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Abstract: This paper studies the suitability of brain activity, namely electroencephalogram signals, as raw material for
conducting biometric authentication of individuals. Brain responses were extracted with visual stimulation,
leading to biological brain responses known as Visual Evoked Potentials.
We evaluated a novel method, using only 8 occipital electrodes and the energy of differential EEG signals,
to extract information about the subjects for further use as their biometric features. To classify the features
obtained from each individual, we used a one-class classifier per subject and we tested four types of classifiers:
K-Nearest Neighbor, Support Vector Data Description and two other classifiers resulting from the combination
of the two ones previously mentioned. After testing these four classifiers with features of 70 subjects, the
results showed that visual evoked potentials are suitable for an accurate biometric authentication.

1 INTRODUCTION

This document presents a study on the suitability
of induced electroencephalograms (EEGs) for imple-
menting high-quality, practical biometric authentica-
tion systems. EEGs are impossible to forge because
they reflect the inner self of a person, and they are
likely to be different from person to person when per-
forming similar mental activities. However, EEGs
are complex and noisy signals, being affected by dif-
ferent brain activities and other body activities as
well. Thus, we conducted our study with EEG signals
measured in particular scenarios, namely with visual
stimulations leading to very focused brain activities
known as Visual Evoked Potentials (VEP). To the best
of our knowledge, this is the first work on EEG-based
authentication using VEPs, though some works exist
on EEG-based identification using VEPs and EEG-
based authentication using other brain activity stimuli
(e.g. specific imagining tasks).

A biometric authentication system has four funda-
mental requirements (Jain et al., 2000):
• Universality: it should be possible to use the sys-

tem with all persons.
• Uniqueness: the system should be able to sepa-

rate different persons with a reasonably low fail-
ure probability.

• Constancy: biometric characteristics of the per-

sons should remain fairly constant for a reason-
able time (months, years).

• Collectability: biometric values should be easy to
obtain, easy to quantify and cause no discomfort.

Considering the first requirement (universality), we
believe that only a small percentage of people could
not use the presented EEG authentication procedure.
As we used the perception of simple drawings for trig-
gering EEG signals, people with severe visual impair-
ments or blindness cannot be authenticated.

Considering the second requirement (uniqueness),
we did an empirical observation of the separation of
individuals among a limited population of 70 people
for which we had several EEG samples. Therefore,
we have no proof that it will work on other popula-
tions, but we cannot as well anticipate any reason for
not working.

Considering the third requirement (constancy),
our study is still limited. Our authentication sys-
tem uses images to trigger brain cognitive activities,
which are then measured and classified. Cognitive
activities may be affected by several factors, such
as stress, fatigue, medication, alcohol ingestion, etc.,
some of them with natural daily variations. How-
ever, the raw EEG data used was collected from a set
of people at a particular measurement session, thus
not reflecting daily variations or even variations along
the required time spans (months or years). Neverthe-
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less, in our study we concluded that EEGs collected
in a row upon many similar visual stimuli are con-
stant enough for implementing an authentication sys-
tem based upon them, which is a good starting point.

Considering the fourth requirement (collectabil-
ity), the current EEG measurement technology raises
many problems. As EEG signals are very low-power,
EEGs measurement must be done with special care to
increase signal-to-noise ratios.

Finally, electrodes must be placed always in the
same scalp location, an issue usually solved by using
EEG helmets. We anticipate that the actual technolog-
ical problems for EEG measurement may disappear in
a near future, for instance, by using sensors under the
scalp, thus we do not see it as a definitive barrier to
the use of EEGs for biometric authentication. Nev-
ertheless, in our study we made an effort to facilitate
its deployment, both with the current technology or
with future solutions. More specifically, we tried to
get the best authentication results with the minimum
possible set of electrodes (or EEG channels), all of
them located in the occipital area of the brain, were
the relevant EEG signals are to be measured.

For this study we did not obtain our own EEG
samples from people. Instead, we used a public data
set1 containing EEG signals of 70 individuals, ac-
quired with 64 electrodes after their visual stimula-
tion. After an initial period of evaluation, we found
that 8 channels, located in the occipital area, where
cognitive workload is more relevant, were enough to
achieve acceptable authentication results.

