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Abstract

Continuously escalating global water demand places a substantial burden on the available
water and energy resources. Forward osmosis (FO) is an evolving membrane desalination
technology that has recently raised interest as a promising low-energy process. FO is a
unique method since it utilizes natural osmosis as the driving force, and hence, it ensures
that the energy consumption is significantly reduced, in comparison to other pressure-
driven membrane processes that are constrained by their excessive energy consumption
and unsustainable cost. Therefore, the growing interest in FO from various disciplines and
industrial sectors calls for a better understanding of the FO process and further advances
in the FO technology management. This chapter aims to provide an in-depth assessment
of the water transport phenomenon in FO membranes by focusing on the influence of
internal concentration polarization, membrane structure/material, and membrane orien-
tation on the permeate flux. This chapter offers critical insight that can lead to the potential
development of new FOmembranes with reduced internal concentration polarization and
higher water permeability. In addition, key strategies for FO membrane development,
some of its challenges, and the perspectives for future investigations of FO membrane
fouling and effective FO fouling control methods are explored in this chapter.

Keywords: forward osmosis, fouling, concentration polarization, mass transfer,
water filtration

1. Introduction

As the fossil fuels are depleted and the world population continues to rapidly increase, energy

and water became two of the most vital global resources. Energy emergencies and the lack of

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



water have severely affected communities worldwide [1–3]. Reports indicate that more than

1.2 billion people do not have access to safe and clean drinking water sources, while 2.6 billion

do not have adequate levels of sanitation [1, 4, 5]. In fact, the overall annual financial loss in

Africa caused by the lack of access to basic sanitation and clean water is valued at $28 billion,

or 5% of Africa’s gross domestic product [5]. While oceans are covering the majority of the

planet’s surface, only 0.8% of the world’s water can be defined as potable [6]. Moreover, the

recent world energy outlook report [2] indicates that the world’s marketed energy use is

predicted to rise by 49% from 2007 to 2035. Data such as this reflects a dangerous trend,

especially since currently 1.5 billion people, or more than 1/5 of the world’s population, still

do not have access to reliable electricity.

Interdisciplinary research groups need to remain aware of the explicit connection that exists

between energy and water. The process of making freshwater accessible is a highly energy-

demanding process, while the production of the required power frequently necessitates sub-

stantial amounts of water [7, 8]. A relatively new technology, forward osmosis (FO), shows a

lot of potential in energy production and water supply, especially for applications in controlled-

release–type drug medication, medical product enrichment, and food processing. Over the last

decade, FO has incited substantial interest in the areas of seawater/brackish desalination [9–11],

food processing [12–15], power generation [16–19], and wastewater treatment [20–22]. In terms

of its methodology, FO is an osmotically driven membrane process that relies on the osmotic

pressure gradient and that moves water across a semipermeable-type membrane from the feed

solution side, with the low osmotic pressure, to the draw solution side, featuring high osmotic

pressure. Because of its lower hydraulic pressure demands, FO provides multiple benefits, such

as lower fouling tendency, easier fouling removal [20, 22, 23], smaller energy input [24], and

greater water recovery [25, 26], if compared to pressure-driven processes such as ultrafiltration

(UF), nanofiltration (NF), and reverse osmosis (RO).

2. Advantages of forward osmosis

There are numerous potential benefits offered by FO, especially because of the lower hydraulic

pressure values necessary for this osmotically driven–type process. FO’s benefits are reflected

by its various water treatment applications. First, FO can help obtain smaller energy consump-

tion potentials and as a consequence lower the overall costs and contribute to the production of

technically and economically innovative solutes and their respective regeneration methodolo-

gies [3, 18, 24]. Arguably, this is one of the key advantages of FO, considering the ongoing

global energy crisis. Research studies have shown that membrane fouling in FO is compara-

tively small [20], somewhat more reversible [23, 27], and may be lowered using hydrodynam-

ics optimization [28]. Furthermore, a number of contaminants may be successfully filtered out

with the aid of the FO process [29, 30]. FO can likewise feature greater water recovery and

improved water flux because of the higher osmotic pressure gradient occurring across the

membrane. Greater water recovery can help reduce the desalination brine volume, especially

as it is a substantial environmental concern when it comes to desalination plants and inland

desalination facilities [9]. Moreover, in the industries like pharmaceutical and food processing,
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FO offers the benefits of preserving the physical properties of the feed, such as color, aroma,

nutrition, and taste, without diminishing the overall quality, as it is not heated or pressurized

[14, 31, 32]. When it comes to medical uses, FO can help with the release of drugs featuring low

oral bioavailability, or poor solubility, in a controlled way and implementing osmotic pumps

[33, 34].

3. Modeling of water transport in forward osmosis

The general equation for water flux in forward osmosis (FO), reverse osmosis (RO), or

pressure-retarded osmosis (PRO) is [16]:

Jw ¼ A σ∆π� ∆Pð Þ (1)

where Jw is the water flux, A is the membrane’s water permeability constant, σ is the reflection

coefficient, Δπ is the osmotic pressure difference across the membrane, and ΔP is the applied

hydraulic pressure variance. In Eq. (1), the term (σ Δπ � ΔP) signifies the effective driving

force necessary for the water molecules’ transport across the membrane. In the FO desalination

process, there is no hydraulic pressure applied and the change in osmotic pressures is the sole

driving force; Eq. (1) can be expressed as:

Jw ¼ Aσ∆πBulk ¼ Aσ ∆πDraw � ∆πFeedð Þ (2)

where ∆πFeed stands for the feed solution’s bulk osmotic pressure, and ∆πDraw is the draw

solution’s bulk osmotic pressure. Eq. (2) is restricted by the assumption that the membrane

does not permit draw solute permeation [35, 36]. Furthermore, Eq. (2) is applicable for dense

symmetric membranes, in which the driving force for water molecules is the difference

between the osmotic pressures of the bulk feed and draw solutions, as reflected in Figure 1.

If it can be assumed that the difference between the bulk osmotic pressure of the feed and the

draw solution is the driving force responsible for water permeation through membranes in FO,

then Lee et al. [37] proposed the following model for low water flux cases:

Jw ¼
1

K
ln

πDraw

πFeed

� �

(3)

where K stands for the resistance to diffusion of solute within the porous support layer of the

FO membrane, and πDraw and πFeed are the respective bulk osmotic pressures of the draw and

the feed solution. K can be estimated using Eq. (4) [16]:

K ¼
tτ

εD
¼

S

D
(4)

where t is the membrane’s thickness, τ is tortuosity, ε is membrane porosity, S is membrane’s

structural parameter, and D is the solute’s diffusion coefficient.
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4. Challenges in forward osmosis

FO applications are still facing some critical challenges even though the osmotically driven

membrane processes have been extensively researched in relation to a range of applications

and environments. FO’s primary issues are connected to aspects such as membrane fouling,

reverse solute diffusion, further membrane development, concentration polarization, and the

improvement of the draw solute design.

4.1. Concentration polarization mechanism in forward osmosis

When it comes to the osmotically driven and pressure-driven membrane processes, the concen-

tration polarization is an inevitable and frequent phenomenon [11, 38–42]. As illustrated in

Figure 2, in the osmotically driven membrane processes, the concentration polarization is pro-

duced by the overall concentration variance occurring between the draw solution and the feed

solution through the asymmetric FO membrane. The internal concentration polarization (ICP)

and external concentration polarization (ECP) can happen during the FO processes. In general,

ICP happens within the membrane’s porous support layer, and ECP happens at the surface of

the membrane’s dense active layer. The sections below further describe both ECP and ICP.

