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Abstract

Subthreshold MOSFET has been adopted in many low power VHF circuits/systems in
which their performances are mainly determined by three major high-frequency charac-
teristics of intrinsic subthreshold MOSFET, i.e., gate capacitance, transition frequency,
and maximum frequency of oscillation. Unfortunately, the physical level imperfections
and variations in manufacturing process of MOSFET cause random variations in
MOSFET’s electrical characteristics including the aforesaid high-frequency ones which
in turn cause the undesired variations in those subthreshold MOSFET-based VHF cir-
cuits/systems. As a result, the statistical/variability aware analysis and designing strate-
gies must be adopted for handling these variations where the comprehensive analytical
models of variations in those major high-frequency characteristics of subthreshold
MOSFET have been found to be beneficial. Therefore, these comprehensive analytical
models have been reviewed in this chapter where interesting related issues have also
been discussed. Moreover, an improved model of variation in maximum frequency of
oscillation has also been proposed.

Keywords: gate capacitance, maximum frequency of oscillation, subthreshold MOSFET,
transition frequency, VHF circuits/systems

1. Introduction

Subthreshold MOSFET has been extensively used in many VHF circuits/systems, e.g., wireless

microsystems [1], low power receiver [2], low power LNA [3, 4] and RF front-end [5], where

performances of these VHF circuits/systems are mainly determined by three major high-

frequency characteristics of intrinsic subthreshold MOSFET, i.e., gate capacitance, Cg, transi-

tion frequency, fT, and maximum frequency of oscillation, fmax. Clearly, the physical level

imperfections and manufacturing process variations of MOSFET, e.g., gate length random
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fluctuation, line edge roughness, random dopant fluctuation, etc., cause the variations in

MOSFET’s electrical characteristics, e.g., drain current, ID and transconductance, gm, etc. These

variations are crucial in the statistical/variability aware analysis and design of MOSFET-based

circuits/systems. So, there exist many previous studies on such variations which some of them

have also focused on the subthreshold MOSFET [1, 6–12]. Unfortunately, Cg, fT, and fmax have

not been considered even though they also exist and greatly affect the high-frequency perfor-

mances of such MOSFET-based circuits/systems. Therefore, analytical models of variations in

those major high-frequency characteristics have been performed [13–17]. In [13], an analytical

model of variation in fT derived as a function of the variation in Cg has been proposed where

only strong inversion MOSFET has been focused. However, this model is not comprehensive,

as none of any related physical levels variable of the MOSFET has been involved. In [14], the

models of variations in Cg and fT, which are comprehensive as they are in terms of the related

MOSFET’s physical level variables, have been proposed. Again, only the strong inversion

MOSFET has been considered in [14].

According to the aforementioned importance and usage of subthreshold MOSFET in the

MOSFET-based VHF circuits/systems, the comprehensive analytical models of variations in

Cg, fT, and fmax of subthreshold MOSFET have been proposed [15–17]. Such models have been

found to be very accurate as they yield smaller than 10% the average percentages of errors. In

this chapter, the revision of these models will be made where some foundations on the

subthreshold MOSFETwill be briefly given in the subsequent section followed by the revision

on models of Cg in Section 3. The models of fT and fmax will, respectively, be reviewed in

Sections 4 and 5 where an improved model of variation in fmax will also be introduced. Some

interesting issues related to these models will be mentioned in Section 6 and the conclusion

will be finally drawn in Section 7.

2. Foundations on subthreshold MOSFET

Unlike the strong inversion MOSFET in which Id is a polynomial function of the gate to source

voltage, Vgs, Id of the subthreshold MOSFET is an exponential function of Vgs and can be given

as follows:

Id ¼ μCdep

W

L

kT

q

� �2

exp
Vgs � V t

nkT=q

� �

1� exp �

Vds

kT=q

� �� �

(1)

where Cdep and n denote the capacitance of the depletion region under the gate area and the

subthreshold parameter, respectively.

By using Eq. (1) and keeping in mind that gm ¼ dId=dVgs, gm of subthreshold MOSFET can be

given by

gm ¼

μ

n
Cdep

W

L

kT

q

� �2

exp
Vgs � V t

nkT=q

� �

1� exp �

Vds

kT=q

� �� �

(2)
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3. Variation in gate capacitance (Cg)

Before reviewing the models of variation in Cg of subthreshold MOSFET, it is worthy to

introduce the mathematical expression of Cg as it is the mathematical basis of such models.