For authenticating people using VEP features we
used personal one-class classifiers (OCCs). These
classifiers get as input the VEP features of the per-
son being classified and produce a TRUE/FALSE out-
put value. We used two different OCCs in order to
study which one would produce better authentication
results: K-Nearest Neighbor (KNN) and Support Vec-
tor Data Description (SVDD) (Tax, 2001). After test-
ing both classifiers, we also tested a two classifica-
tion architectures combining both KNN and SVDD.
These combined classifiers, that we nicknamed OR
and AND , produce outputs after computing a logic
function of the outputs of each individual classifier.

The results, obtained with personal OCCs of the
four types, showed that VEPs can be used as a bio-
metric data for authentication systems, producing re-
sults with high correctness, namely low false positive
and false negative ratios. The results also showed that
correctness is fairly stable for all evaluated subjects,
an important requirement of biometric authentication
systems.

1Hosted in http://kdd.ics.uci.edu

2 ELECTROENCEPHALOGRAMS

EEG signals are electric signals gathered in the scalp
of an individual and result from the combination of
signals from two different sources: (i) close-by cere-
bral activity (ii) and non-cerebral origins, such as
eye motion, eye blinking and electrocardiac activity,
called artifacts.

EEG signals are usually decomposed in several
frequency bands. Each band contains signals asso-
ciated with particular brain activities (Basar et al.,
1995). The standard EEG frequency bands are: 0.5–
3.5 Hz (δ), 4–7 Hz (θ), 8–15 Hz (α), 15–30 Hz (β),
30-70 Hz or around 40 Hz (γ). This last one, γ band,
has been related both to gestalt perception (Keil et al.,
1999) and to cognitive functions such as attention,
learning, visual perception and memory.

For each particular brain activity there is one par-
ticular area that produces stronger electrical activity
in one of the previously referred frequency bands;
similarly, artifact manifestations are more relevant in
some parts of the scalp than in others. Consequently,
EEG signals are multi-channel signals, where each
channel corresponds to a specific scalp electrode lo-
cation. In this study we will consider only the oc-
cipital area of the scalp, which is known to provide
stronger electrical signals in the γ band in response
to visual stimulation and perception of pictures (W.
Lutzenberger and F. Pulvermllera and T. Elbertb and
N. Birbaumer, 1995; Tallon-Baudry et al., 1998; Gru-
ber et al., 2002).

2.1 Visual Evoked Potentials (VEPs)

Visual evoked potentials (VEPs) are brain activity re-
sponses to visual stimuli, which may comprise differ-
ent components, such as color, texture, motion, ob-
jects, readability (text vs. non-text), etc. Each of
these components has impact in the spacial dispersion
of the VEP through the scalp, being observed differ-
ently in each EEG channel and in different frequency
bands. Therefore, for focusing the VEP production
and analysis, the set of visual stimuli must be coher-
ent, i.e., it should stimulate always the same brain ar-
eas.

Several research works (see Section 3) were pre-
viously conducted for achieving individual identifica-
tion using VEPs produced upon the presentation of
images from the Snodgrass and Vanderwart picture
set (Snodgrass and Vanderwart, 1980). This standard
set of 260 pictures was conceived for experiments in-
vestigating differences and similarities in the cogni-
tive processing of pictures. The pictures are black-
and-white line drawings executed according to a set
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of rules that provide consistency of pictorial represen-
tation.

Various studies (Başar, 1980; Başar et al., 1987;
Galambos, 1992) showed that VEPs recorded from
the human scalp contain a train of short latency
wavelets in the γ band, precisely time locked to the
stimulus and lasting approximately 100 ms. Further-
more, a more recent study showed that perception of
pictures from the Snodgrass & Vanderwart picture set
induced highly synchronized neural activity, in the
γ band, between posterior electrodes (Gruber et al.,
2002).

3 RELATED WORK

Poulos et al. (Poulos et al., 1998; Poulos et al., 1999)
proposed a method to distinguish an individual from
the rest using EEG signals. They performed a para-
metric spectral analysis of α band EEG signals by fit-
ting to them a linear all-pole autoregressive model.
The coefficients of the fitted model were then used as
features for the identification component. In (Poulos
et al., 1998) the identification component was built
with computational geometric algorithms; in (Pou-
los et al., 1999) they changed it to a neural network,
namely for a Kohonen’s Linear Vector Quantizer (Ko-
honen, 1989). The cerebral activity was recorded
from subjects at rest, with closed eyes, using only one
channel and during three minutes.