Figure 1. Ideal osmotic pressure driving force in the case of symmetric membranes.
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4.1.1. External concentration polarization: modeling and mechanism

ECP in FO occurs at the surface of the membrane’s active layer, similar to the other pressure-

driven membrane processes. Their distinction is due to the fact that only concentrative ECP

can occur in a pressure-driven membrane process, and both dilutive ECP and concentrative

ECP can happen in an osmotically driven membrane process, conditional on the membrane’s

orientation with regard to the feed and the draw solutions. The dilutive ECP happens when

the membrane’s support layer is facing the feed solution, while the concentrative ECP occurs in

instances where the membrane’s support layer is facing the draw solution. ECP lowers the

overall driving force due to the higher osmotic pressure at the membrane’s active layer

interface located on the membrane’s feed side, or the lowered osmotic pressure at the mem-

brane’s active layer surface located on the draw solution side. The unfavorable effects of ECP

on the permeate flux can be alleviated by optimizing the water flux and raising the flow’s

velocity or turbulence [11]. With the application of the boundary-layer film theory

McCutcheon and Elimelech have successfully modeled ECP in FO [38, 43]. The generalized

equation for concentration polarization modulus in pressure-driven membrane processes may

be expressed in Eq. (5), as follows.

Cm

Cb
¼ exp

Jw
k

� �

(5)

where Jw is the water flux, k is the mass transfer coefficient value, and Cm and Cb are the

concentrations of the feed solution at the membrane’s surface and in the bulk, respectively.

The mass transfer coefficient (k) is related to the Sherwood number (Sh) by:

Figure 2. Internal concentration polarization (ICP) and external concentration polarization (ECP) through an asymmetric

FO membrane [16].

Fouling in Forward Osmosis Membranes: Mechanisms, Control, and Challenges
http://dx.doi.org/10.5772/intechopen.72644

155



k ¼
ShD

Dh
(6)

where D is the solute diffusion coefficient value, and Dh is the hydraulic characteristic length.

When the feed solution concentration is relatively low in FO, the concentrations in Eq. (5) can

be substituted by the osmotic pressures. As a result, the concentrative ECP modulus can be

expressed as follows:

πm�feed

πb�feed
¼ exp

Jw
kfeed

� �

(7)

where kfeed is the mass transfer coefficient on the feed side, πm�feed and πb�feed are the osmotic

pressures of the feed solution at the membrane’s surface and in the bulk, respectively. Simi-

larly, the dilutive ECP modulus in FO can be expressed as:

πm�draw

πb�draw
¼ exp �

Jw
kdraw

� �

(8)

where kdraw is the mass transfer coefficient on the draw side, and πm�draw and πb�draw are the

osmotic pressures of the draw solution at the membrane’s surface and in the bulk, respectively.

Eqs. (1) and (2) reflect the water transport in RO, FO, and pressure-retarded osmosis (PRO), as

indicated in Eqs. (1) and (2), as shown in Section 3. Both πdraw and πfeed should be the effective

osmotic pressures at the membrane’s surfaces, specifically.

Jw ¼ A πm�draw � πm�feed

� �

(9)

By substituting Eqs. (7) and (8) into Eq. (9), Eq. (10) can be obtained as below:

Jw ¼ A πb�draw exp �

Jw
kdraw

� �

� πb�feed exp
Jw
kfeed

� �� �

(10)

Although the dilutive ECP and concentrative ECP have been examined in Eq. (10) [43], there

are multiple key points that have to be noted in Eq. (10). First of all, the mass transfer

coefficient values on the feed and draw solution sides are not the same because of the varying

hydraulic conditions between the draw solution side and the feed side. Next, this model relies

on multiple assumptions, including that the solute permeability’s coefficient is zero (i.e., the

reflection coefficient σ = 1 [44]) and that the draw and feed solution concentration values

are reasonably low, since only in this case can it be accepted that the concentration is equal to

the corresponding osmotic pressure values. Finally, it must be noted that this model is ade-

quate only in instances with a dense symmetric film, instead of an asymmetric-type mem-

brane. As a result, the uses for this model can be somewhat limited. It is necessary to examine

the dynamic where an asymmetric FO membrane is applied in a manner that would replicate

its real-world practical uses and where the ICP effects become more significant.

4.1.2. Internal concentration polarization: modeling and mechanism

ICP is a critical aspect of the osmotically driven membrane-type processes. Research indicates

that the water flux decline in FO is primarily produced by ICP [38, 44–46]. The early research
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projects that looked at FO suggested that ICP might lower the water flux by more than 80%

[45, 47]. As indicated in Figure 3, there are two types of ICP, concentrative ICP and dilutive

ICP, occurring within the membrane’s support layer, and they depend on the membrane’s

orientation [48]. Once the draw solution is situated against the membrane’s support layer,

dilutive ICP can successfully happen within the membrane’s support layer since the water

permeates across the membrane, from the feed solution to the draw solution. In a different

membrane orientation where the feed solution is opposite the membrane support layer, con-

centrative ICP happens when the solute properly accumulates within the membrane’s support

layer located on the feed side. The ICP process is happening in the support layer and, as a

result, it cannot be weakened through a change in the hydrodynamic conditions, including

higher turbulence or flow rate.

The effects of ICP on FO water flux have been modeled using an adaptation of the classical

solution-diffusion theory [38, 43]. The dilutive ICP dominates the water flux (Jw) when the

draw solution is placed against the membrane support layer (i.e., FO mode) and can be

expressed [49] as follows:

Jw ¼
1

K
ln

Aπdraw þ B

Aπfeed þ Bþ Jw
(11)

where B is the membrane’s solute permeability coefficient, and K is the solute resistivity value,

a measure of solute transport in the membrane’s support layer. K is used to quantify the

solute’s capacity to diffuse into or out of the membrane’s support layer, and it can reflect the

degree of ICP available in the support layer. Lower K values indicate less ICP and cause greater

pure water flux (Jw). K is defined earlier in Eq. (4). It should be noted that the structural

parameter S, in Eq. (4), is an essential membrane quality since it governs ICP in the mem-

brane’s support by establishing membrane’s tortuosity, porosity, and thickness values. As a

Figure 3. Dilutive ICP and concentrative ICP across an asymmetric FO membrane [48].
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result, when it comes to the newly developed membranes, it is crucial to describe the mem-

brane’s structural parameter S. The value of S can be calculated based on Eqs. (4) and (11) and

by fitting FO test results [50, 51]. On the other hand, in a specific membrane orientation, both

ICP and ECP happen concurrently rather than occurring separately. Researchers McCutcheon

and Elimelech have designed models that consider the characteristics and influences of both

ECP and ICP. For the FO mode, the analytical model capturing the effects of both concentra-

tive ECP and dilutive ICP on permeate flux may be conveyed [38, 43] by:

Jw ¼ A πdraw exp �JwKð Þ � πfeed exp
Jw
k

� �� �

(12)

As seen in Eq. (4), it appears that ICP in the membrane’s support layer is formed based on the

membrane properties, such as membrane’s tortuosity, porosity, and thickness, as well as the

diffusion solute properties, like the diffusion coefficient of the solute. A research project by

Zhao and Zou has connected ICP to additional properties of the solution, like viscosity and

diffusion solute size, by considering the idea of constrictivity [48]. The equation that corre-

sponds to this dynamic is embodied in the following:

K ¼
tτ

δεeffD
(13)

In this case, a new parameter δ is expressed as the constrictivity factor, and εeff is the effective

transport through porosity, as it can be lower than the overall membrane porosity if certain

small pores are not available to the larger solute. In particular, the constrictivity parameter

relies on the ratio of the pore diameter to the solute molecule diameter:

λ ¼
molecule diameter

pore diameter
< 1 (14)

Tang et al. researched the cumulative effect of fouling and ICP on FO flux behavior. [50]. Tang

et al. noted two critical phenomena during the experimental runs. The first phenomenon was

that the water flux was comparatively stable and its decrease was minor during the FO mode,

whereas during the PRO mode, the flux decrease was substantial and especially prominent

when membrane fouling happened. The second phenomenon had to do with the fact that the

effects of ICP on FO flux were more distinct at greater draw solution concentration values [48].