Here, Cg which can be defined as the total capacitance seen by looking in to the gate terminal of

the MOSFET as shown in Figure 1, can be given in terms of the gate charge, Qg as [15]

Cg ¼
dQg

dVgs
(3)

where

Qg ¼
μW2LC2

ox

Id

ð

Vgs�Vt

0

Vgs � Vc � V t

� �2
dVc �QB,max (4)

It is noted that QB,max stands for the maximum bulk charge [15]. By using Eq. (1), Qg of the

subthreshold MOSFET can be found as

Qg ¼

WL2C2
ox

Cdep kT=qð Þ2

� �

Vgs � V t

� �3

3 1� exp � Vds

kT=q

h ih i

exp q
nkT Vgs � V t

� �� 	

�QB,max (5)

As a result, the expression of Cg can be obtained by using Eqs. (1) and (5) as follows

Figure 1. The conceptual definition of Cg (referenced to N-type MOSFET).
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Cg ¼
1

3

WL2C2
ox

Cdep kT=qð Þ2

" #

3 Vgs � V t

� �2
�

q

nkT
Vgs � V t

� �3
h i

exp �
q

nkT
Vgs � V t

� �

h i

(6)

By taking the physical level imperfections andmanufacturing process variations ofMOSFET into

account, random variations in MOSFET’s parameters such as Vt,W, L, etc., denoted by ΔVt, ΔW,

ΔL, and so on existed. These variations yield the randomly varied Cg i.e. Cg(ΔVt, ΔW, ΔL,…) [15].

Thus, the variations in Cg, ∆Cg can be mathematically defined as [15]

ΔCg ¼
Δ
CgðΔV t ,ΔW,ΔL,…Þ � Cg (7)

where Cg stands for the nominal gate capacitance in this context.

With this mathematical definition and the fact that ΔVt is the most influential in subthreshold

MOSFET [18], the following comprehensive analytical expression of ∆Cg has been proposed

in [15]

ΔCg ¼ 2

ffiffiffiffiffiffiffiffiffi

W

Cdep

s

LCox

kT=q

" #2

exp �
Vds

kT=q

� �

� 1

� ��1

Vgs � VFB � ϕs �NeffWdep

� 	

V t � VFB � ϕs �NeffWdep

� 	

(8)

where Neff, VFB, Wdep, and ϕs denote the effective values of the substrate doping concentration

Nsub(x), the flat band voltage, depletion width, and surface potential, respectively. Moreover,

Neff can be obtained by weight averaging of Nsub(x) as [15]

Neff ¼ 3

ð

Wdep

0

Nsub xð Þ 1�
x

Wdep

� �2 dx

Wdep
(9)

As ∆Cg is a random variable, it is necessary to derive its statistical parameters for completing

the comprehensive analytical modeling. Among various statistical parameters, the variance

has been chosen as it determines the spread of the variation in a convenient manner. Based on

the traditional analytical model of statistical variation in MOSFET’s parameter [19], the vari-

ances of ∆Cg, Var[∆Cg] can be analytically obtained as follows [15]

Var ΔCg

� 	

¼
8q4NeffWdepWL

ε20k
2T2C2

dep

exp �
Vds

kT=q

� �

� 1

� ��2

Vgs � VFB � ϕs �NeffWdep

� 	2
(10)

where ε0 stands for the permittivity of free space. At this point, it can be seen that the

comprehensive analytical model of ∆Cg proposed in [15] is composed of Eqs. (8) and (10)

where the latter has been derived based on the former. In [15], (Var[∆Cg])
0.5 calculated by using

the proposed model has been compared to its 65 nm CMOS technology-based benchmarks

obtained by using the Monte Carlo simulation for verification where strong agreements

between the model-based (Var[∆Cg])
0.5 and the benchmark have been found. The average
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deviation from the benchmark obtained from the entire range of Vgs used for simulation given

by 0–100 mV has been found to be 9.42565 and 8.91039% for N-type and P-type MOSFET-

based comparisons, respectively [15].

Later, an improved model of ∆Cg has been proposed in [16] where the physical level differ-

ences between N-type and P-type MOSFETs, e.g., carrier type, etc., has also been taken into

account. Such model is composed of the following equations

ΔCgN ¼ 2
ffiffiffiffiffiffi

W
Cdep

q

LCox

kT=q

� �2

exp � Vds

kT=q

h i

� 1
h i�1

Vgs � VFB � 2ϕF � C�1
ox

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2qεSiNa 2ϕF þ Vsb

� �

qh i

� V t � VFB � 2ϕF � C�1
ox

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2qεSiNa 2ϕF þ Vsb

� �

q
h i

(11)

ΔCgP ¼ 2
ffiffiffiffiffiffi

W
Cdep

q

LCox

kT=q

� �2

exp � Vds

kT=q

h i

� 1
h i�1

Vgs � VFB þ 2ϕF

�

�

�

�þ C�1
ox

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2qεSiNd 2ϕF

�

�

�

�� Vsb

� �

q
h i

� V t � VFB þ 2ϕF

�

�

�

�þ C�1
ox

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2qεSiNd 2ϕF

�

�

�

�� Vsb

� �

q

Þ�
h

(12)

