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Abstract

Apicomplexa is a eukaryotic phylum of intracellular parasites with more than 6000 spe-
cies. Some of these single-celled parasites are important pathogens of livestock. At pres-
ent, 128 genomes of phylum Apicomplexa have been reported in the GenBank database, 
of which 17 genomes belong to five genera that are pathogens of farm animals: Babesia, 
Theileria, Eimeria, Neospora and Sarcocystis. These 17 genomes are Babesia bigemina (five 
chromosomes), Babesia divergens (514 contigs) and Babesia bovis (four chromosomes and  
one apicoplast); Theileria parva (four chromosomes and one apicoplast), Theileria annulata  
(four chromosomes), Theileria orientalis (four chromosomes and one apicoplast) and 
Theileria equi (four chromosomes and one apicoplast); Eimeria brunetti (24,647 contigs), 
Eimeria necatrix (4667 contigs), Eimeria tenella (12,727 contigs), Eimeria acervulina (4947 
contigs), Eimeria maxima (4570 contigs), Eimeria mitis (65,610 contigs) and Eimeria praecox 
(53,359 contigs); Neospora caninum (14 chromosomes); and Sarcocystis neurona strains SN1 
(2862 contigs) and SN3 (3191 contigs). The study of these genomes allows us to under-
stand their mechanisms of pathogenicity and identify genes that encode proteins as a 
possible vaccine antigen.

Keywords: Apicomplexa, genomics, parasitic protists, Babesia, Theileria, Eimeria, 
Sarcocystis, Neospora

1. Introduction

Apicomplexa (also called Apicomplexia) is a group of protists comprising a eukaryotic phy-

lum of obligate intracellular parasites with more than 6000 described species [1]. Many of 

these cell single parasites are important pathogens of humans, domestic animals and live-

stock, with a health and economic relevance worldwide [2–5]. Apicomplexa microorganisms 

are intracellular eukaryotes thriving within another eukaryotic cell [6].

© 2018 The Author(s). Licensee InTech. Distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/), which permits use, distribution
and reproduction for non-commercial purposes, provided the original is properly cited.



This phylum includes Plasmodium falciparum and four other Plasmodium species, the etiolog-

ical agents for malaria in humans, a mosquito-transmitted and potentially deadly disease 
[6]. Toxoplasma gondii is a source of toxoplasmosis disease and congenital neurological birth 

defects (for example, encephalitis and ocular disease) in humans [7–9]. Cryptosporidium and 

Cyclospora parasites cause opportunistic human infections associated with immunosuppres-

sive conditions (including AIDS) through contaminated food or water supplies [10, 11], while 

the invertebrate parasites of genus Gregarina are used as models for studying Apicomplexa 

motility [12].

Apicomplexa parasites infect a wide range of animals from mollusks to mammals [13]. Their 

life cycles involve only a single host, whereas others require sexual recombination in a vector 

species for transmission. The life cycle of these parasites has three stages: sporozoite (infective 
stage), merozoite (a result of asexual reproduction) and gametocyte (germ cells) [12]. These 

parasites are characterized by the presence of specific organelles (including rhoptries, micro-

nemes and dense granules) involved in the establishment of an intracellular parasitophorous 

vacuole within the host cell [12].

A defined feature of these microorganisms is the presence of extracellular zoite forms that are 
usually motile and include an apical complex that gives the phylum its name [14]. With the 

exception of the genera Cryptosporidium and Gregarina, all species of the phylum Apicomplexa 

possess an apicoplast [12, 15–17].

The Apicomplexa parasites causing diseases of veterinary importance are Babesia, Theileria, 

Eimeria, Neospora and Sarcocystis [11, 18, 19]. This chapter focuses on genomics of these five 
genera.

2. Apicomplexa genome

2.1. Apicoplast genome

Twenty years ago, a remnant chloroplast, known as apicoplast, was discovered in Plasmodium 

[20–23]. This apicoplast lost the ability to perform photosynthesis, however, is an essential 

organelle, and its inhibition is lethal. The apicoplast arose from a secondary endosymbiosis 

event occurred where an ancestor to Plasmodium engulfed a photosynthetic alga [24–26]. This 

organelle is involved in critical metabolic pathways such as the biosynthesis of fatty acids and 
heme group degradation [27, 28]. Some of these metabolic pathways are considered as poten-

tial targets for antiparasitic drug designs [29, 30].