A number of new modeling techniques have been used to research the concentration polariza-

tion (CP) phenomenon, such as the computational fluid dynamics (CFD) [52], numerical

simulation [53], and the finite element method (FEM) [54, 55]. A project spearheaded by Li

et al. used FEM to interrogate the relationship between the membrane’s porous structure and

ICP [54]. The mathematical models that came out of this project can serve as a valuable toolkit

for improving FO performance and optimizing the membrane’s support construction [54].

4.2. Membrane fouling mechanism in forward osmosis

Like concentration polarization, membrane fouling is an unavoidable as well as essential

phenomenon influencing all types of membrane processes [28, 56–63]. As a consequence,
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smaller membrane fouling potential ensures that there is less cleaning, longer membrane life,

and more water produced, which effectually decreases capital and operational costs. On the

other hand, the membrane-type fouling happening in osmotically driven membrane processes

is distinct from the types of fouling present in pressure-driven membrane processes, as a result

of the low hydraulic pressure being used in the former case. Initially, Cath et al. researched

membrane fouling in FO in relation to systems used in long-term space missions [64, 65]. Cath

et al. suggested that FO could have the capacity to reduce membrane fouling, since there was

no flux decrease due to fouling detected during the experimental runs [65]. During the last few

years, FO has been applied in osmotic membrane bioreactors (OMBR) primarily for wastewa-

ter treatment because of its lower energy consumption and lower fouling needs [20, 22], both

of which are two challenges for membrane bioreactors [59, 66]. In a research project by In

addition, the OMBR system was used to treat activated sludge. The results report that neither

irreversible nor reversible fouling was seen whenever the membrane’s active layer was posi-

tioned in a way facing the activated sludge [22]. An experiment conducted by Achilli et al.

relied on a submerged OMBR so as to treat domestic wastewater over the prolonged period of

up to 28 days, indicating that the decrease of water flux was primarily due to membrane

fouling [20]. On the other hand, the flux of the initial values could be recovered by roughly

90% through the process of osmotic backwashing. This experimental result suggests that

membrane fouling in OMBR may in fact be reversible. Similarly, the data reflect that mem-

brane fouling does exist in FO and is apparent during long-term operational runs. Mi and

Elimelech interrogated the inorganic and organic fouling in FO [23, 27, 62]. Mi and Elimelech

determined that, first of all, the intermolecular adhesion and organic fouling were connected

and that foulant-foulant interactions had an important role in organic cleaning and fouling.

Second, Mi and Elimelech found out that FO fouling was controlled by the coupled effects of

chemical, for example, calcium binding, and hydrodynamic, for instance permeation drag and

shear force, interactions. They likewise noted that membrane materials had a key role in

organic fouling and cleaning, which was later verified with the help of atomic force microscope

(AFM) measurements. Mi and Elimelech also found that both inorganic and organic types of

fouling in FO were nearly fully reversible using water rinsing. This could be attributed to the

less compact fouling layer created by the applied low hydraulic pressure, which suggests that

chemical cleaning could be prevented. Moreover, researchers comparing membrane fouling in

FO and RO suggested that it could be diverse from one case to another with respect to water

cleaning efficiency and reversibility [23, 27, 28]. Although it was irreversible in RO, Lee et al.

observed that membrane fouling in FO was almost entirely reversible [28]. Alternatively, Lee

et al. linked the FO fouling to the accelerated cake-enhanced osmotic pressure (CEOP) created

by the reverse solute (salt) diffusion process in the draw solution. Figure 4 outlines the

mechanics of this process [31]. Once the draw solution faces the membrane’s support layer,

using the reverse diffusion, the draw solute collects on the active layer’s surface located on the

feed side, lowering the net osmotic driving force and improving the concentration polarization

layer. The draw solute featuring a less hydrated radius value (e.g., NaCl) is more easily capable

of initiating CEOP, when compared to the ones with a greater hydrated radius values, like

dextrose. In an experiment by Lay et al., it was noted that the reverse diffusion of the draw

solute could worsen the CEOP effect as well as intensify FO fouling [67]. Alternatively, new

research suggests that FO fouling could be substantially lowered if the cross flow velocity is

increased [28].
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In a recent experimental attempt, Tang’s group used direct microscopic observation to study

FO fouling and its mechanisms. They determined that the critical flux concept could also be

relevant to osmotically drive the types of processes [63]. Direct microscopic observation has

been implemented to research the production of fouling in pressure-driven membrane pro-

cesses and currently remains one of the primary membrane fouling characterization method-

ologies [68–71]. Admittedly, direct microscopic observation is relevant only for the cases with

large foulants in colloidal or biofouling fouling, such as microbes or particles. Thus, direct

microscopic observation can likewise be implemented in the research of membrane fouling if

visible fouling layers or large foulants are present in FO.

Usually defined as the level of permeate flux where membrane fouling becomes noticeable,

critical flux has been widely used in pressure-driven membrane processes [72–75]. Critical flux

can also be applied to osmotically driven membrane processes. A recent study by Zhao et al.

confirms its presence in FO [76]. It is necessary to note that the critical flux identified by Zhao

et al.’s FO research study, as well as by Tang and coworkers, was detected when the membrane’s

surface was partially covered with visible foulant [63, 76]. As a consequence, the critical flux in

FO could have an implicit connection to the visible fouling layer. This particular connection must

be investigated in greater depth. Research suggests that greater working temperatures can have

various negative influences on FO cleaning and scaling in brackish water desalination processes,

potentially because of the change of HCO3
� into CO3

2� at high temperature values [26]. The

report indicates that, caused by the polymerization of dissolved silica, the silica scaling of FO

membranes was the primary inorganic type of fouling in real-case seawater desalination exam-

ples [77]. The silica polymerizationmight likewise quicken the organic fouling, which is removed

much easier using water rinsing if compared to the silica scaling [77].

Alternatively, membrane fouling could improve the FO membrane’s solute rejection potential.

It was also detected that organic foulants located on the membrane’s surface, or its active layer,

Figure 4. The effects of draw solute reverse diffusion on cake-enhanced osmotic pressure (CEOP) in FO for two different

draw solutions: (a) NaCl and (b) dextrose [31].
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could improve the negative charge property and surface hydrophilicity, and this in turn can raise

the hydrophilic compound absorption capacity [78]. Changes like these can increase the critical

rejection potential for many new contaminants, including trace organic compounds, as well as

hydrophobic neutral compounds and hydrophilic ionic compounds [78]. Once the FO tests were

run continuously for prolonged periods of time at the pilot scale, the rejection performance

values improved even further as more substantial fouling happened [79]. In a project by Jin

et al., it was determined that organic fouling can likewise have substantial consequences for the

elimination of inorganic contaminants, like arsenic and boron [80]. In particular, their influences

relied on the membrane’s orientation. For instance, in the FO mode, where the membrane’s

support layer is facing the draw solution, the organic fouling on the membrane’s active layer

can improve the sieving influence and essentially increase the arsenic rejection in the feed.

Alternatively, in the PRO mode, where the membrane’s support layer is facing the feed, the

organic fouling in the membrane’s support structure can lower the boron rejection [80]. Mem-

brane fouling and concentration polarization remain critical phenomena in FO processes since

they have the capacity to heighten the additional membrane resistance and lower membrane

permeability potential. Researchers must continue to further examine their functions and mech-

anisms if they want to improve the FO process and its performance capacity. Successful applica-

tion of FO in real settings will remain problematic until a more comprehensive analysis becomes

available.

4.3. Reverse solute diffusion

In membrane processes that are osmotically driven, the solute’s reverse diffusion, from the

draw solution and through the membrane toward the feed solution, is likewise almost cer-

tainly due to the concentration variances. Cath et al. (2009) state that the draw solute reverse

diffusion has to be carefully studied as it could endanger the success of the process [11, 81].