Var ΔCgN

� 	

¼
12q6NeffWdepWL3

C2
dep

Cox

kT

� �4

1� exp �
Vds

kT=q

� �� ��2

Vgs � VFB � 2ϕF � C�1
ox

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2qεSiNa 2ϕF þ Vsb

� �

qh i2

V�1
t VFB þ 2ϕF þ C�1

ox

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2qεSiNa 2ϕF þ Vsb

� �

qh i

(13)

Var ΔCgP

� 	

¼
12q6NeffWdepWL3

C2
dep

Cox

kT

� �4

1� exp �
Vds

kT=q

� �� ��2

Vgs � VFB þ 2ϕF

�

�

�

�þ C�1
ox

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2qεSiNd 2ϕF

�

�

�

�� Vsb

� �

qh i2

V�1
t VFB � 2ϕF

�

�

�

�� C�1
ox

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2qεSiNd 2ϕF

�

�

�

�� Vsb

� �

q
h i

(14)

where ∆CgN and ∆CgP are ∆Cg of N-type and P-type MOSFETs, respectively. Moreover, Na, Nd,

Vsb, and ϕF denote acceptor doping density, donor doping density, source to body voltage, and

Fermi potential, respectively [16]. Also, it is noted that Eqs. (13) and (14) have been, respec-

tively, derived by using Eqs. (11) and (12) based on the up-to-date analytical model of statisti-

cal variation in MOSFET’s parameter [20] instead of the traditional one.

In [16], a verification similar to that of [15] has been made, i.e., (Var[∆CgN])
0.5 and (Var[∆CgP])

0.5

have been, respectively, compared with their 65 nm CMOS technology-based benchmarks.

Both (Var[∆CgN])
0.5 and (Var[∆CgP])

0.5 have been calculated by using the proposed model, and

the benchmarks have been obtained from the Monte Carlo simulation. The comparison results

have been redrawn here in Figures 2 and 3where strong agreements with their benchmarks of

the model-based (Var[∆CgN])
0.5 and (Var[∆CgP])

0.5 can be seen for the whole range of Vgs. The
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average deviations determined from such range have been found to be 8.45033 and 6.53211%,

respectively [16], which are lower than those of the previous model proposed in [15]. There-

fore, the model proposed in [16] has also been found to be more accurate than its predecessor

Figure 2. Comparative plot of the model-based (Var[∆CgN])
0.5 (line) and the Monte Carlo simulation-based (Var[∆CgN])

0.5

(dotted) with respect to Vgs [16].

Figure 3. Comparative plot of the model-based (Var[∆CgP])
0.5 (line) and the Monte Carlo simulation-based (Var[∆CgP])

0.5

(dotted) with respect to Vgs [16].
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[15] apart from being more detailed as the physical level differences between N-type and P-

type MOSFETs have also been taken into account.

4. Variation in transition frequency (fT)

Apart from that of ∆Cg, the comprehensive analytical model of variation in fT of subthreshold

MOSFET, ∆fT has also been proposed in [16]. Before reviewing such model, it is worthy to

show the definition of fT and its comprehensive analytical expression derived in [16].

According to [21], fT can be defined as the frequency at which the small-signal current gain of

the device drops to unity, while the source and drain terminals are held at ground and can be

related to Cg by the following equation [13]

f T ¼
gm

2πCg
(15)

By using Eqs. (2) and (6), the following comprehensive analytical expression of fT can be

obtained [16]

f T ¼
3

2

μC2
dep kT=qð Þ3

2nπL3C2
ox

" #

1� exp �
Vds

kT=q

� �� �2 exp 2q
nkT Vgs � V t

� �

h i

3 Vgs � V t

� �2
� q

nkT Vgs � V t

� �3

2

4

3

5 (16)

Similar to ∆Cg, ∆fT can be mathematically defined as [16]

Δf T ¼
Δ
f T ΔV t;ΔW;ΔL;…ð Þ � f T (17)

where fT stands for the nominal transition frequency in this context.

By also keeping in mind that ΔVt is the most influential, the following comprehensive analyt-

ical expression of ∆fT has been proposed in [16] where the aforesaid physical level differences

between N-type and P-type MOSFETs have also been taken into account.