Although the goal of Poulos et al. was person
identification using his brain activity, in (Poulos et al.,
1999) they experimented classification of a person as
one of a finite set of known persons. In the tests they
recorded 45 EEG features from each of 4 individu-
als (the X set) and one EEG feature from each of 75
individuals (the non-X set). The neural network was
trained using 20 features from each X member and 30
features from non-X members. Then the system was
used to classify the remaining 25 features of each X
member and the 45 features from the remaining non-
X members. This process was repeated for all the 4 X
members, attaining a correct classification score be-
tween 72% and 84%.

Using VEPs and signals in the γ band to per-
form subject identification was proposed by Pala-
niappan (Palaniappan, 2004) and followed on his
posterior studies (Palaniappan and Mandic, 2005;
Ravi and Palaniappan, 2005b; Ravi and Palaniappan,
2005a; Ravi and Palaniappan, 2006; Palaniappan and
Mandic, 2007). In all these works is used the same
dataset of VEPs, recorded from 40 individuals and
comprising a 61-channel EEG for 30 VEPs triggered
by pictures chosen from the Snodgrass & Vanderwart

set.
These six subject identification studies are all sim-

ilar; they mainly differ in filtering and classification
components. First VEP signals are processed to re-
move artifacts and noise caused by other background
brain activities not related with the VEP. Next they
are filtered with a pass-band, digital filter in to iso-
late signals from the γ band. Then, for each of the 61
channels is computed its spectral power and normal-
ized with the energy values from all the 61 channels;
the 61 resulting values form a feature array. These
features are then used to perform subject identifica-
tion using a classifier with as many output categories
as the number of individuals used to train it; in this
case there were 40 individuals, thus the classifier has
40 different outputs. In the experiments, half of the
features from each individual were used to train the
classifier and the other half for testing the correctness
of its output. The tested correctness of all these ap-
proaches is somewhat similar, ranging from 85.59%
up to 99.62%.

For filtering, in (Palaniappan, 2004; Ravi and
Palaniappan, 2005a; Ravi and Palaniappan, 2006)
a Butterworth filter was used, while in (Ravi and
Palaniappan, 2005b; Palaniappan and Mandic, 2005;
Palaniappan and Mandic, 2007) an elliptic FIR filter
was used (in the latter the lower pass-band thresh-
old was lower, 20 Hz). For classifying, in (Ravi
and Palaniappan, 2005b; Palaniappan and Mandic,
2005; Ravi and Palaniappan, 2006; Palaniappan and
Mandic, 2007) was used an Elman back-propagation
neural network (Elman, 1990), in (Palaniappan, 2004)
a back-propagation multi-layer perceptron, in (Ravi
and Palaniappan, 2005a; Ravi and Palaniappan, 2006)
a simplified fuzzy ARTMAP (Kasuba, 1993) and
in (Ravi and Palaniappan, 2005a) a KNN.

Some attempts were made to reduce the num-
ber of channels used in these VEP-based approaches.
In (Palaniappan and Mandic, 2007) Davies-Bouldin
Indexes (Davies and Bouldin, 1979) were used to or-
der the channels according to their relevance. Cor-
rect identification results using the most relevant DBI-
oriented channels gave 13.63% with 1 channel, about
50% with 6 channels and 99.0% with 50 channels.

There are already several studies on authentica-
tion with EEG signals, but all them use different ap-
proaches (Marcel and de R. Milln, 2007; Sun, 2008;
Palaniappan, 2008). The table below resumes some
of their differences.
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(Marcel and de
R. Milln, 2007) (Sun, 2008) (Palaniappan, 2008)

EEG channels α, β α, β, γ α, β, γ

Electrodes 8 15 8
Feature array 96 8 11
elements (12 freqs./channel) (CSP reduct.) (PCA reduct.)
Tested subjects 9 9 5

In (Marcel and de R. Milln, 2007), authors collected
EEGs from subjects performing 3 mental activities:
imagination of movements with the right or left hand
and imagination of words beginning with the random
letter. Features’ classification uses Gaussian Mixture
Models and Maximum A Posteriori model adaptation.
The correctness results were satisfactory but not very
conclusive, because the number of evaluated subjects
was too small (we used 70). A drawback of the clas-
sification approach is that it relies on a generic EEG
model, which may not exist or requires training with
EEGs from many people.