Some research studies have linked draw solute reverse diffusion with the membrane fouling

phenomenon. Lay et al. and Lee et al. have shown that the draw solute reverse diffusion can,

on the one hand, improve the CEOP influence and, on the other hand, intensify FO fouling [28,

67]. Thus, multivalent ion solutions featuring smaller diffusion coefficient values are better for

certain uses in which higher rejection potentials are required [11]. Alternatively, in other cases,

multivalent ions, like Ca2+ and Mg2+, could impede the foulants in the feed solution following

reverse diffusion, a dynamic that can worsen the overall membrane fouling [82]. Furthermore,

multivalent ions could likewise incite a more substantial ICP due to their smaller diffusion

coefficients and bigger ion sizes [48]. Defined as the ratio of the reverse solute flux to the

forward water flux, specific reverse solute flux has been added as another potential measure

of membrane’s selectivity [81, 82]. Specific reverse solute flux parameter offers a third dynamic

for the proper FO performance evaluation, together with the salt rejection and the permeate

flux parameters. A greater specific reverse solute flux suggests reduced membrane selectivity

potential, as well as an inferior FO efficiency value. Although the specific reverse solute flux

depends on the membrane’s active layer selectivity, it is independent of the structure of the

membrane support layer and the draw solution concentration values [51]. This key outcome

grants another standard for the production of a new type of FO membrane, that is, greater

selectivity of the membrane’s active layer. Moreover, engaging a multivalent ion solution as

the draw solution could reduce membrane fouling [28, 67] and lower the reverse solute
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diffusion [81], but in this case, there is also a potential to have a higher ICP [48] and a greater

risk of fouling [82]. To sum up, reverse solute diffusion remains one of the main challenges in

osmotically driven membrane processes and as a result must be reduced during the produc-

tion and design of draw solutes and FO membranes.

4.4. Membrane development

Based on the available membrane fabrication methodologies, newly produced and designed

membranes can be organized into three categories: the thin film composite (TFC) membranes,

the chemically modified membranes, and the phase inversion-formed cellulosic membranes.

Reverse solute diffusion, membrane fouling, and ICP are three of the crucial concerns that exist

with respect to the osmotically driven membrane processes, since they effectually direct the FO

performance. As a result, when considering innovative FO membrane development, it is essen-

tial to characterize its salt rejection, antifouling, and anti-ICP characteristics. When compared

with other types of processes, FO could be viewed as more competitive when treating challeng-

ing waters with higher fouling potential or solid content, since ICP and fouling are frequently

much more serious. When it comes to FO, the water flux is affected by the water permeability,

while the reverse solute flux is shaped by the membrane solute permeability. In this instance,

there is a type of trade-off between salt rejection and water permeability [83]. Higher water

permeability values are desirable, as well as lower salt rejection potential. In most cases, FO

membrane featuring higher water permeability potential likewise offers higher salt flux, and the

reverse relationship holds true as well. As a consequence, defined as the ratio of the reverse

solute flux to the forward water flux, specific reverse solute flux can be a superior parameter to

evaluate when considering the FO performance [81]. In fact, it might be better to assess the FO

performance with the aid of the osmotic water flux and specific reverse solute flux when

membrane fouling and ICP are present. Thus, the characterization and design of new FO

membrane in the forthcoming future must reflect on the antifouling and the anti-ICP properties,

as well as salt rejection (solute permeability), structural parameters, and water permeability.

4.4.1. Phase inversion-formed cellulosic membranes

Asymmetric cellulosic osmotically driven membranes developed through phase inversion

have been created specifically for osmotic drug delivery before they were used for water

treatment purposes [33, 84, 85]. Most of these membranes were created using conventional

phase inversion and with the help of cellulose acetate as the dip-coating polymer. A research

breakthrough in Loeb and Sourirajan’s method occurred when they prepared RO membranes

through phase inversion based on cellulose acetate polymer. Cellulose acetate offers a variety

of desirable properties, such as a comparatively high hydrophilicity favoring lower fouling

propensity and greater water flux, wide availability, improved mechanical strength, as well as

enhanced resistance to degradation by chlorine and other types of oxidants [86, 87]. This

particular form of cellulosic membrane is implemented in energy generation, such as osmotic

power, and through a PRO process [88]. Recently, Chung’s research group has produced a

number of cellulose ester-based membranes specifically for FO applications and containing flat

sheet modules and hollow fiber [89–91]. In this case, the methods for creating these cellulose

derivative membranes are relatively similar, in the form of phase inversion that is followed by

hot water annealing at 60–95�C. Chung’s research group determined that the resulting
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membrane could have two selective skin layers that are capable of lowering ICP in the mem-

brane support layer [87, 90]. A more recent study modeled this type of double-skinned FO

membrane [92]. Chung’s research group likewise noted that the relationship between the casting

substrate and the polymer had an important role during phase inversion for the development of

the membrane’s structure [87, 91]. Furthermore, Sairam et al. implemented this phase inversion

approach in order to create flat sheet FO membranes using cellulose acetate [93]. Specifically,

they applied maleic acid, zinc chloride, and lactic acid as pore-forming agents, while casting the

membrane onto nylon fabric at a range of annealing temperature values. Sairam et al. noted that

the membrane developed with zinc chloride as the pore-forming agent allowed for a reasonably

effective FO performance. On the other hand, the disadvantages of cellulose acetate have to be

examined before it is used in FO membranes. While cellulose acetate membranes are more

resistant to chloride degradation and more hydrophilic, if compared to the TFC polyamide RO

membranes, they have lower resistance potential to biological attachments and hydrolysis [86,

94, 95]. To reduce the hydrolysis of cellulose acetate membranes, it is crucial to modify the pH of

the feed and draw solutions within the ranges of 4–6 and to sustain the working temperature

that does not rise above 35�C [86, 94].

4.4.2. Thin film composite membranes

It has been noted that there is a key trade-off dynamic occurring between salt rejection andwater

permeability potential. For instance, the raising of the trimesoyl chloride (TMC) concentration or

the reduction of the m-phenylenediamine (MPD) concentration caused greater membrane per-

meability potential but lower salt rejection values [83]. Research likewise indicates that greater

hydrophilicity of the support layer may prefer water diffusion across the FO membrane [96, 97].

Wang et al. prepared polyethersulfone (PES)/sulfonated polysulfone (PSF)-alloyed–type mem-

branes as the substrates of interfacial polymerization and produced high-performance FO mem-

branes. On the other hand, Yu et al. developed a nonporous polyethersulfone (PES) FO-type

membrane with the aid of phase inversion, however, without using interfacial polymerization

[98]. In this case, the polyester nonwoven fabrics were implemented for backing support. This

membrane creation approach was comparable to the one used by Elimelech’s group, with the

exception of the additional interfacial polymerization phase. According to the report, the mem-

brane produced by this method featured an active layer formed on top of the support layer, high

water flux value, and low reverse solute flux potential [98].

Song et al. reported the creation of a nanofiber TFC FO-type membrane using electrospinning,

which was followed by interfacial polymerization (ES-IP) [99]. Song et al. noted that the

nanocomposite FO membrane allowed for an improved FO performance mostly because of

high porosity and low tortuosity that significantly decreased the structural parameters of the

membrane. If compared to the TFC FO membrane made using phase inversion followed by

interfacial polymerization (PI-IP), the electrospinning-formed nanofiber support layer offers a

porous structure resembling a scaffold with interlocked pores between individual nanofibers

[99]. Due to this structure, the water flux value of the ES-IP–formed FO membrane was found

to be three times as high as the water flux potential of the PI-IP–formed membrane. In this

instance, the performance of the FO membrane was enhanced with respect to osmotic water

flux, while salt rejection was obtained as well as confirmed by Bui et al. research group [100].