Δf TN ¼
μC2

dep kT=qð Þ3 1� exp � Vds

kT=qð Þ

h ih i2
VFB þ 2ϕF þ C�1

ox

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2qεSiNa 2ϕF þ Vsb

� �

q

� V t

� 


πnL3C2
ox Vgs � VFB � 2ϕF � C�1

ox

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2qεSiNa 2ϕF þ Vsb

� �

q
� 
3

(18)

Δf TP ¼
μC2

dep kT=qð Þ3 1� exp � Vds

kT=qð Þ

h ih i2
VFB � 2ϕF

�

�

�

�� C�1
ox

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2qεSiNd 2ϕF

�

�

�

�� Vsb

� �

q

� V t

� 
�1

πnL3C2
ox Vgs � VFB þ 2ϕF

�

�

�

�þ C�1
ox

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2qεSiNd 2ϕF

�

�

�

�� Vsb

� �

q� 
3

(19)

It is noted that ∆fTN and ∆fTP are ∆fTof N-type and P-type MOSFETs, respectively. By also using

the up-to-date analytical model of statistical variation in MOSFET’s parameter, we have [16]
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Var Δf TN
� 	

¼
μ2C4

dep kTð Þ6q�4NeffWdep 1� exp � Vds
kT=q

h ih i4
V�1

t VFB þ 2ϕF þ C�1
ox

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2qεSiNa 2ϕF þ Vsb

� �

q
� 


3π2n2WL7C6
ox Vgs � VFB � 2ϕF � C�1

ox

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2qεSiNa 2ϕF þ Vsb

� �

q
� 
6

(20)

Var Δf TP
� 	

¼
μ2C4

dep kTð Þ6q�4NeffWdep 1� exp � Vds
kT=q

h ih i4
V�1

t VFB � 2ϕF

�

�

�

�� C�1
ox

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2qεSiNd 2ϕF

�

�

�

�� Vsb

� �

q
� 


3π2n2WL7C6
ox Vgs � VFB þ 2ϕF

�

�

�

�þ C�1
ox

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2qεSiNd 2ϕF

�

�

�

�� Vsb

� �

q
� 
6

(21)

At this point, it can be stated that the comprehensive analytical model of ∆fT proposed in [16]

is composed of Eqs. (18), (19), (20), and (21). For verification, (Var[∆fTN])
0.5 and (Var[∆fTP])

0.5

calculated by using the proposed model have also been compared with their corresponding

65 nm CMOS technology-based benchmarks obtained from the Monte Carlo simulation. The

results have been redrawn here in Figures 4 and 5 where strong agreements to the bench-

marks of the model-based (Var[∆fTN])
0.5 and (Var[∆fTP])

0.5 can be observed. The average devi-

ations have been found to be 8.22947 and 6.25104%, respectively [16]. Moreover, it has been

proposed in [16] that there exists a very strong statistical relationship between ΔCg and ΔfT of

any certain subthreshold MOSFET as it has been found by using the proposed model that the

magnitude of the statistical correlation coefficient of ΔCg and ΔfT is unity for both N-type and

P-type devices.

Figure 4. Comparative plot of the model-based (Var[∆fTN])
0.5 (line) and the Monte Carlo simulation-based (Var[∆fTN])

0.5

(dotted) with respect to Vgs [16].
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5. Variation in maximum frequency of oscillation (fmax)

Before reviewing the model of variation in fmax of subthreshold MOSFET, it is worthy to

introduce its definition and mathematical expression. The fmax, which takes the effect of the

resistance of gate metallization into account, can be defined as the frequency at which the

power gain of MOSFET becomes unity. Such gate metallization belonged to the extrinsic part

of MOSFET. According to [17], fmax can be given under an assumption that Cg is equally

divided between drain and source by

fmax ¼
1

4πCg

ffiffiffiffiffiffiffiffi

2gm
Rg

s

(22)

where Rg stands for the resistance of gate metallization [17].

By substituting gm and Cg as respectively given by Eqs. (2) and (6) into Eq. (22), we have

fmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2μ
n exp �

Vgs�V

nkT=q

h ih i�1
1� exp � Vds

kT=q

h ih i

r

4π
3

ffiffiffiffiffiffiffiffiffiffi

W
CdepRg

q

L2:5C2
ox

kT=qð Þ

h i

3 Vgs � V t

� �2
�

Vgs�V tð Þ
3

nkT=q

� � (23)

Similar to the other variations, ∆fmax can be mathematically defined as [17]

Figure 5. Comparative plot of the model-based (Var[∆fTP])
0.5 (line) and the Monte Carlo simulation-based (Var[∆fTP])

0.5

(dotted) with respect to Vgs [16].
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Δfmax ¼
Δ
fmax ΔV t;ΔW ;ΔL;…ð Þ � fmax (24)

where fmax stands for the nominal maximum frequency of oscillation in this context.