In (Sun, 2008), authors used 15 signals from the
same dataset used in (Marcel and de R. Milln, 2007),
raw feature reduction with common spatial patterns
(CSP) and using multi-task learning to evaluate the
advantage regarding single-task learning.

In (Palaniappan, 2008), authors collected EEGs
from subjects performing 5 imagined activities: noth-
ing in particular (baseline activity), mathematical
multiplication, geometric figure rotation, letter com-
position and visual counting. Feature arrays are ini-
tially composed by 18 channel spectral powers, 27
inter-hemispheric channel spectral power differences
and 18 entropy values (yielding the non-linearity of
channel signals). Features are then reduced to 11 el-
ements using Principal Component Analysis (PCA).
Features’ classification uses a two-stage authentica-
tion process using maximum and minimum threshold
values stored in personal profiles. Like in the previous
article, correctness results were satisfactory but even
less conclusive, due to the extremelly small number
of evaluated subjects (only 5).

All these three works used imagined activities to
focus EEG-signals; we used VEPs instead. The ad-
vantages of VEPs is that they do not require any effort
from the subjects being authenticated, as VEPs occur
without any sort of human control. Furthermore, we
did an evaluation with a larger population (roughly an
order of magnitude more) than all these works, there-
fore our results yield a more trustworthy evaluation of
the universality and uniqueness requirements. Finally,
we did not use more electrodes than any of them, thus
we do not require a more complex EEG acquisition
setup.

Finally, some studies have been done with multi-
modal biometrics involving EEG signals (Riera et al.,

2008). The main advantage of this approach regard-
ing the simple EEG authentication is that one can re-
duce the number of electrodes (only 2 were used).

4 AN AUTHENTICATION
SYSTEM USING VEP

As previously stated, our goal was to build an authen-
tication system based only in occipital VEP EEG sig-
nals gathered by a small number of electrodes. Note
that, authentication is different from identification: an
identification system gives the identity of the subject
being evaluated, while an authentication system gives
a yes/no answer whether or not the subject being eval-
uated is who he claims to be.

The VEP-based identification systems developed
by Palaniappan et al. are also not directly usable as
authentication systems. These systems were designed
for identifying members of a set X of N subjects, hav-
ing N possible output classifications. When these sys-
tems are used by other non-X subjects, these will be
identified as someone belonging to X. Thus, a non-X
person being authenticated only has to guess the erro-
neous identity the system gives to him, in order to get
an authentication match.

Therefore, a new architecture is required to use
EEG patterns for authenticating individuals. We pro-
pose a new one where we merge part of the contri-
butions of the previously referred systems with some
new ideas introduced by us.

4.1 Personal Classifiers

Our key design principle is to analyse EEG patterns in
the γ band, namely VEPs in occipital area of the brain,
with one classifier per individual, and not a classifier
for all individuals. Furthermore, we used an OCC for
each personal classifier, which is the correct type of
classifier for an authentication scenario. Thus, when
a subject claims to be X, we use Xs OCC classifier to
evaluate the correctness of the claim.

OCCs may have many inputs to handle the fea-
tures obtained from subjects, but always two possi-
ble output responses: TRUE or FALSE. Each per-
sonal OCC is trained only with inputs provided by
its owner. When the individual being evaluated is the
owner of the classifier, the output should be TRUE;
otherwise, the output should be FALSE. Other outputs
are errors, either false negatives or false positives, re-
spectively.

As previously referred, the goal for this new archi-
tecture was to use a reduced number of EEG channels.
In the limit we would like to use only one channel,
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just like in the work of Poulos et al.. However, unlike
the approach described in (Palaniappan and Mandic,
2007), we have not tried to detect the “best” channels
(the ones with less correlation) from a set of measured
features. Instead, we chose specific channel locations
in the occipital area of the scalp and we ran authenti-
cation tests with them to find out the set of channels
providing the highest authentication quality.

4.2 Authentication Process

Our authentication process is formed by three main
components: (i) EEG signal acquisition, (ii) feature
array extraction and (iii) feature array classification.
First VEP EEG signals are acquired from electrodes
placed in the subject’s scalp. Then the feature array
extractor processes raw EEG samples from C chan-
nels in order to extract a biometric measure of the
subject: a feature array with C′ energy values. Finally,
this feature is processed by the OCC of the subject be-
ing authenticated, either to train the OCC or to get a
TRUE or FALSE authentication outcome.

