and quaternary linear regression analyses. The results of

quantitative analysis of Cr element by the linear regression method with different variables are

indicated in Table 2.

3.2.2. Principal component regression

In the LIBS quantitative analysis, the calculated concentration is affected by the lines of

objective elements and other elements. In the study of empirical questions, in order to analyze

the problem comprehensively and systematically, one must consider many spectral lines of

many elements. Because each line reflects the information of the element concentration in

varying degrees, and the lines have a certain correlation with each other, the information

reflected in the calculation overlaps to some extent. In the study of multivariate problems

by statistical methods, too many variables will increase the amount of calculation and increase

the complexity of the problem. It is hoped that the variables involved in the process of

quantitative analysis are less and the amount of information is more. Principal component

analysis (PCA) is adapted to this requirement and is an ideal tool for solving such problems.

Elements LOD (%)

Ce 0.098

Eu 0.052

Gd 0.077

Nd 0.047

Sm 0.25

Y 0.036

Table 1. Limit of detection (LOD) estimated for different elements.
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Principal component analysis can transform a set of variables that may have correlation into a

set of linearly uncorrelated variables by orthogonal transformation. The variable after the

conversion is called the principal component. Principal component regression (PCR) is a

regression analysis method for analyzing multiple regression and is based on PCA. In general,

predicting the concentration by PCR can be divided into three steps: first, the PCA is

performed on the data (spectral) matrix of the original independent variables, and the appro-

priate number of principal components is selected by finding the eigenvalue, eigenvector,

variance contribution rate and cumulative contribution rate. Second, the selected principal

component is analyzed by the ordinary least-squares method. Finally, the strongest possible

correlations between the orthogonal PC scores and elemental composition are established.

When selecting principal components by PCR, only the independent variables are taken into

account, and the dependent variables are ignored. It can reduce the dimension of variables and

address the problem of multiple collinearity but cannot distinguish noise when there is a lot of

noise in the independent variable (signal) and lose some information of the original variables,

so a better regression model will not be obtained.

Death et al. [41] applied PCR to determine the elemental composition of a series of run-of-mine

(ROM) iron ore samples. LIBS spectral data were recorded in three separate spectral regions

(250 nm, 400 nm and 750 nm) to measure major, minor and trace components of the iron ore

sample pellets. Background stripping, normalization and spectral cleaning were applied to

minimize RSD of the LIBS data. PCR analysis was used to produce calibration models of Fe,

Al, Si, Mn, K and P. Independent LIBS measurement data are used to verify these calibration

models. The model R2 for Fe, Al, Si and K is 0.99, 0.98, 0.99 and 0.84, respectively. As an

example, PCR calibration model of Fe is shown in Figure 4 [41].

3.2.3. Partial least squares regression

The main purpose of PCR is to extract relevant information hidden in the spectral line and

then used to predict the concentration. This approach allows one to use only those indepen-

dent variables, and the noise will be eliminated, so as to improve the quality of the predictive

model. However, PCR still has some defects, and some useful variables whose correlation

is very small are easily missed when the principal component is selected. If we choose for

Calibrate method Input variables R
2 Predicted value (μg/g) Relative error (%)

Unary ICr 0.007 S1:138.208 7.674

S2:140.308 7.771

Binary ICr,IPCr 0.887 S1:143.649 11.913

S2:132.129 13.147

Ternary ICr,IPCr ,ICa 0.890 S1:142.413 10.950

S2:132.687 12.780

Quaternary ICr,IPCr ,ICa,I
P

Ca 0.987 S1:133.659 4.130

S2:159.965 5.151

Table 2. Quantitative results of Cr by different linear regression methods.
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each component, it is too difficult. Partial least squares regression (PLSR) is a new multivar-

iate statistical data analysis method. It mainly studies the regression modeling of multiple

dependent variables to multiple independent variables. PLSR is more effective, especially

when the variables are highly linearly correlated. In addition, PLSR solves the problem that

the number of samples is less than the number of variables. Partial least squares (PLS) is the

advantage of three analytical methods, which are PCA, canonical correlation analysis and

Figure 4. PCR calibration model determined for iron using the 250-nm LIBS data.