Like mitochondria, the apicoplast possesses its own genome [29, 31–37]. The apicoplast 

genome is ~35 kbp smaller than chloroplasts due to the absence of genes encoding proteins 

involved in photosynthesis. The genome of this plastid has been reduced and contains ribo-

somal (rRNA) and transfer RNA (tRNA) genes that play an important role in organelle replica-

tion [24]. The characteristics of the structure of apicoplast genomes have difficult comparisons 
with other plastids [20].
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2.2. Apicomplexa genomes in GenBank

New drug targets identification, and novel antiparasitic therapeutics are necessary due to 
the emergence of parasite strains resistant to treatments available today [12, 38–40]. With the 

recent advancements in genome sequencing technologies, the research of new drug targets 

can be the focus on genomics analyses.

At present (August 2016), 128 complete and draft genomes of phylum Apicomplexa have 

been reported in the GenBank database (http://www.ncbi.nlm.nih.gov/genbank/), of which 17 
genomes belong to five genera that are pathogens of farm animals: Babesia, Theileria, Eimeria, 
Neospora, and Sarcocystis (3, 4, 7, 1, and 2 genomes, respectively). The study and comparison 

of these genomes will allow us to understand pathogenicity mechanisms and identify genes 

and proteins with potential drug targets in order to develop novel antiparasitic compounds 

of veterinary importance.

3. Classification of phylum Apicomplexa

The National Center for Biotechnology Information (NCBI; http://www.ncbi.nlm.nih.gov/) 
divides the phylum Apicomplexa into two classes: Aconoidasida and Conoidasida (Figure 1). 

The class Aconoidasida is divided into two orders: Haemosporida and Piroplasmida  

Figure 1. Classification of phylum Apicomplexa. Taxonomic categories are shown in bold (left). Only genera with 
veterinary importance are shown. The genera Babesia and Theileria belong to order Piroplasmida. The genera Eimeria, 
Neospora and Sarcocystis belong to order Eucoccidiorida.

Genomics of Apicomplexa
http://dx.doi.org/10.5772/intechopen.72633

103



(containing the genera Babesia and Theileria), while the class Conoidasida is divided into 

two subclasses: Coccidiasina (containing the genera Eimeria, Neospora and Sarcocystis, that 

belong to order Eucoccidiorida) and Gregarinasina (Figure 1).

It is estimated that subclass Coccidiasina separated from the class Aconoidasida ~705 million 

years ago [41, 42]. Moreover, in 2004, Douzery et al. calculated it as 495 million years ago 
[41–43].

4. Babesia

Babesia is a genus of intracellular protozoa that cause babesiosis. These parasites are trans-

mitted by ticks and infect erythrocytes in their mammalian hosts. Babesiosis was first 
described in sheep and cattle in 1888 by Victor Babes, in honor of which is called the genus 
[44] and is characterized by hemolytic anemia and fever, with occasional hemoglobinuria 
and death [45].

The genus Babesia includes over 100 species that are highly specific for their hosts. Only a 
few Babesia species cause infections in humans, especially immunocompromised individuals. 

Most cases identified in humans are caused by Babesia microti and Babesia divergens, parasites 

of rodents and cattle, respectively [44, 46, 47].

Species affecting animals are: Babesia bigemina, Babesia major, Babesia divergens and Babesia bovis 

that infect cattle [44, 48–51]; Babesia ovis and Babesia motasi cause infections in sheep [44, 52, 

53]; and Babesia equi and Babesia caballi cause infections in horses [44, 54].

Three genomes of Babesia species have been reported in the GenBank database. The B. bigemina  

strain Bond genome is 13,840,936 bp of total length divided into five chromosomes (2.5, 2.8, 
3.5, 0.9 and 0.5 Mbp; GenBank accession number from NC_027216.1 to NC_027220.1, respec-

tively). The B. divergens strain Rouen 1987 genome is 10,797,556 bp divided into 514 contigs 

(GenBank accession number CCSG00000000.1).