4.3 Description of the Data Set

As previously explained, we did not collect EEG sig-
nals for this study. Instead, we used a public data set
registered for conducting other EEG studies, namely
the genetic predisposition of people to alcoholism.
Thus, it was not in any way specially gathered for au-
thenticating people.

The data set is composed by EEG signals
recorded from 70 individuals, both alcoholic and non-
alcoholic, while exposed to short latency (300ms) vi-
sual stimuli. Each individual completed a total num-
ber of 45 trials corresponding to the visualization of
45 pictures from the Snodgrass & Vanderwart picture
set. EEG signals were acquired by 64 electrodes (61
actives + 3 reference), placed in the individuals’ scalp,
hardware filtered with a 0.1–50Hz passband and mea-
sured at a sampling rate of 256 samples per second.
For building our authentication system we considered
only 8 occipital channels from the 64 available in the
dataset — channels PO3, PO4, POZ, PO7, PO8, O1,
O2 and OZ.

Individuals were asked to recognise the pictures
as soon as they were presented in a CRT screen, lo-
cated 1 meter away from individuals’ eyes. Each
picture was presented only for 300 ms, separated by
blank screen intervals of 5.1 seconds. After each pic-
ture presentation, only 1 second of EEG signal was
recorded, corresponding to the VEP occurrence inter-
val.

4.4 Feature Array Extraction

VEP signals, which are raw EEG signals with 1 sec-
ond measured after the presentation of the stimuli im-
ages, are the source data for for the biometric authen-
tication process of each individual. The feature ex-
traction procedure from these signals is detailed be-
low.

Detection of Artifacts. First, VEP signals contain-
ing artifacts are discarded. We considered only arti-
facts produced by eye blinking, which are the most
common and intrusive ones. Detection of eye blink-
ing artifacts is achieved with an amplitude thresh-
old method: VEP signals with magnitude above 50
µV are assumed to be contaminated (Sivakumar and
Ravindran, 2006) so they are discarded .

EEG γ-band (30-50Hz) Frequency Filtering. The
resulting artifact-free VEP signals are filtered with a
30-50 Hz pass-band, using a 10th order Butterworth
digital filter. The non-linearity of this filter was can-
celled by using forward and reverse filtering. The re-
sulting signal has zero phase distortion and an am-
plitude multiplied by the square of the amplitude re-
sponse of the filter. After filtering, the 20 first and 20
last output samples are discarded, because they do not
represent a properly filtered signal.

Signal Composition. For computing feature arrays
we use C original EEG signals plus differential sig-
nals resulting from the subtraction of pairs of the C
EEG signals. Thus, features include C′ =C+

(C
2

)
sig-

nals, which in our case, for C = 8, means that C′ = 36.
By computing differential signals from the sub-

traction of pairs of EEG signals we expect to provide
to classifiers information about the phase of the EEG
signals and not just information about their ampli-
tudes (energies). Phase shifts between subtracted si-
nusoidal signals with equal frequency and amplitude
produce non-null signals with an energy that is a func-
tion of the phase shift. Therefore, we included the
energy of differential signals in the features because
it could denote phase shifts between EEG channels,
thus more information about the subjects.

These differential signals are somewhat similar to
the ones used in (Palaniappan, 2008) but with two
main differences: (i) we compute the energy of dif-
ferential signals, while they compute differences be-
tween powers of different signals and (ii) we produce
a differential signal from all pairs of signals, while
they only compute differential powers between signal
on different hemispheres. Thus, we are able to evalu-
ate phase shifts on differential signals and we produce
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more information that may help to differentiate sub-
jects.

Energy Calculation and Normalization. The en-
ergy of original and differential signals is computed
with the Parseval’s spectral power ratio theorem:

E(s) =
1
N

N

∑
n=1

s2
n

where sn is the n-th sample of signal s and N is the
total number of samples in the signal. In our case
N = 216, because we discard 40 samples of the 256
measured in 1 second of VEP after the γ filtering
stage.

Finally, feature values are computed by normaliz-
ing the energy feature array. For this normalization
we divide all array values by the maximum among
them. This way, we get features with elements in the
[0,1] interval.

F
[
1· · ·C′

]
=

E [1· · ·C′]
max(E [1· · ·C′])

4.5 The Feature Classifier

The feature classifier is formed by independent,
personal classifiers; so, for authenticating someone
claiming to be X, we use the personal classifier of X,
or the classifier owned by X. Each personal classifier
is formed by an OCC, providing two different outputs
(or classifications): TRUE and FALSE.