In [17], the comprehensive analytical model of ∆fmax have been proposed. Such model is

composed of the following equations.

Δfmax ¼
1
ffiffiffi

2
p

π

μ

nRg

� �1
2

1� exp � Vds

kT=q

� �� �1
2 kT

q

� �

exp
Vgs � V t

2nkT=q

� ��

CdepW

L

� �1
2

þ 1� exp � Vds

kT=q

h ih i�1
WL
Cdep

� 
3
2 Cox

kT=q

� 
2
� Vgs � VFB � ϕs �NeffWdep

� 	

� V t � VFB � ϕs �NeffWdep

� 	

�

(25)

Var Δfmax

� 	

¼ μq4NeffWdepW
2

π2nCdepRgε20k
2T2

exp � Vds

kT=q

� �

� 1

� ��1

exp
Vgs � V t

nkT=q

� �

kT

q

� �2

Vgs � VFB � ϕs �NeffWdep

� 	2

(26)

It is noted that Eq. (25) has been derived by also keeping in mind that ΔVt is the most

dominant. Moreover, Eq. (26) has been formulated based on Eq. (25) and the traditional model

of statistical variation in MOSFET’s parameter. The model-based (Var[∆fmax])
0.5 has been com-

pared with its 65 nm CMOS technology-based benchmarks obtained by the Monte Carlo

simulation for verification. The strong agreements between the model-based (Var[∆fmax])
0.5

and the benchmark can be observed from the whole simulated range of Vgs given by 0–

100 mV. The average deviation has been found to be 9.17682 and 8.51743% for N-type and P-

type subthreshold MOSFETs, respectively, [17].

Unfortunately, the model proposed in [17] did not take the physical level differences between

N-type and P-type MOSFETs into account. By taking such physical level differences into

consideration, we have

ΔfmaxN ¼ 1
ffiffiffi

2
p

π

μ

nRg

� �1
2

1� exp � Vds

kT=q

� �� �1
2 kT

q

� �

exp
Vgs � V t

2nkT=q

� ��

CdepW

L

� �1
2

þ 1� exp � Vds

kT=q

h ih i�1
WL
Cdep

� 
3
2 Cox

kT=q

� 
2
� Vgs � VFB � 2ϕF � C�1

ox

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2qεSiNa 2ϕF þ Vsb

� �

q
h i

� V t � VFB � 2ϕF � C�1
ox

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2qεSiNa 2ϕF þ Vsb

� �

q
h i

�

(27)

ΔfmaxP ¼ 1
ffiffiffi

2
p

π

μ

nRg

� �1
2

1� exp � Vds

kT=q

� �� �1
2 kT

q

� �

exp
Vgs � V t

2nkT=q

� ��

CdepW

L

� �1
2

þ 1� exp � Vds

kT=q

h ih i�1
WL
Cdep

� 
3
2 Cox

kT=q

� 
2
� Vgs � VFB þ 2ϕF

�

�

�

�þ C�1
ox

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2qεSiNd 2ϕF

�

�

�

�� Vsb

� �

qh i

� V t � VFB þ 2ϕF

�

�

�

�þ C�1
ox

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2qεSiNd 2ϕF

�

�

�

�� Vsb

� �

qh i

�

(28)
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where ∆fmaxN and ∆fmaxP are ∆fmax of N-type and P-type MOSFETs, respectively. By using the

up-to-date analytical model of statistical variation in MOSFET’s parameter, we have

Var ΔfmaxN

� 	

¼
3q2NeffWdepW

�3L�1 μ=nRg

� �

kT=qð Þ2

2π2V�1
t VFB þ 2ϕF þ C�1

ox

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2qεSiNa 2ϕF þ Vsb

� �

q
h i 1� exp �

Vds

kT=q

� �� �

exp
Vgs � V t

2nkT=q

� �� �2

�
CdepW

L

� �1
2

þ 1� exp �
Vds

kT=q

� �� ��1 WL

Cdep

� �3
2 Cox

kT=q

� �2
"

� Vgs � VFB � 2ϕF � C�1
ox

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2qεSiNa 2ϕF þ Vsb

� �

q

� ��

(29)

Var ΔfmaxP

� 	

¼
3q2NeffWdepW

�3L�1 μ=nRg

� �

kT=qð Þ2

2π2V�1
t VFB þ 2ϕF þ C�1

ox

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2qεSiNa 2ϕF þ Vsb

� �

q
h i 1� exp �

Vds

kT=q

� �� �

exp
Vgs � V t

2nkT=q

� �� �2

�
CdepW

L

� �1
2

þ 1� exp �
Vds

kT=q

� �� ��1 WL

Cdep

� �3
2 Cox

kT=q

� �2
"