The majority of the approaches used for preparing TFC FO membranes and asymmetric
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cellulose acetate FO membranes are indistinguishable from the original traditional RO mem-

brane methods, like phase inversion followed by interfacial polymerization, or phase inversion

and annealing.

When it comes to a TFC FO membrane, the membrane support layer made using phase inver-

sion governs the ICP, water flux in FO, and the membrane’s active layer controls reverse solute

flux potential and salt rejection values. A high salt rejection can be obtained when the TFC

membranes are developed with the help of interfacial polymerization. In fact, FO’s performance

is shaped by the membrane’s support layer. Next-generation FO membrane production must

pay attention to the membrane’s support layer and its role. All in all, an effective FO membrane

has to provide a design that appears sufficiently porous and offers improved hydrophilic sup-

port combined with lower tortuosity capable of decreasing ICP, as well as a selective active layer

that can lower reverse solute diffusion and augment salt rejection potential.

4.4.3. Chemically modified membranes

Over the course of the last several years, chemical modification methodologies have been

implemented during the development of innovative FO membranes. Arena et al. research

group (2011) applied polydopamine (PDA) as a new bioinspired hydrophilic polymer for the

modification of the support layers in commercial TFC RO membranes catering to engineered

osmosis applications [101]. This modified membrane showed improved water flux and lower

ICP during the conducted FO tests. Furthermore, Setiawan et al. created a hollow-type fiber

FO membrane featuring a positively charged NF-like selective layer using a polyelectrolyte

posttreatment of a polyamide-imide (PAI) microporous substrate with polyethylenimine (PEI)

[102]. Setiawan et al. indicated that the final FO membrane produced could be applied in

heavy metal removal processes due to its unique positively charged characteristic. This

research group likewise designed a flat sheet–type membrane offering a positively charged

NF-like selective layer on top of a woven fabric–embedded substrate and implementing a

similar methodology. The reported results suggest that the overall thickness of the substrate

was reduced to 55 μmwhen the PAI microporous substrate was successfully embedded within

a woven fabric. Moreover, Tang and coworkers relied on a creative layer-by-layer assembly

approach in order to produce FO membranes with desirable properties [103, 104]. In Tang’s

research studies, polyacrylonitrile (PAN) substrate was prepared with the aid of phase inver-

sion and then posttreated by sodium hydroxide so as to improve surface negative charge

density and hydrophilicity potential. Poly(sodium 4-styrene-sulfonate) (PSS) and poly(allyl-

amine hydrochloride) (PAH) were implemented as the polyanion and polycation, respectively.

Arguably, the majority of the present approaches to the FO membrane preparation are

established methods that have been applied during the last few decades for the creation of

pressure-driven–type membranes, such as RO and NF. The production and design of innova-

tive high-performance FO membranes are still in their early stages. As a result, the process of

relying on the older methodologies for RO or NF membrane preparation is a sensible and

practical direction. Forthcoming research may expand the recently developed techniques for

the production of high-performance FO membranes, including layer-by-layer assembly [103,

105–112], UV-photographing [113–116], and polyelectrolyte dip-coating [117, 118]. In addition,

membranes featuring polyelectrolyte multilayers, charged properties, or double selective

layers can provide exciting avenues for specific real-life FO applications.
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4.5. Draw solute/solution developments

Despite preexisting setbacks, key innovative approaches for draw solute selection have been

suggested [119, 120]. Specifically, there are three conditions for successful selection of a suitable

draw solution in FO applications. To begin, the draw solution must offer a reasonably high

osmotic pressure values [11]. Next, the diluted draw solution needs to be economically and

effortlessly reconcentrated and recovered [11, 121]. Finally, the draw solute has to showcase

lowered ICP during the FO processes. A research study by Zhao and Zou indicates that ICP in

FO is seriously influenced by draw solution viscosity, draw solution’s ion/molecule size of the

solute, and solute diffusion coefficient values [48]. Increased diffusion coefficients, coupled

with lowered ion/molecule sizes and smaller solution viscosities, will minimize ICP and allow

for resulting in improved permeate fluxes [48]. Moreover, additional parameters like low

reverse solute permeability [11], zero toxicity, low cost, absence of membrane damage, inert-

ness and stability at or near natural pH, and good biofouling-resistance should be considered

when the draw solute/solution is selected.

During the last few decades, numerous draw solutes/solutions have been examined during

osmotically driven–type processes. The primary benefit of implementing volatile gases as draw

solutes in FO is that the final thermolytic draw solution may be separated or recovered with the

help of heating/or distillation. In a separate project, sugars were likewise tested as draw solutes

since there is no necessity to separate the diluted nutrient solutions further, and the diluted

solutions may be reconcentrated in decreased pressures with loose RO membranes. After the

2000s, Elimelech and coworkers suggested a new draw solution for the purposes of FO desali-

nation, that is, a water-soluble mixture of NH3 and CO2 including ammonium bicarbonate

(NH4HCO3) [9, 10, 24]. The proposed draw solution can offer improved water fluxes as a result

of the higher driving forces created by the greater solubilities of the solutes. These types of draw

solutes may be effortlessly recovered or recycled using moderate heating (�60�C) [9]. As a result,

this innovative draw solution could find a potential application in large-scale desalination, even

though the removal the ammonia (NH3) smell from the produced water could be a concern.

Furthermore, various other chemicals have been assessed for the role of the draw solutes [119].

For instance, synthetic materials, like organic compounds [121] and magnetic and/or hydro-

philic nanoparticles [122–124], have been proposed for the application as the draw solutes. In

the case of the laboratory-designed magnetic nanoparticles, data suggest that the particle size

and surface hydrophilicity of the particles had critical roles for the FO separation performance

[123]. It was also noted that particle agglomeration happened during draw solute recycling

process using magnetic separators [124]. Such an accumulation of magnetic nanoparticles may

be reduced with the aid of ultrasonication. When using this method, the particles’ magnetic

characteristics and the recovery efficacy were threatened by ultrasonication as well. In order to

transcend the issue of accumulation during draw solute recycling, the thermal-responsive

properties were integrated into the magnetic nanoparticles using the one-step thermal decom-

position [125]. UF could likewise be used to recover diluted draw solutes featuring big particle

or molecule sizes. Wang’s research group has produced a stimuli-responsive polymer hydro-

gel as another draw solute for FO desalination [126]. Polymer hydrogels such as these have the

capacity to pull water from the saline feed during swelling and after that release the water

while deflating, the latter being caused by heating and hydraulic pressure. So as to enhance the
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capacity of swelling ratios and drawing water, a type of light-absorbing carbon particles was

introduced into the polymer hydrogels, and as a consequence an improved performance was

obtained [127]. A new draw solute separation system simulating the “destabilization” phe-

nomenon was suggested for the process of generating drinking water [128]. In this particular

system, Al2(SO4)3 was chosen as the draw solute, while the diluted Al2(SO4)3 solution pH was

attuned using CaO, finally resulting in the creation of a white gel-like mixture made out of

positively charged Al(OH)3 and CaSO4. In the following step, negatively charged superpar-

amagnetic nanoparticles were added so as to enable the sedimentation. To accelerate the

sedimentation process and enhance separation efficiency, an external magnetic field was intro-

duced. Such an innovative draw solution separation technique can make FO a more econom-

ical and eco-sustainable process for efficient drinking water production [128].

The selection criteria for the draw solutes and solutions need to be addressed for the process to

be effective and sustainable. An effective draw solute option for FO must offer easy and

economical recovery, lower tendency to cause ICP, zero toxicity, reasonable costs, higher

solubility, and greater osmotic pressure. The diffusion coefficient, viscosity of the draw solu-

tion, and the solute particle size need to be examined as they are directly connected to ICP [48]

effectually dominating the water flux in FO [38, 46].