One-Class Classification is a type of classification
where we deal with a two-class classification problem
(target and outlier) but we only need to provide infor-
mation to the classifier about the target class. During
an OCC train, the boundary between the target class
and all other possible outlier classes is estimated from
the target class data only. In our authentication goal,
the target class is the classifier owner while the outlier
class represents all other individuals.

In our study we used two types of OCCs in order
to check which one would produce better authentica-
tion results: KNN with k=1 and SVDD with a Ra-
dial Basis Function kernel (Tax, 2001). We also tested
two other OCC architectures, combining the outputs
the KNN with SVDD. The goal of the combinations
was to evaluate if there was any advantage in combin-
ing them in order to complement their individual cor-
rectness. The OR combination uses arithmetical av-
erages, and the AND geometrical averages. For sim-
plicity, we will call the first a OR KNN-SVDD and the
second a AND KNN-SVDD.

We also found out that each classifier should be
trained with single features from its owner, but should

be used for authentication with average tests F fea-
tures, obtained from the visualization of F images of
the subject. A possible explanation of this fact is the
following. Perception activities performed by indi-
vidual’s brain are not exactly the same for all visual
stimuli, resulting in different VEP features. By train-
ing the classifier with as different as possible VEP
features from its owner, we improve its ability to rec-
ognize them in the future, disregarding possible noise
occurrences. On the other hand, by averaging VEP
features during authentication processes, we reduce
the probability of presenting to the classifier features
from its owner too different from the ones it was
trained with.

During the training of each classifier, we have to
provide a rejection fraction threshold that will be used
to establish acceptance or rejection ratios. Low re-
jection fraction values lead classifiers to produce low
false negative and high false positive ratios, while
high rejection fraction values lead classifiers to pro-
duce high false negative and low false positive ratios.
The choice of the best rejection fraction threshold im-
plies a balance between security (low false positive
ratio) and comfort for the individuals engaged in a
correct authentication process (low false negative ra-
tio).

5 EXPERIMENTATION

The number of feature arrays used per subject was
variable, both from start (in the data set) and further-
more after eye blink detection. Therefore, we decided
to test classifiers with fixed numbers of features
and train classifiers with the maximum possible
number of features until a given maximum. This
is a conservative approach, since some classifiers
may not have enough features to be properly trained.
Nevertheless, we did not observe abnormal errors in
such classifiers.

Thus, to train each personal classifier we used no
more than 30 features of its owner. For testing each
personal classifier, we used 15 features of its owner
and 15 features from each of the other 69 subjects,
which makes a total of 1050 test features. Note
that each classifier had never “seen” the test feature
before. The test features of each individual were used
alone or averaged in pairs or trios. The number of
features evaluated per classifier is presented in the
table below.
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Composition Features evaluated per classifier
of features From the owner Total

Single features 15 70×15 = 1050
Pairs of features

(15
2

)
= 105 70×

(15
2

)
= 7350

Trios of features
(15

3

)
= 455 70×

(15
3

)
= 31850

We run authentication tests with all the proposed
four classifiers, in order to verify which one of them
is more suitable for our authentication system. In the
tests we tried also to assess the impact of two config-
uration parameters for the overall correctness of the
authentication system: OCC rejection fraction thresh-
old and classification of multiple, averaged features.

5.1 Overall Evaluation Results

The overall biometric authentication results of the 70
classifiers for three rejection fraction thresholds and
different combinations of features are summarized in
Table 1. The values presented are the mean and stan-
dard deviation obtained from 10 independent tests
with the 70 OCCs, each one of them using different
features from the owner (to train and test his classi-
fier) and from outliers (to test). The graphics of Fig. 1
show the values of these 10 independent tests per per-
sonal classifier, but only for the combined OR KNN-
SVDD classifier, using single and trios of features.

Table 1: Mean and standard deviation (inside parenthesis)
of correctness results for the four OCC classifiers obtained
in 10 independent classification tests. Columns labeled 1,
2 and 3 represent tests using singular features and average
combinations of pairs and trios of features, respectively.
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Figure 1: Average individual classification results of the combined OR KNN-SVDD classifier, obtained after 10 independent
tests. The upper (green) curve in each graphic shows the average correct owner classifications per classifier, while the lower
(red) curve shows the average false positives per classifier. The vertical line under each average value shows the maximum
and minimum values observed in the 10 tests.
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of features From the owner Total
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3
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= 455 70×
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We run authentication tests with all the proposed
four classifiers, in order to verify which one of them
is more suitable for our authentication system. In the
tests we tried also to assess the impact of two config-
uration parameters for the overall correctness of the
authentication system: OCC rejection fraction thresh-
old and classification of multiple, averaged features.