B. bovis strain T2Bo genome is 8,179,706 bp divided into four chromosomes (1.2, 1.7, 2.6 

and 2.6 Mbp, respectively) and one apicoplast (35,107 bp, GenBank accession number 

NC_011395.1). The chromosomes I and IV of B. bovis genome are divided into seven and three 

contigs, respectively; chromosomes II and III GenBank accession numbers are NC_010574.1 

and NC_010575.1, respectively.

4.1. Babesia bovis genome

In 2007, Brayton et al. reported the analysis of comparative genomic between B. bovis, Theileria 

parva and P. falciparum genomes [33]. The B. bovis genome has 3671 protein-coding genes 

and 41.8% of GC content, an analysis of enzymatic pathways revealed a reduced metabolic 
potential. The results of comparative genomic showed that B. bovis genome (8.2 Mbp) is simi-

lar in size to that of T. parva (8.3 Mbp) [34] and Theileria annulata (8.35 Mbp) [55], the smallest 

Apicomplexa genomes sequenced to date.
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In contrast, B. bovis and P. falciparum, which have similar clinical and pathological features, 

have major differences in genome size (8.2 and 22.8 Mbp, respectively) and chromosome 
number (4 and 14, respectively). Additionally, many stage-specific and immunologically 
important genes from P. falciparum are absent in B. bovis [33]. The B. bovis genome sequence 

has allowed analyses of the polymorphic variant erythrocyte surface antigen protein (ves1 

gene and discovery of the novel smorf gene family) that are postulated to play a role in cytoad-

hesion and immune evasion (similar to var. genes of P. falciparum). The ~150 ves1 genes are 

distributed in clusters throughout each chromosome [33]. Finally, comparative analyses have 

identified several novel vaccine candidates into B. bovis genome, including homologs of p36 
and Pf12 (P. falciparum); p67 and four of six proteins (T. parva) targeted by CD8+ cytotoxic T 

cells [33].

Brayton et al. also reported that the B. bovis apicoplast genome is 33 kbp of total length and 

encodes 32 putative protein coding genes, 25 tRNA genes, and small and large subunit rRNA 

genes. This organelle genome displays similarities in size and gene content to apicoplasts of 
Eimeria tenella, P. falciparum, T. parva and T. gondii [33, 35, 56]. The B. bovis apicoplast genome 

has 78.2% of AT content (21.8% of GC content) [33].

5. Theileria

The genus Theileria infects leukocytes [57], and they are the only eukaryotic pathogens known 

to transform lymphocytes [11]. These parasites infect a wide range of both domestic and 

wild animals and are transmitted by Ixodid ticks of the genera Amblyomma, Haemaphysalis, 

Hyalomma and Rhipicephalus [58, 59]. Theileria parasites can be grouped into schizont trans-

forming (T. parva, T. annulata and Theileria lestoquardi) [60–62] and nontransforming (Theileria 

orientalis) species [63, 64]. The uncontrolled proliferation of schizonts results in the pathol-
ogies associated with corridor disease and East Coast fever (T. parva), tropical theileriosis  

(T. annulata) in cattle and malignant theileriosis (T. lestoquardi) in goats and sheep [59, 65].

T. orientalis (frequently been referred to as T. sergenti [66]) causes bovine piroplasmosis [67–69] 

and can generate anemia and icterus in cattle but rarely cause fatal disease [64]. T. orientalis 

is classified into two major genotypes: the Chitose (throughout the world) and Ikeda (east-
ern Asian countries) types [70]. Finally, equine piroplasmosis of horses, mules, donkeys, and 

zebras is caused by Theileria equi [71]. T. equi has been renamed several times [72], and molecu-

lar phylogenetic analyses indicate an intermediate position between B. bovis and Theileria spp. 

[73, 74].