4.6. Forward osmosis fouling control

In this chapter, the focus was on discussing and reviewing the primary five issues that exist in

FO. Certainly, these challenges do not exist in isolation but are rather interconnected. To sum

up some of these issues, the membrane’s support layer needs to be as porous as possible for the

lower ICP, and the membrane’s active layer needs to be more selective for a lower reverse

solute diffusion potential. The smaller reverse solute diffusion can then decrease the mem-

brane fouling. When it comes to the draw solute, small ion or molecule sizes could minimize

ICP [48]; however, they can likewise increase membrane fouling and reverse solute diffusion.

All of these correlations and criteria make the creation of advantageous draw solutes much

more problematic. In most cases, higher reverse solute diffusion may lead to substantial

membrane fouling, and this correlation holds the other way as well [28, 67]. In addition, ICP

and membrane fouling could lead to multiple adverse properties for water flux in FO [50].

Furthermore, reverse solute diffusion, membrane fouling, and ICP are at their core determined

by draw solute properties and membrane qualifications.

5. Conclusion

The membrane processes based on osmosis are new technological directions that have exhibited

a lot of promise for a range of applications, and especially water purification, food processing,

desalination, wastewater treatment, power generation, and pharmaceutical product dehydra-

tion. While FO is not likely to fully replace RO as the primary desalination technology in the

foreseeable future, it remains an appealing alternative as an effective desalination approach

offering many benefits over pressure-driven–type membrane processes. In order to transfer FO

from the laboratory stages of research into hands-on industrial applications, a set of advances in

terms of FO membrane and draw solute development needs to happen. In fact, the membranes
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need to offer critical properties of minimizing ICP, higher mechanical strength, stability, impro-

ved water permeability, and better selectivity. To sum up, this chapter examined five essential

challenges for FO in the form of membrane fouling, reverse solute diffusion, further membrane

development, concentration polarization, and enhanced draw solute design. The innovative

draw solutes must be capable of producing higher osmotic pressure, remain easily and econom-

ically regenerated/or recycled, and provide minimal ICP. Draw solutes must also offer compat-

ibility with the FO membranes and zero toxicity. A successful draw solute has a vital role in the

popularization and efficacy of FO applications. The next level of draw solute development will

allow for a much wider use of FO in a range of industrial-scale applications and fields.

Nomenclature

A water permeability constant of the membrane

B solute permeability coefficient of the membrane

Cm concentrations of the feed solution at the membrane surface

Cb concentrations of the feed solution at the bulk

D diffusion coefficient of the solute

Dh hydraulic diameter

Jw water flux

k mass transfer coefficient

kfeed mass transfer coefficient on the feed side

kdraw mass transfer coefficient on the draw side

t thickness of the membrane

τ tortuosity

σ reflection coefficient

ε membrane porosity

S membrane structural parameter

Sh Sherwood number

ΔP applied hydraulic pressure difference

Δπ osmotic pressure difference across the membrane

∆πFeed bulk osmotic pressure of the feed solution

πm�draw osmotic pressures of the draw solution at the membrane surface

πb�draw osmotic pressures of the draw solution in the bulk

∆πDraw bulk osmotic pressure of the draw solution
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Abbreviations

AFM atomic force microscope

CEOP cake-enhanced osmotic pressure

CFD computational fluid dynamics

ECP external concentration polarization

ES-IP electrospinning followed by interfacial polymerization

FEM finite element method

FO forward osmosis

ICP internal concentration polarization

MPD m-phenylenediamine

NF nanofiltration

OMBR osmotic membrane bioreactor

PAH poly(allylamine hydrochloride)

PAI polyamide-imide

PAN polyacrylonitrile

PDA polydopamine

PEI polyethylenimine

PES polyethersulfone

PRO pressure-retarded osmosis

PSF polysulfone

PSS poly(sodium 4-styrene-sulfonate)

RO reverse osmosis

TFC thin film composite

TMC trimesoyl chloride

Author details

Amira Abdelrasoul1*, Huu Doan2, Ali Lohi2 and Chil-Hung Cheng2

*Address all correspondence to: amira.abdelrasoul@usask.ca

1 Department of Chemical and Biological Engineering, University of Saskatchewan,

Saskatoon, Saskatchewan, Canada

2 Department of Chemical Engineering, Ryerson University, Toronto, Ontario, Canada

Osmotically Driven Membrane Processes - Approach, Development and Current Status168



References

[1] Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ, Mayes AM.

Science and technology for water purification in the coming decades. Nature. 2008;452:

301-310

[2] E.I.A. International. World Energy Outlook 2010. The Energy Information Administra-

tion. Washington DC; 2010

[3] Elimelech M, Phillip WA. The future of seawater desalination: Energy, technology, and

the environment. Science. 2011;333:712-717

[4] Montgomery MA, Elimelech M. Water and sanitation in developing countries: Including

health in the equation. Environmental Science & Technology. 2007;41:17-24

[5] Elimelech M. The global challenge for adequate and safe water. Journal of Water Supply:

Research and Technology—AQUA. 2006;55:3-10

[6] Gleick PH. Water resources. In: Schneider SH, editor. Encyclopedia of Climate and

Weather. New York: Oxford University Press; 1996

[7] King CW, Webber ME. Water intensity of transportation. Environmental Science &

Technology. 2008;42:7866-7872

[8] Geise GM, Lee H-S, Miller DJ, Freeman BD, McGrath JE, Paul DR. Water purification by

membranes: The role of polymer science. Journal of Polymer Science Part B: Polymer

Physics. 2010;48:1685-1718

[9] McCutcheon JR, McGinnis RL, Elimelech M. A novel ammonia–carbon dioxide forward

(direct) osmosis desalination process. Desalination. 2005;174:1-11

[10] McCutcheon JR, McGinnis RL, Elimelech M. Desalination by ammonia–carbon dioxide

forward osmosis: Influence of draw and feed solution concentrations on process perfor-

mance. Journal of Membrane Science. 2006;278:114-123

[11] Cath TY, Childress AE, Elimelech M. Forward osmosis: Principles, applications, and

recent developments. Journal of Membrane Science. 2006;281:70-87

[12] Petrotos KB, Quantick P, Petropakis H. A study of the direct osmotic concentration of

tomato juice in tubular membrane-module configuration. I. The effect of certain basic

process parameters on the process performance. Journal of Membrane Science. 1998;150:

99-110

[13] Petrotos KB, Quantick PC, Petropakis H. Direct osmotic concentration of tomato juice in

tubular membrane-module configuration. II. The effect of using clarified tomato juice on

the process performance. Journal of Membrane Science. 1999;160:171-177

[14] Petrotos KB, Lazarides HN. Osmotic concentration of liquid foods. Journal of Food

Engineering. 2001;49:201-206

[15] Garcia-Castello EM, McCutcheon JR, Elimelech M. Performance evaluation of sucrose

concentration using forward osmosis. Journal of Membrane Science. 2009;338:61-66

Fouling in Forward Osmosis Membranes: Mechanisms, Control, and Challenges
http://dx.doi.org/10.5772/intechopen.72644

169



[16] Lee KL, Baker RW, Lonsdale HK. Membranes for power generation by pressure-retarded

osmosis. Journal of Membrane Science. 1981;8:141-171

[17] Seppälä A, Lampinen MJ. Thermodynamic optimizing of pressure-retarded osmosis

power generation systems. Journal of Membrane Science. 1999;161:115-138

[18] McGinnis RL, Elimelech M. Global challenges in energy and water supply: The promise

of engineered osmosis. Environmental Science & Technology. 2008;42:8625-8629

[19] Achilli A, Cath TY, Childress AE. Power generation with pressure retarded osmosis: An

experimental and theoretical investigation. Journal of Membrane Science. 2009;343:42-52