5.1 Overall Evaluation Results

The overall biometric authentication results of the 70
classifiers for three rejection fraction thresholds and
different combinations of features are summarized in
Table 1. The values presented are the mean and stan-
dard deviation obtained from 10 independent tests
with the 70 OCCs, each one of them using different
features from the owner (to train and test his classi-
fier) and from outliers (to test). The graphics of Fig. 1
show the values of these 10 independent tests per per-
sonal classifier, but only for the combined OR KNN-

SVDD classifier, using single and trios of features.

Rejection Owners Correctness(%) Outliers acceptance (%)
fraction 1 2 3 1 2 3

K
N

N 0.2 78.7 (13.1) 90.6 ( 7.5) 95.1 ( 5.3) 5.2 (1.3) 5.6 (1.6) 6.4 (1.9)
0.5 50.1 (15.9) 65.3 ( 9.3) 74.1 ( 8.6) 1.9 (0.7) 2.2 (0.9) 2.3 (1.3)
0.7 31.3 (18.5) 46.1 (11.3) 66.3 ( 9.8) 0.9 (0.4) 1.1 (0.5) 1.3 (0.7)

SV
D

D 0.2 76.1 (12.8) 95.2 ( 4.9) 98.5 ( 3.5) 5.7 (1.8) 8.5 (2.1) 10.1 (3.2)
0.5 58.5 (17.4) 88.3 ( 8.7) 93.7 ( 5.7) 2.8 (1.6) 4.4 (1.8) 5.1 (2.7)
0.7 44.2 (20.5) 77.7 (12.3) 85.3 ( 9.8) 1.7 (1.6) 2.6 (1.7) 3.6 (1.9)

A
N

D 0.2 83.3 (12.1) 96.4 ( 6.1) 99.0 ( 3.0) 4.5 (5.6) 6.0 (7.4) 6.8 (8.2)
0.5 60.4 (16.8) 85.6 (12.4) 92.8 (11.3) 1.3 (2.2) 1.8 (2.9) 1.9 (3.0)
0.7 37.8 (18.7) 68.4 (18.1) 79.4 (19.2) 0.4 (0.9) 0.6 (1.1) 0.6 (1.4)

O
R

0.2 83.8 (11.0) 96.5 ( 6.0) 99.1 ( 3.5) 4.7 (5.7) 6.2 (7.6) 6.8 (8.4)
0.5 59.7 (17.2) 85.7 (13.1) 92.8 (11.5) 1.2 (1.9) 1.7 (2.8) 2.0 (3.2)
0.7 38.7 (18.2) 69.8 (18.1) 80.5 (18.1) 0.4 (0.8) 0.6 (1.2) 0.6 (1.3)

Table 1: Mean and standard deviation (inside parenthesis)
of correctness results for the four OCC classifiers obtained
in 10 independent classification tests. Columns labeled 1,
2 and 3 represent tests using singular features and average
combinations of pairs and trios of features, respectively.

The results show that the rejection fraction thresh-
old used while training classifiers had the expected
impact on authentication results: for low rejection
values the classifier provides a correct classification of

The results show that the rejection fraction thresh-
old used while training classifiers had the expected
impact on authentication results: for low rejection
values the classifier provides a correct classification of
its owner (low false negative ratio) but can be mislead
by many other individuals (high false positive ratio),
while for higher rejection values the correct classifi-
cation of owners decreases but the same happens to
the wrong acceptance of other individuals.

Comparing KNN and SVDD, we can conclude
that both have advantages and disadvantages: KNN
gives lower outliers acceptance ratios (false posi-
tives), while SVDD gives higher owners’ correctness
ratios (true positives).

The combined OR and AND KNN-SVDD clas-
sifiers also have advantages and disadvantages when
compared with the isolated OCCs. In general, they
decrease the false positive ratio and most times (67%)
they increase the owners’ correctness ratio. However,
they have a noticeable tendency to increase the stan-
dard deviation of the results, being thus less assertive
than the isolated OCCs. Comparing the two combined
KNN-SVDD classifiers, the results show that they are
quite similar, but the OR combination is slightly bet-
ter.