Region I Region II Region III

8 mJ 3 mJ 8 mJ 3 mJ 8 mJ 3 mJ

Integrated spectra WBC 3.47 3.27 3.27 2.74 (2) 2.72 (2) 2.63 (2)

4 3.67 3.76 3.36 2.92 2.85

BC 1.97 2.27 2.56 2.27 2.58 (2) 2.09 (2)

2.22 2.54 2.03 2.67 2.78 2.57

Time-resolved spectra WBC 3.11 2.27 3 2.02 2.73 (2) 3.96 (2)

3.46 2.51 3.4 2.22 3.09 4.36

BC 3.07 2.32 3.13 2.23 2.47 (2) 3.73 (2)

3.36 2.56 3.57 3.31 2.9 4.57

Values in brackets correspond to number of factors if different from three.

WBC = without background correction. BC = with background correction

Table 3. Standard error of calibration (SEP) and prediction (SEV, in italics) estimated during the determination of silver

for autoscaled data.
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multiple linear regression analysis. Both PLS and PCA try to extract the maximum informa-

tion reflecting the data variation, but PCA only considers one independent variable matrix,

while PLS has a response matrix, so it has predictive function. PLS avoids potential problems

such as nonnormal distribution of data, factor indeterminacy and unidentifiable models.

PLS has two types (PLS-1 and PLS-2), and PLS-1 corresponds to the case where there is only

one dependent variable. PLS-2 corresponds to the case where there are several dependent

variables. Although PLSR is more complex than PCR, and the tendency of overfitting is

stronger, better results can be obtained by using PLS to analyze low-precision data or high-

complexity systems.

The input variable of PLS can be characteristic spectral lines [42], partial spectral region [43] or

full spectrum [44]. Amador-Hernandez et al. [45] used PLS-1 to quantify gold and silver gold

and silver in Au-Ag-Cu alloys. The influence of spectral region (266–340 nm, 266–269/326–

340 nm and 269–313 nm), laser energy (3 mJ, 8 mJ), background correction and integration

time on the quantitative analysis of PLS was studied, respectively (Table 3).

3.2.4. Artificial neural network

To overcome the poor precision of the calibration curve methods and the limitations of nonlinear

problems, scholars have proposed the use of statistical methods for the quantitative analysis by

LIBS. Artificial neural networks (ANNs) are computing systems inspired by the biological neural

networks that constitute animal brains. Such systems learn (progressively improve performance)

to do tasks by considering examples, generally without task-specific programming. The follow-

ing outstanding advantages of artificial neural networks have attracted great attention in recent

years: (1) it can fully approximate any complex nonlinear relationship; (2) all the quantitative or

qualitative information is stored in the neurons in the network, so it has strong robustness and

fault tolerance; (3) ANNS adopts the parallel distribution processing method, so that it can

perform a large number of operations quickly; (4) ANNS can learn and adapt to unknown or

uncertain system; and (5) it can handle both quantitative and qualitative information at the same

time. An artificial neuron network (ANN) is a computational model based on the structure and

functions of biological neural networks. Artificial neural networks usually contain input layer,

hidden layer (competitive layer) and output layer, as shown in Figure 5.

Figure 5. Schematic of the three-layer artificial neural network [46].
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For example, El Haddad et al. [46] used an artificial neuron network to analyze the heavy

metals in soil and predict the concentration of element. They used average relative error of

calibration REC (%) and the average relative error of prediction REP (%) to evaluate the

predictive quality of the ANN models. REC and REP were preferred to RMSE because they

provide percentage instead of absolute values. Before using the artificial neural network, it is

necessary to optimize the parameters such as the number of neurons and training times.

REC %ð Þ ¼
100

Nc

XNc

i¼1

∣ci �bci∣
ci

(12)

REP %ð Þ ¼
100

Np

XNp

i¼1

∣ci �bci∣
ci

(13)

where Nc is the number of samples in the calibration and Np is the number of samples in the

prediction sets, respectively (Table 4).