� Vgs � VFB þ 2ϕF

�

�

�

�þ C�1
ox

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2qεSiNd 2ϕF

�

�

�

�� Vsb

� �

q

� ��

(30)

At this point, it can be seen that the improved model of ∆fmax is composed of Eqs. (27), (28),

(29), and (30). For verification, the model-based (Var[∆fmaxN])
0.5 and (Var[∆fmaxP])

0.5 have been

compared with their corresponding 65 nm CMOS technology-based benchmarks obtained by

Figure 6. Comparative plot of the model-based (Var[∆fmaxN])
0.5 (line) and the Monte Carlo simulation-based (Var

[∆fmaxN])
0.5 (dotted) with respect to Vgs.
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using the Monte Carlo simulation. The results are as shown in Figures 6 and 7 where strong

agreements to the benchmarks of the model-based (Var[∆fmaxN])
0.5 and (Var[∆fmaxP])

0.5 can be

observed. The average deviations from the benchmarks have been found to be 6.11788 and

5.85574% for (Var[∆fmaxN])
0.5 and (Var[∆fmaxP])

0.5, respectively, which are lower than those of the

model proposed in [17]. Therefore, our improved model ∆fmax is also more accurate than the

previous one apart from being more detailed as the physical level differences between N-type

and P-type MOSFETs have also been taken into account.

Before proceeding further, it should be mentioned here that Cg has more severe variations

compared to the other high-frequency characteristics and the P-type subthreshold MOSFET is

more robust than the N-type as can be seen from Figures 2–7. Moreover, it can be implied that

there exists a strong correlation between Δfmax and ΔfT as fmax is related to fT by Eq. (31). An

implication of strong correlation between Δfmax and ΔCg can be similarly obtained by observ-

ing Eq. (22) that is given as

fmax ¼
f T
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2gmRg

p (31)

6. Some interesting issues

6.1. Statistical/variability aware design trade-offs

For the optimum statistical/variability aware design of any MOSFET-based VHF circuit, ∆Cg,

∆fT, and ∆fmax must be minimized. It has been found from Eqs. (13), (14), (20), (21), (29), and

(30) that Var ΔCg

� 	

∝L3, Var Δf T
� 	

∝L�7 and Var Δfmax

� 	

∝ L�1 for both types of MOSFET. There-

fore, it can be seen that shrinking L can reduce ΔCg of the subthreshold MOSFET of any type

Figure 7. Comparative plot of the model-based (Var[∆fmaxP])
0.5 (line) and the Monte Carlo simulation-based (Var

[∆fmaxP])
0.5 (dotted) with respect to Vgs.
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with the increasing ΔfT and Δfmax as penalties. Moreover, we have also found that

Var ΔCg

� 	

∝T�2, Var Δf T
� 	

∝T6, and Var Δfmax

� 	

∝T2. This means that we can reduce ΔfT and

Δfmax by lowering T with higher ΔCg as a cost. These design trade-offs must be taken into

account in the statistical/variability aware design of any subthreshold MOSFET-based VHF

circuits/systems.

6.2. Variation in any high-frequency parameter

Occasionally, determining the variation in other high-frequency parameters apart from Cg, fT,

and fmax e.g., bandwidth, fBW, etc., has been found to be necessary. The determination of variation

in fBW as a function ofΔfT has been shown in [16]. In general, let any high-frequency parameter of

the subthreshold MOSFET be P, the amount of its variation, ΔP, can be determined given the

amounts of ΔCg, ΔfT, and Δfmax if P depends on Cg, fT, and fmax. It is noted that the amounts of

ΔCg, ΔfT, and Δfmax can be predetermined by using the reviewed comprehensive analytical

models. Mathematically, ΔP can be expressed in terms of ΔCg, ΔfT, and Δfmax as follows

ΔP ¼
∂P

∂Cg

� �

ΔCg þ
∂P

∂f T

� �

Δf T þ
∂P

∂fmax

� �

Δfmax (32)

Therefore, the variance of ΔP, Var[ΔP] can be given by keeping the aforementioned strong

statistical relationships among ΔCg, ΔfT, and Δfmax in mind as follows

Var Δ;P½ � ¼
∂P

∂Cg

� �2

Var ΔCg

� 	

þ
∂P

∂f T

� �2

Var Δf T
� 	

þ
∂P

∂fmax

� �2

Var Δfmax

� 	

þ2
∂P

∂Cg

� �

∂P

∂f T

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var ΔCg

� 	

Var Δf T
� 	

q

þ 2
∂P

∂Cg

� �

∂P

∂fmax

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var ΔCg

� 	

Var Δfmax

� 	

q

þ2
∂P

∂f T

� �

�
∂P

∂fmax

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var Δf T
� 	

Var Δfmax

� 	

q

(33)

Noted also that the Var[ΔCg], Var[ΔfT], and Var[Δfmax] can be known by applying those

reviewed models.