Finally, these results clearly show that the qual-
ity of the authentication increases when we use com-
binations of features instead of singular features. In
absolute value, the owners’ correctness gain is much
higher that the loss in the false positive ratio.

5.2 Evaluation of Individual Classifiers

From the graphics of Fig. 1 we can conclude that av-
erage classification results are fairly stable for all the
considered subjects. Therefore, with these tests we
have reasons to believe that a biometric authentication
system using EEGs may be suitable for a large major-
ity of the population. Note that the evaluated sub-
jects already include a group of people (alcoholics)
that may have visual cognition problems and that was
not noticeable in the authentication results.

A good indicator about an OCC performance is
the plot of its receiver operating characteristic (ROC)
curve. A ROC curve is calculated with several tests of
the classifier with different rejection fraction thresh-
olds applied to target objects and shows the percent-
age of true positives in order to the percentage of the
false positives during each test. Thus, ROC curves
are useful to assert the effect of the rejection fraction
threshold in tuning the correctness of the OCC.

The OCC with the best performance is the one that
simultaneously maximizes true positive ratios and
minimizes false negative ratios. This performance
can be measure by calculating the area under curve
(AUC). This way, the OCC with the higher AUC is
assumed to be the OCC with best performance.

Figure 2 shows the ROCs of the 70 individual clas-
sifiers and their average AUC values for each of the
four OCC types considered; these ROC curves where
obtained with feature trios. These results clearly show
that for evaluating trios of features the best OCC is the
combined OR KNN-SVDD, while the worse is KNN.
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Figure 1: Average individual classification results of the combined OR KNN-SVDD classifier, obtained after 10 independent
tests. The upper (green) curve in each graphic shows the average correct owner classifications per classifier, while the lower
(red) curve shows the average false positives per classifier. The vertical line under each average value shows the maximum
and minimum values observed in the 10 tests.

6 CONCLUSIONS

We presented in this paper a novel method for au-
thenticating individuals using their brain activity. The
EEG signals used were VEPs, i.e., brain responses
associated to visual stimuli. In the described system
we used EEG signals acquired with only 8 electrodes
placed on occipital area of the brain, which is associ-
ated to visual and cognitive perception.

The authentication system presents several im-
provements over other previous works in the area of
subject identification using VEPs. First, We used a
reduced number of electrodes (8) and we placed them
in the scalp area where EEG signals have more cor-
relation with the stimuli. Second, we used the differ-
ences between pairs of the 8 EEG signals to create
other signals (differential signals) that provide extra
information to classifiers.

Third, feature arrays with the energy of original
and differential EEG signals are classified using per-
sonal classifiers.

Forth, we used OCC personal classifiers instead
of other types of classifiers (e.g. neural networks) or
generic classifiers.

Fifth, OCCs are trained with single owner features

but provide better results when tested with average of
features instead of single ones.

Regarding other related systems, we used VEPs,
which are effortless for subjects, while others used
more complex and annoying brain stimuli, such as ac-
tivity imagining, we obtained satisfactory results with
a population one order of magnitude larger then the
other proposals (70 vs. 5 or 9 subjects), and we did
not use more electrodes (only 8). Therefore, our sys-
tem has clear advantages regarding the collectability
requirements.

Average results obtained with authentication tests
with 70 individuals, using a public VEP data set,
showed that authentication with EEGs is possible and
may be used in future applications. The ratios of
owner’s correctness and false positives are fairly sta-
ble for the tested population, which is a positive indi-
cation for the universality and uniqueness of the pro-
cess.

A fundamental requirement of biometric authenti-
cation was not evaluated in this document: constancy.
In fact, we assumed that the public data set, per sub-
ject, was collected in a very short time, thus it is not
possible to take any conclusions about the constancy
of VEPs in other scenarios. Since several factors may
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KNN, avg. AUC = 0.9817 SVDD, avg. AUC = 0.9913

combined AND KNN-SVDD, avg. AUC = 0.9962 combined OR KNN-SVDD, avg. AUC = 0.9965

Figure 2: ROC of the 70 individual classifiers and their average AUC for each type of OCC considered and using feature trios.

affect VEPs significantly, such as stress and fatigue,
the constancy of VEP-based biometric authentication
must be addressed by future research.
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