3.2.5. Support vector regression

The neural network structure design depends on the designer’s experience and prior knowl-

edge, while support vector machine (SVM) is based on statistical theory, which has a strict

theoretical and mathematical basis. The neural network learning algorithm lacks quantitative

analysis and complete theoretical support, and it also needs a lot of samples to learn. SVM is

often used to pattern recognition, classification and regression analysis of small samples,

nonlinear and high-dimensional data and can achieve very good results. SVM is based on the

principle of structural risk minimization, which can ensure that the learning machine has a

good generalization ability. SVM for regression prediction is called support vector regression

(SVR). SVR also can guarantee the global optimality of the algorithm and avoid the local

minimum problem that the neural network cannot solve. Therefore, when there are a small

number of samples, it is better to use SVR instead of neural network. It is important to note

that the selection of optimized significant penalty parameter C and the kernel parameter of

RBF-δ is more sensitive for the SVR model.

For example, Gu et al. [47] used three segmental spectra of 393–397 nm, 422–423 nm and 425–

427 nm as the input variables of SVR model to predict the content of Cr in soil samples. They

got better predictive results that R2 ¼ 0:999 and the absolute relative error is 2.61% and the

slope of the calibration curve is closer to 1, as shown in Figure 6.

Output Input element REC (%) REP (%)

Al Al, Ca, Ba, Fe, Ti 18.7 � 0.8 19.3 � 2.1

Ca Ca, Ba, Fe, Ti 9.4 � 0.4 15.2 � 0.8

Fe Fe, Ba, Ca, Ti 15.5 � 0.6 16.8 � 0.9

Table 4. Average relative errors of calibration (REC) and prediction (REP).
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3.3. Calibration-free laser-induced breakdown spectroscopy

LIBS offers a strong potential for analysis in situ and in real time, not requiring complex

sample preparation. This allows it to be applied quickly and extensively to qualitative analysis,

but quantitative analysis is very difficult. Even with a given experimental configuration, the

laser-induced breakdown spectrum is not only dependent on the concentration of the analyte

but also dependent on the composition of the matrix and their polymerization state. Matrix

effects play an important role in quantitative analysis of LIBS. In order to overcome the matrix

Figure 6. The calibration curve of Cr by the SVR model with segmental spectra input.

Figure 7. Boltzmann plot containing some data resulting from the analysis of an aluminum alloy. The three lines

represent the results of a linear best fit of the Al(I), Mn(II) and Mg(II) data [48].
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effect, Ciucci et al. [48] proposed the calibration-free laser-induced breakdown spectroscopy

(CF-LIBS) approach which takes the matrix into account as a part of the analytical problem. In

local thermodynamic equilibrium (LTE), excited levels are populated according to the

Boltzmann distribution and ionization states are populated according to the Saha-Boltzmann

equilibrium equation. Each spectral line is represented as a point in a Boltzmann plane where

the slope and intercept correspond to the plasma temperature and the concentration of the

corresponding element, respectively (Figure 7).

Ciucci et al. [48] proposed CF-LIBS for the first time and used it for quantitative analysis of the

composition of metallic alloys and quantitative determination of the composition of the atmo-

sphere. CF-LIBS has been applied to many samples, such as aluminum alloys, steel and iron

alloys, precious alloys for jewelry, copper alloys, archeological copper artifacts, glasses, pig-

ments on roman frescoes and on parchments, soils and rocks, meteorites, coral skeletons and

human hair. However, the accuracy of CF-LIBS is still not high.

4. The comparison of calibration methods

LIBS is an analytical technique that can inspire all the elements in the sample. Univariate analysis

uses only partial spectral information and suffers from the strong effects of plasma instability.

More importantly, strong matrix effects prevented to apply simple calibration curves. There is no

doubt that the multivariate analysis is superior to univariate analysis. This has been proven by

numerous researchers, for instance, the analysis of rocks [49], rare earth elements [38], glass [50],

cerium oxide [51], alloy steel [52], liquid steel [53], soil [54, 55], soybean oil [56], PZT (Lead

Zirconate Titanate) ceramics [57], Pb in navel orange [58], Marcellus Shale [59], tailing cores

[60], geologically diverse samples [49], steel melt [61], slurry [62], iron ore [63] and pellets of

plant materials [64].