6.3. High-frequency parameter mismatches

The amount of mismatches in Cg, fT, and fmax of multiple subthreshold MOSFETs can be

determined by applying those reviewed comprehensive analytical models of ΔCg, ΔfT, and

Δfmax even though they are dedicated to a single device. As an illustration, the mismatches in

Cg, fT, and fmax of two deterministically identical subthreshold MOSFETs, i.e., M1 and M2, will

be determined. Traditionally, the magnitude of mismatch can be measured by using its vari-

ance [22]. Let the mismatches in Cg, fT, and fmax of M1 and M2 be denoted by ΔCg12, ΔfT12, and

Δfmax12, respectively, their variances, i.e., Var[ΔCg12], Var[ΔfT12], and Var[Δfmax12], can be respec-

tively related to Var[ΔCg], Var[ΔfT], and Var[Δfmax] of M1 and M2, which can be determined by

using those reviewed models, via the following equations
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Var ΔCg12

� 	

¼ Var ΔCg1

� 	

þ Var ΔCg2

� 	

� 2rΔCg1ΔCg2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var ΔCg1

� 	

Var ΔCg2

� 	

q

(34)

Var Δf T12
� 	

¼ Var Δf T1
� 	

þ Var Δf T2
� 	

� 2rΔCg1ΔCg2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var Δf T1
� 	

Var Δf T2
� 	

q

(35)

Var Δfmax12

� 	

¼ Var Δfmax1

� 	

þ Var Δfmax2

� 	

� 2r
ΔCg1ΔCg2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var Δfmax1

� 	

Var Δfmax2

� 	

q

(36)

It is noted that ΔCgi, ΔfTi, Δfmaxi, Var[ΔCgi], Var[ΔfTi], and Var[Δfmaxi], respectively, denote ΔCg,

ΔfT, Δfmax, Var[ΔCg], Var[ΔfT], and Var[Δfmax] of Mi where {i} = {1, 2}. Moreover, rXY stands for

the correlation coefficient of X and Y where {X} = {ΔCg1, ΔfT1, Δfmax1} and {Y} = {ΔCg2, ΔfT2,

Δfmax2}. For closely spaced MOSFETs with positive correlation, rXYcan be given by 1 as the

statistical correlation between closely spaced devices is very strong [22]. As a result, the mis-

matches are maximized. If the negative correlation is assumed on the other hand, rXY become

�1 and the mismatches are minimized [16]. For distanced devices, we have, rXY ¼ 0 as the

correlation is very weak and can be neglected.

If we assume that both M1 and M2 are statistically identical, we have Var[ΔCg1] = Var

[ΔCg2] = Var[ΔCg], Var[ΔfT1] = Var[ΔfT2] = Var[ΔfT], and Var[Δfmax1] = Var[Δfmax2] = Var[Δfmax].

Thus, Eqs. (34), (35), and (36) become

Var ΔCg12

� 	

¼ 2Var ΔCg

� 	

1� rΔCg1ΔCg2

� 


(37)

Var Δf T12
� 	

¼ 2Var Δf T1
� 	

1� r
Δf T1Δf T2

� 


(38)

Var Δfmax12

� 	

¼ 2Var Δfmax1

� 	

1� rΔfmax1Δfmax2

� 


(39)

From these equations, it can be seen that Var[ΔCg12], Var[ΔfT12], and Var[Δfmax12] can all be approx-

imately given by 0 if those statistically identical devices are closely spaced andpositively correlated

as all rXY’s are given by 1. This implies that the high-frequency parameter mismatches of statisti-

cally identical, closely spaced, and positively correlated subthresholdMOSFETs can be neglected.

6.4. Variation in any VHF circuit/system

By using the reviewed models, the variation in the crucial parameter of any subthreshold

MOSFET-based VHF circuit/system can be analytically formulated. As a case study, the sub-

threshold MOSFET-based Wu current-reuse active inductor proposed in [1] will be considered.

This active inductor can be depicted as shown in Figure 8. According to [1], the inductance, l,

of this active inductor can be given by

l ¼
Cg1

gm1gm2

(40)
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where Cg1, gm1, and gm2 are gate capacitance of M1, transconductance of M1, and transcon-

ductance of M2, respectively.