Four genomes of Theileria species have been reported in the GenBank database. The T. parva 

strain Muguga genome is 8,347,606 bp divided into four chromosomes (2.5, 2.0, 1.9 and  

1.9 Mbp) and one apicoplast (39,579 bp, GenBank accession number NC_007758.1). The chro-

mosomes I and II of T. parva genome have the GenBank accession number NC_007344.1 and 

NC_007345.1, respectively, while the chromosomes III and IV are divided into four and two 
contigs, respectively. The T. annulata strain Ankara isolate clone C9 genome is 8,358,425 bp 

divided into four chromosomes (2.6, 2.0, 1.9 and 1.8 Mbp; GenBank accession number 
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NC_011129.1, NC_011099.1, NC_011100.1 and NC_011098.1, respectively). The T. orientalis 

strain Shintoku (Ikeda type) genome is 9,010,364 bp divided into four chromosomes (2.7, 2.2, 

2.0 and 2.0 Mbp; GenBank accession number from NC_025260.1 to NC_025263.1, respectively) 

and one apicoplast (24,173 bp into one contig).

Finally, the T. equi strain WA genome is 11,674,479 bp divided into four chromosomes (3.7, 2.3, 

2.1 and 3.5 Mbp) and one apicoplast (47,880 bp into one contig). The chromosomes I and III of 

T. equi genome have the GenBank accession number NC_021366.1 and NC_021367.1, respec-

tively, while the chromosomes II and IV are divided into two and six contigs, respectively.

5.1. Theileria parva genome

The complete genome sequence of T. parva was reported in 2005 [34]. T. parva genome has 

4035 protein encoding genes (20% fewer than P. falciparum) and 34.1% of GC content. Putative 
functions were assigned to 38% of the predicted proteins. Like P. falciparum, the four chro-

mosomes of T. parva contain one extremely A + T-rich region (>97%) about 3 kbp in length 

that may be the centromere [34]. Unlike P. falciparum, T. parva genome contains two identical, 

unlinked 5.8S-18S-28S rRNA units, which suggest that it does not possess functionally dis-

tinct ribosomes [75]. The infection of T and B lymphocytes by T. parvum results in a reversible 

transformed phenotype with uncontrolled proliferation of host cells that remain persistently 

infected. Parasite proteins that may modulate host cell phenotype are described by [55]. 

Telomeres of T. parvum have a conserved (~140 bp) sequence adjacent to the telomeric repeat 

and several subtelomeric regions exhibit 70–100% sequence similarity [34, 76]. The apicoplast 

genome of T. parva differs from P. falciparum in that all of its genes are transcribed in the same 

direction, and 26 of the 44 protein-coding genes share 27–61% sequence similarity with pro-

teins encoded by the P. falciparum apicoplast genome [34].

5.2. Theileria annulata genome

The T. annulata genome sequence was also reported in 2005 [55]. The nuclear genome of  

T. annulata is similar in size (8.35 Mbp) to that of T. parva (8.3 Mbp). T. annulata genome has 3792  

protein encoding genes (243 genes fewer than T. parva), 49 tRNA and 5 rRNA genes, and 

32.54% of GC content. In addition, 3265 orthologous genes were predicted between T. annulata 

and T. parva genomes. Pain et al. predicted 3265 orthologous genes between the T. annulata 

and T. parva genomes. Additionally, 34 (T. annulata) and 60 (T. parva) genes are single-copy 

genes and their functions have been not described [55].

The parasite genes involved in host-cell transformation require a signal peptide or a specific 
host-targeting signal sequence. Some candidates include TashAT and SuAT protein families 

in T. annulata [77, 78] and related host nuclear proteins (TpHNs protein family) in T. parva. 

A cluster of 17 SuAT1 and TashAT-like genes was identified in the T. annulata genome [55].