[20] Achilli A, Cath TY, Marchand EA, Childress AE. The forward osmosis membrane

bioreactor: A low fouling alternative to MBR processes. Desalination. 2009;239:10-21

[21] Holloway RW, Childress AE, Dennett KE, Cath TY. Forward osmosis for concentration

of anaerobic digester centrate. Water Research. 2007;41:4005-4014

[22] Liu Y, Mi B. Combined fouling of forward osmosis membranes: Synergistic foulant

interaction and direct observation of fouling layer formation. Journal of Membrane

Science. 2012;407-408:136-144

[23] Mi B, Elimelech M. Organic fouling of forward osmosis membranes: Fouling reversibility

and cleaning without chemical reagents. Journal of Membrane Science. 2010;348:337-345

[24] McGinnis RL, Elimelech M. Energy requirements of ammonia–carbon dioxide forward

osmosis desalination. Desalination. 2007;207:370-382

[25] Martinetti CR, Childress AE, Cath TY. High recovery of concentrated RO brines using

forward osmosis and membrane distillation. Journal of Membrane Science. 2009;331:31-39

[26] Zhao S, Zou L. Effects of working temperature on separation performance, membrane

scaling and cleaning in forward osmosis desalination. Desalination. 2011;278:157-164

[27] Mi B, Elimelech M. Gypsum scaling and cleaning in forward osmosis: Measurements

and mechanisms. Environmental Science & Technology. 2010;44:2022-2028

[28] Lee S, Boo C, Elimelech M, Hong S. Comparison of fouling behavior in forward osmosis

(FO) and reverse osmosis (RO). Journal of Membrane Science. 2010;365:34-39

[29] Cartinella JL, Cath TY, Flynn MT, Miller GC, Hunter KW, Childress AE. Removal of

natural steroid hormones from wastewater using membrane contactor processes. Envi-

ronmental Science & Technology. 2006;40:7381-7386

[30] Cath TY, Hancock NT, Lundin CD, Hoppe-Jones C, Drewes JE. A multi-barrier osmotic

dilution process for simultaneous desalination and purification of impaired water. Jour-

nal of Membrane Science. 2010;362:417-426

[31] Yang Q, Wang KY, Chung T-S. A novel dual-layer forward osmosis membrane for protein

enrichment and concentration. Separation and Purification Technology. 2009;69:269-274

[32] Jiao B, Cassano A, Drioli E. Recent advances on membrane processes for the concentra-

tion of fruit juices: A review. Journal of Food Engineering. 2004;63:303-324

Osmotically Driven Membrane Processes - Approach, Development and Current Status170



[33] Wang C-Y, Ho H-O, Lin L-H, Lin Y-K, Sheu M-T. Asymmetric membrane capsules for

delivery of poorly water-soluble drugs by osmotic effects. International Journal of

Pharmaceutics. 2005;297:89-97

[34] Shokri J, Ahmadi P, Rashidi P, Shahsavari M, Rajabi-Siahboomi A,Nokhodchi A. Swellable

elementary osmotic pump (SEOP): An effective device for delivery of poorly water-soluble

drugs. European Journal of Pharmaceutics and Biopharmaceutics. 2008;68:289-297

[35] Bamaga OA, Yokochi A, Zabara B, Babaqi AS, Hybrid FO. RO desalination system:

Preliminary assessment of osmotic energy recovery and designs of new FO membrane

module configurations. Desalination. 2011;268:163-169

[36] Tang W, Ng HY. Concentration of brine by forward osmosis: Performance and influence

of membrane structure. Desalination. 2008;224:143-153

[37] Mehta GD. Further results on the performance of present-day osmotic membranes in

various osmotic regions. Journal of Membrane Science. 1982;10:3-19

[38] McCutcheon JR, Elimelech M. Influence of concentrative and dilutive internal concen-

tration polarization on flux behavior in forward osmosis. Journal of Membrane Science.

2006;284:237-247

[39] Zydney AL. Stagnant film model for concentration polarization in membrane systems.

Journal of Membrane Science. 1997;130:275-281

[40] Sablani SS, Goosen MFA, Al-Belushi R, Wilf M. Concentration polarization in ultrafil-

tration and reverse osmosis: A critical review. Desalination. 2001;141:269-289

[41] Thorsen T. Concentration polarisation by natural organic matter (NOM) in NF and UF.

Journal of Membrane Science. 2004;233:79-91

[42] Kim S, Hoek EMV. Modeling concentration polarization in reverse osmosis processes.

Desalination. 2005;186:111-128

[43] McCutcheon JR, Elimelech M. Modeling water flux in forward osmosis: Implications for

improved membrane design. AICHE Journal. 2007;53:1736-1744

[44] Su J, Chung T-S. Sublayer structure and reflection coefficient and their effects on con-

centration polarization and membrane performance in FO processes. Journal of Mem-

brane Science. 2011;376:214-224

[45] Mehta GD, Loeb S. Performance of permasep B-9 and B-10 membranes in various osmotic

regions and at high osmotic pressures. Journal of Membrane Science. 1978;4:335-349

[46] Gray GT, McCutcheon JR, Elimelech M. Internal concentration polarization in forward

osmosis: role of membrane orientation. Desalination. 2006;197:1-8

[47] Mehta GD, Loeb S. Internal polarization in the porous substructure of a semipermeable

membrane under pressure-retarded osmosis. Journal of Membrane Science. 1978;4:261-265

[48] Zhao S, Zou L. Relating solution physicochemical properties to internal concentration

polarization in forward osmosis. Journal of Membrane Science. 2011;379:459-467

Fouling in Forward Osmosis Membranes: Mechanisms, Control, and Challenges
http://dx.doi.org/10.5772/intechopen.72644

171



[49] Loeb S, Titelman L, Korngold E, Freiman J. Effect of porous support fabric on osmosis

through a Loeb–Sourirajan type asymmetric membrane. Journal of Membrane Science.

1997;129:243-249

[50] Tang CY, She Q, Lay WCL, Wang R, Fane AG. Coupled effects of internal concentration

polarization and fouling on flux behavior of forward osmosis membranes during humic

acid filtration. Journal of Membrane Science. 2010;354:123-133

[51] Phillip WA, Yong JS, Elimelech M. Reverse draw solute permeation in forward

osmosis: Modeling and experiments. Environmental Science & Technology. 2010;44:

5170-5176

[52] Gruber MF, Johnson CJ, Tang CY, Jensen MH, Yde L, Hélix-Nielsen C. Computational

fluid dynamics simulations of flow and concentration polarization in forward osmosis

membrane systems. Journal of Membrane Science. 2011;379:488-495

[53] Jung DH, Lee J, Kim DY, Lee YG, Park M, Lee S, Yang DR, Kim JH. Simulation of

forward osmosis membrane process: Effect of membrane orientation and flow direction

of feed and draw solutions. Desalination. 2011;277:83-91

[54] Li W, Gao Y, Tang CY. Network modeling for studying the effect of support structure on

internal concentration polarization during forward osmosis: Model development and

theoretical analysis with FEM. Journal of Membrane Science. 2011;379:307-321

[55] Sagiv A, Semiat R. Finite element analysis of forward osmosis process using NaCl

solutions. Journal of Membrane Science. 2011;379:86-96

[56] Jarusutthirak C, Amy G, Croué J-P. Fouling characteristics of wastewater effluent organic

matter (EfOM) isolates on NF and UF membranes. Desalination. 2002;145:247-255

[57] Seidel A, Elimelech M. Coupling between chemical and physical interactions in natural

organic matter (NOM) fouling of nanofiltration membranes: Implications for fouling

control. Journal of Membrane Science. 2002;203:245-255

[58] Hoek EMV, Elimelech M. Cake-enhanced concentration polarization: A new fouling

mechanism for salt-rejecting membranes. Environmental Science & Technology. 2003;