By using Eq. (40), the variation in l, Δl due to the variation in Cg1, ΔCg1 can be immediately

given by [16]

Δl ¼
ΔCg1

gm1gm2

(41)

Therefore, we have the following relationship between the variances of Δl and ΔCg1

Var Δl½ � ¼
Var ΔCg1

� 	

gm1gm2

(42)

It is noted that Var[ΔCg1] can be determined by using those reviewed models. It can

also be seen that Var Δl½ �∝Var ΔCg1

� 	

and Var Δl½ �∝ 1=gm1gm2 [16]. Therefore, it is far more

convenient to minimize Δl by reducing gm1 and gm2 as they are electronically controllable

unlike ΔCg1, which must be minimized at the physical level by lowering L as stated

above.

6.5. Reduced computational effort simulation

If we let the key parameter of any subthreshold MOSFET-based VHF circuit/system with M

MOSFETs under consideration be Z, its variance, Var[Z], which is the desired statistical/vari-

ability aware simulation result, can be given by.

Figure 8. Wu current-reuse active inductor [1].
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Var Z½ � ¼
X

M

i¼1

SZCgi

� 
2
σ
2
ΔCgi

þ SZf Ti

� 
2
σ
2
Δf Ti

þ SZfmaxi

� 
2
σ
2
Δfmaxi

� �

þ
X

M

i 6¼j

X

M

j¼1

SZCgi

� 


SZCgj

� 


rΔCgiΔCgj

ffiffiffiffiffiffiffiffiffiffi

σ
2
ΔCgi

q ffiffiffiffiffiffiffiffiffiffi

σ
2
ΔCgj

q

þ SZf Ti

� 


SZf Tj

� 


rΔf TiΔf Tj

ffiffiffiffiffiffiffiffiffiffi

σ
2
Δf Ti

q
ffiffiffiffiffiffiffiffiffiffi

σ
2
Δf Tj

q

�

þ SZfmaxi

� 


SZfmaxj

� 


rΔfmaxiΔfmaxj

ffiffiffiffiffiffiffiffiffiffiffiffi

σ
2
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q
ffiffiffiffiffiffiffiffiffiffiffiffi

σ
2
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q

�

þ2
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SZf Ti
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r
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ffiffiffiffiffiffiffiffiffiffi

σ
2
ΔCgi
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ffiffiffiffiffiffiffiffiffiffi

σ
2
Δf Tj

q

þ SZCgi

� 


SZfmaxj
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r
ΔCgiΔfmaxj

�

ffiffiffiffiffiffiffiffiffiffi

σ
2
ΔCgi

q
ffiffiffiffiffiffiffiffiffiffiffiffi

σ
2
Δfmaxj

q

þ SZf Ti
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SZfmaxj

� 


rΔf TiΔfmaxj

ffiffiffiffiffiffiffiffiffiffi

σ
2
Δf Ti

q
ffiffiffiffiffiffiffiffiffiffiffiffi

σ
2
Δfmaxj

q

�

(43)

It is noted that the magnitude of rXY , where {X} = {ΔCgi, ΔfTi, Δfmaxi}, {Y} = {ΔCgj, ΔfTj, Δfmaxj},

and the subscripts i and j refers to the arbitrary ith and jth MOSFET, respectively, in this

scenario, approaches 1 when i = j as it determines the correlation of the same device.

Moreover, SZCgi
SZCgj

� 


, SZf Ti SZf Tj

� 


, and SZfmaxi
SZfmaxj

� 


denote the sensitivity of Z to Cg, fT, and fmax

of ith (jth) MOSFET, respectively. By using Eq. (43) and the reviewed comprehensive analyt-

ical models for predetermining all Var[X]‘s and Var[Y]‘s, Var[Z] can be numerically deter-

mined in a reduced computational effort manner as those sensitivities can be obtained by

using the sensitivity analysis [23], which required much less computational effort compared

to the conventional Monte Carlo simulation. This is because the circuit/system of interest is

needed to be solved only once for obtaining the sensitivities and then Var[Z] can be immedi-

ately determined unlike the Monte Carlo simulation that requires numerous runs in order to

reach the similar outcome [16]. Therefore, much of the computational effort can be signifi-

cantly reduced.

7. Conclusion

In this chapter, the comprehensive analytical models of ΔCg, ΔfT, and Δfmax of subthreshold

MOSFET, which serves as the basis of many VHF circuits/systems, have been reviewed.

Interesting issues related to these models i.e., statistical/variability aware design trade-offs

of subthreshold MOSFET-based VHF circuit/system; determination of variation in any

high-frequency parameter and mismatch in Cg, fT, and fmax; determination of variation in

any subthreshold MOSFET-based VHF circuit/system; and the computationally efficient

statistical/variability aware simulation with sensitivity analysis have been discussed. More-

over, a modified version of the comprehensive analytical model of Δfmax has also been

proposed. This revised model has been found to be more accurate and detailed than the

previous one.
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