5.3. Theileria orientalis genome

In 2012, Hayashida et al. reported the comparative genomic analyses between T. orientalis, 

T. parva, T. annulata and B. bovis. The genome size of T. orientalis (9 Mbp) is approximately 
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8% larger than the reported genome sizes of T. parva (8.3 Mbp), T. annulata (8.35 Mbp) and  

B. bovis (8.2 Mbp). The number of predicted protein-coding (3995) genes identified in T. orientalis  

is similar to that found in T. parva (4035). The GC content of the T. orientalis genome (41.6%) 

is higher than T. parva and T. annulata (34.1 and 32.5%, respectively) but similar to B. bovis  

(41.8%). Unlike T. parva and T. annulata, T. orientalis does not induce uncontrolled prolifera-

tion of infected leukocytes and multiplies predominantly within infected erythrocytes [79].  

T. orientalis is the first genome sequence of a nontransforming Theileria species that occupies a 

phylogenetic position close to that of the transforming species [79].

5.4. Theileria equi genome

The T. equi genome sequence was reported in 2012 [80]. T. equi genome size (11.6 Mbp) is  
larger than T. parva (8.3 Mbp), T. annulata (8.35 Mbp), T. orientalis (9 Mbp) and B. bovis  

(8.2 Mbp). T. equi genome has two rRNA operons, 46 tRNA genes and 5330 nuclear protein  

coding genes, ~25% greater than found for T. parva, T. annulata and B. bovis. Furthermore,  

T. equi genome contains 1985 unique genes, and 366 and 137 homologs of genes found only in 

the two Theileria spp. or B. bovis, respectively. The apicoplast genome of T. Equi has 43 unidi-

rectionally coding sequences, which includes each of the 20 tRNA, and two rRNA genes are 

present [80].

6. Eimeria

Eimeria is a genus that includes species capable of causing the disease coccidiosis in cattle 
and poultry. Eimeria parasites exhibit immense diversity in host range including mammals, 

birds, reptiles, fish and amphibians [81–86]. It is estimated that there are many thousands of 

Eimeria species [87]. Coccidiosis is primarily associated with enteric disease with few excep-

tions [88–90]. The avian coccidiosis can be subdivided into hemorrhagic and malabsorptive 

pathologies related to Eimeria brunetti, Eimeria necatrix and Eimeria tenella; or Eimeria acervu-

lina, Eimeria maxima, Eimeria mitis and Eimeria praecox, respectively [91]. E. tenella is among the 

most pathogenic avian parasites causing weight loss, reduced feed efficiency, reduced egg 
production and death [92]. The total loss is estimated at around USD 2.4 billion annually [93], 

including the costs of control and prevention worldwide.

Seven genomes of Eimeria species have been reported in the GenBank database. The E. brunetti  
strain Houghton genome is 66,890,165 bp divided into 24,647 contigs (GenBank acces-

sion number CBUX000000000.1). The E. necatrix strain Houghton genome is 55,007,932 bp 
divided into 4667 contigs (GenBank accession number CBUZ000000000.1). The E. tenella strain 

Houghton genome is 51,859,607 bp divided into 12,727 contigs (GenBank accession number 
CBUW000000000.1). The E. acervulina strain Houghton genome is 45,830,609 bp divided 
into 4947 contigs (GenBank accession number CBUS000000000.1). The E. maxima strain 

Weybridge genome is 45,975,062 bp divided into 4570 contigs (GenBank accession number 

CBUY000000000.1). The E. mitis strain Houghton genome is 60,415,144 bp divided into 65,610 
contigs (GenBank accession number CBUT000000000.1). E. praecox strain Houghton genome 
is 60,083,328 bp divided into 53,359 contigs (CBUU000000000.1).

Genomics of Apicomplexa
http://dx.doi.org/10.5772/intechopen.72633

107



E. tenella strain Houghton was isolated in the United Kingdom in 1949. The E. tenella genome 

size is ~60 Mbp with a GC content of ~53%. Its molecular karyotype comprises 14 chromo-

somes of between 1 and >6 Mbp, and the genome is available in http://www.sanger.ac.uk/
Projects/E_tenella/. Moreover, parallel projects have been undertaken to generate the com-

plete sequences of chromosomes I (∼1 Mbp) and II (∼1.2 Mbp), which are associated with 

resistance to the anticoccidial drug arprinocid and precocious development, respectively [94]. 