Many multivariate analysis methods have been applied to the quantitative analysis of LIBS,

especially chemometric. Generally, the most common chemometric technique applied to

concentration measurement by LIBS is PLS. It has been applied to many fields of analysis,

such as soil [55, 65, 66], steel [67–69], glass [50], rock [70], iron ore [63] and coal [71, 72]. The

rest of the analysis methods are PCR [50, 73, 74], LASSO [75, 76], kNN [77], ANN [78–81],

SVM [82, 83] and so on. PLS has been implemented either to calculate the concentrations of

a single element (PLS-1) or to simultaneously calculate the concentrations of more than one

element (PLS-2). In addition to PLS, other linear (MLR [84, 85], PCR [50, 73] and LASSO

[75–77]) and nonlinear regression methods (ANN [86, 87]) have been applied to LIBS

quantitative analysis. In order to discern the most effective models for interpreting chemical

abundances from LIBS spectra of geological samples, Boucher et al. [77] had studied nine

kinds of linear and nonlinear regression methods. The advantages and disadvantages of

various methods are introduced, as shown in Table 5. The final results show that nonlinear

methods tend to overfit the data and predict less accurately, while the linear methods

proved to be more generalizable with better predictive performance. The performance of

different models for different oxides is different. At present, multivariate analysis, especially
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PLS, is our best choice. But it should be pointed out that multivariate quantitative analyses

present a high risk of overfitting.

CF-LIBS can overcome the influence of matrix effect, but the poor analysis accuracy has been

the fatal shortcoming of CF-LIBS. This is mainly due to the fact that the laser-induced plasma is

a very complex object and its realistic description is not attainable with simple mathematical

models [88]. A number of researchers have made some modifications to the CF-LIBS algo-

rithm, such as self-absorption [89, 90]. In recent years, several research groups [91–94] began

using standard samples to improve the accuracy of the nonstandard analysis. Cavalcanti et al.

[92] presented and used one-point-calibration CF-LIBS to analyze a set of copper-based sam-

ples. The results show that the new method achieves similar or even higher accuracy than the

calibration curve.
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Method Advantage(s) Disadvantage(s) Other

PLS Used when X has many collinear features

and when p > > N. Provides a stable

multivariate model that can account for all

oxides (PLS-2).

Provides a complex model in which all

coefficients are linear combinations of the

original channels. Involves a complex

optimization problem with no simple,

closed-form representation.

Linear, uses all

channels (not

sparse)

LASSO Provides an interpretable model, selects

subset of predictors with the strongest

effects on the response variable. Can be used

for feature selection when less data are

available.

Arbitrarily chooses one covariate from a

group of highly collinear covariates to use

in the model and discards the rest.

Linear, sparse,

eliminates noisy

channels

Elastic

net

Performs well in the p > > N case. Provides

an interpretable model that is more stable

than the lasso. Useful for feature selection.

Cannot be used for feature selection in

situations when less data are available

because it overwhelms the data with too

many model variables.

Linear, sparse,

eliminates noisy

channels

PCR Decorrelates the data and reduces its

dimensionality, combating the “curse of

dimensionality”

Higher-order polynomial kernels tend to

overfit the training set and poorly predict

the testing set in this application.

May be linear or

nonlinear; both

use all channels

SVR Performs well with a linear kernel. Can be

either linear or nonlinear depending on the

kernel.

As above, polynomial kernels tend to

overfit the training set and poorly predict

the testing set in this application.

May be linear or

nonlinear; either

uses all channels

kNN Requires no model training other than

choosing the number of neighbors, reducing

run time and making it scale well to large

data sets.

Tends to overfit the training data and is

only as effective as the distance metric used

to compare samples.

Nonlinear, uses all

channels

Table 5. Comparison of various regression methods.
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