In 2007, Ling et al. reported the sequencing and analysis of the first chromosome of E. tenella 

[95]. The chromosome I of E. tenella is 1,347,714 pb of total length and has the GenBank acces-

sion number AM269894.1.

7. Neospora

The genus Neospora is constituted by only two species: Neospora caninum and Neospora hughesi. 

N. caninum is the etiologic agent of the disease neosporosis and is a close relative of T. gondii 

[96]. They share many common morphological and biological features [97]. Neospora parasite 

appears not to be zoonotic, having a more restricted host range [98, 99], and shows a striking 

capacity for highly efficient vertical transmission in bovines [100]. N. caninum is one of the 

leading causes of infectious bovine abortion [101, 102].

Only one genome of N. caninum strain Liverpool has been reported in the GenBank database. 

This genome has 57,547,420 bp of total length divided into 14 chromosomes: Ia (2,288,409 bp), 
Ib (1,908,326 bp), II (2,170,133 bp), III (2,139,717 bp), IV (2,317,323 bp), V (2,735,753 bp), VI 
(3,360,651 bp), VIIa (3,947,736 bp), VIIb (4,923,984 bp), VIII (6,723,156 bp), IX (5,490,906 bp), 
X (6,985,512 bp), XI (6,081,843 bp) and XII (6,473,971 bp); GenBank accession number from 

NC_018385.1 to NC_018398.1.

8. Sarcocystis

More than 150 species of Sarcocystis have an indirect life cycle. They require both an interme-

diate and a final host, usually a herbivorous and a carnivorous vertebrate animal, respectively 
[103]. For this transition, Sarcocystis species produce infectious tissue cysts surrounded by 

glycosylated cyst walls that are largely restricted to muscle. Ingestion of tissue cysts through 

predation by the final hosts propagates the life cycle [104]. All vertebrates, including mam-

mals, some birds, reptiles and possibly fish, are intermediate hosts to at least one Sarcocystis 

species [105, 106]. Final hosts include carnivores or omnivores, such as humans, some reptiles 

and raptorial birds [107].

Sarcocystis species are the causal agents of Sarcocystosis, a disease typically asymptomatic 

but can be associated with myositis, diarrhea or infection of the central nervous system 

[104]. Some species of Sarcocystis that infect farm animals (such as cattle, sheep and horses) 
cause fever, lethargy, poor growth, reduced milk production, abortion and death [107]. 
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Sarcocysti cruzi, Sarcocysti hirsuta and Sarcocysti hominis used cattle as intermediate hosts, and 
canids, felids and humans as final hosts, respectively [108]. Additionally, Sarcocysti sinensis 

also used cattle as intermediate host [109], but its final host remains to be elucidated [110].  

S. hominis causes gastrointestinal malaise [108] and S. sinensis may also elicit symptoms in 

humans [111].

Sarcocysti neurona is the causal agent of equine protozoal myeloencephalitis [106]. This dis-

ease destroys neural tissue and can be fatal to horses, marine mammals and several other 

mammals. S. neurona also infects many mammals asymptomatically [104]. Furthermore, three 

Sarcocystis species have been identified from pigs: Sarcocysti miescheriana, Sarcocysti porcifelis 

and Sarcocysti suihominis [112]. In 2015, Blazejewski et al. reported the first genome sequence 
of S. neurona strain SN1 [104].

Two genomes of S. neurona strains have been reported in the GenBank database. The S. neurona  

strain SN3 clone E1 genome is 124,404,968 bp divided into 3191 contigs (GenBank acces-

sion number JAQE00000000.1). S. neurona strain SN1 genome is 130,023,008 bp divided into 

2862 contigs (GenBank accession number JXWP00000000.1). S. neurona strain SN1 was iso-

lated from an otter that died of protozoal encephalitis [113]. The apicoplast genome architec-

tures of S. neurona strains SN1 and SN3 are highly similar to those of Toxoplasma gondii and 

Plasmodium falciparum [104]. S. neurona strains SN1 and SN3 are the first genomes reported in 
the genus Sarcocystis. These genomes are more than twice the size of other sequenced coccid-

ian genomes.
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