37:5581-5588

[59] Le-Clech P, Chen V, Fane TAG. Fouling in membrane bioreactors used in wastewater

treatment. Journal of Membrane Science. 2006;284:17-53

[60] Ang WS, Elimelech M. Protein (BSA) fouling of reverse osmosis membranes: Implica-

tions for wastewater reclamation. Journal of Membrane Science. 2007;296:83-92

[61] Tang CY, Chong TH, Fane AG. Colloidal interactions and fouling of NF and RO mem-

branes: A review. Advances in Colloid and Interface Science. 2011;164:126-143

[62] Mi B, Elimelech M. Chemical and physical aspects of organic fouling of forward osmosis

membranes. Journal of Membrane Science. 2008;320:292-302

[63] Wang Y, Wicaksana F, Tang CY, Fane AG. Direct microscopic observation of forward

osmosis membrane fouling. Environmental Science & Technology. 2010;44:7102-7109

Osmotically Driven Membrane Processes - Approach, Development and Current Status172



[64] Cath TY, Gormly S, Beaudry EG, Flynn MT, Adams VD, Childress AE. Membrane

contactor processes for wastewater reclamation in space: Part I. Direct osmotic concentra-

tion as pretreatment for reverse osmosis. Journal of Membrane Science. 2005;257:85-98

[65] Cath TY, Adams D, Childress AE. Membrane contactor processes for wastewater reclama-

tion in space: II. Combined direct osmosis, osmotic distillation, and membrane distillation

for treatment of metabolic wastewater. Journal of Membrane Science. 2005;257:111-119

[66] Meng F, Chae S-R, Drews A, Kraume M, Shin H-S, Yang F. Recent advances in mem-

brane bioreactors (MBRs): Membrane fouling and membrane material. Water Research.

2009;43:1489-1512

[67] Lay WCL, Chong TH, Tang C, Fane AG, Zhang J, Liu Y. Fouling propensity of forward

osmosis: Investigation of the slower flux decline phenomenon. Water Science and Tech-

nology. 2010;61:927-936

[68] Kang S-T, Subramani A, Hoek EMV, Deshusses MA, Matsumoto MR. Direct observation

of biofouling in cross-flow microfiltration: Mechanisms of deposition and release. Jour-

nal of Membrane Science. 2004;244:151-165

[69] Wang S, Guillen G, Hoek EMV. Direct observation of microbial adhesion to membranes.

Environmental Science & Technology. 2005;39:6461-6469

[70] Li H, Fane AG, Coster HGL, Vigneswaran S. Direct observation of particle deposition on

the membrane surface during crossflow microfiltration. Journal of Membrane Science.

1998;149:83-97

[71] Li H, Fane AG, Coster HGL, Vigneswaran S. Observation of deposition and removal

behaviour of submicron bacteria on the membrane surface during crossflow microfil-

tration. Journal of Membrane Science. 2003;217:29-41

[72] Bacchin P, Aimar P, Field RW. Critical and sustainable fluxes: Theory, experiments and

applications. Journal of Membrane Science. 2006;281:42-69

[73] Zhang YP, Fane AG, Law AWK. Critical flux and particle deposition of bidisperse sus-

pensions during crossflow microfiltration. Journal of Membrane Science. 2006;282:189-197

[74] Zhang YP, Fane AG, Law AWK. Critical flux and particle deposition of fractal flocs

during crossflow microfiltration. Journal of Membrane Science. 2010;353:28-35

[75] Field RW, Wu D, Howell JA, Gupta BB. Critical flux concept for microfiltration fouling.

Journal of Membrane Science. 1995;100:259-272

[76] Zhao S, Zou L, Mulcahy D. Effects of membrane orientation on process performance in

forward osmosis applications. Journal of Membrane Science. 2011;382:308-315

[77] Li Z-Y, Yangali-Quintanilla V, Valladares-Linares R, Li Q, Zhan T, Amy G. Flux patterns

and membrane fouling propensity during desalination of seawater by forward osmosis.

Water Research. 2012;46:195-204

[78] Valladares Linares R, Yangali-Quintanilla V, Li Z, Amy G. Rejection of micropollutants

by clean and fouled forward osmosis membrane. Water Research. 2014;45:6737-6744

Fouling in Forward Osmosis Membranes: Mechanisms, Control, and Challenges
http://dx.doi.org/10.5772/intechopen.72644

173



[79] Hancock NT, Xu P, Heil DM, Bellona C, Cath TY. Comprehensive benchand pilot-scale

investigation of trace organic compounds rejection by forward osmosis. Environmental

Science & Technology. 2011;45:8483-8490

[80] Jin X, She Q, Ang X, Tang CY. Removal of boron and arsenic by forward osmosis

membrane: Influence of membrane orientation and organic fouling. Journal of Mem-

brane Science. 2012;389:182-187

[81] Hancock NT, Cath TY. Solute coupled diffusion in osmotically driven membrane pro-

cesses. Environmental Science & Technology. 2009;43:6769-6775

[82] Zou S, Gu Y, Xiao D, Tang CY. The role of physical and chemical parameters on forward

osmosis membrane fouling during algae separation. Journal of Membrane Science.

2011;366:356-362

[83] Wei J, Liu X, Qiu C, Wang R, Tang CY. Influence of monomer concentrations on the

performance of polyamide-based thin film composite forward osmosis membranes.

Journal of Membrane Science. 2011;381:110-117

[84] Lin Y-K, Ho H-O. Investigations on the drug releasing mechanism from an asymmetric

membrane-coated capsule with an in situ formed delivery orifice. Journal of Controlled

Release. 2003;89:57-69

[85] Herbig SM, Cardinal JR, Korsmeyer RW, Smith KL. Asymmetric-membrane tablet coat-

ings for osmotic drug delivery. Journal of Controlled Release. 1995;35:127-136

[86] Baker RW. Membrane Technology and Applications. 2nd ed. Etobicoke, Canada: John

Wiley & Sons, Ltd.; 2004

[87] Zhang S, Wang KY, Chung T-S, Chen H, Jean YC, Amy G. Well-constructed cellulose

acetate membranes for forward osmosis: Minimized internal concentration polarization

with an ultra-thin selective layer. Journal of Membrane Science. 2010;360:522-535

[88] Gerstandt K, Peinemann KV, Skilhagen SE, Thorsen T, Holt T. Membrane processes in

energy supply for an osmotic power plant. Desalination. 2008;224:64-70

[89] Su J, Yang Q, Teo JF, Chung T-S. Cellulose acetate nanofiltration hollow fiber mem-

branes for forward osmosis processes. Journal of Membrane Science. 2010;355:36-44

[90] Wang KY, Ong RC, Chung T-S. Double-skinned forward osmosis membranes for reduc-

ing internal concentration polarization within the porous sublayer. Industrial & Engi-

neering Chemistry Research. 2010;49:4824-4831

[91] Zhang S, Wang KY, Chung T-S, Jean YC, Chen H. Molecular design of the cellulose

ester-based forward osmosis membranes for desalination. Chemical Engineering Sci-

ence. 2011;66:2008-2018

[92] Tang CY, She Q, Lay WCL, Wang R, Field R, Fane AG. Modeling double skinned FO

membranes. Desalination. 2014;283:178-186

Osmotically Driven Membrane Processes - Approach, Development and Current Status174



[93] Sairam M, Sereewatthanawut E, Li K, Bismarck A, Livingston AG. Method for the

preparation of cellulose acetate flat sheet composite membranes for forward osmosis–

desalination using MgSO4 draw solution. Desalination. 2011;273:299-307

[94] Vos KD, Burris FO, Riley RL. Kinetic study of the hydrolysis of cellulose acetate in the

pH range of 2–10. Journal of Applied Polymer Science. 1966;10:825-832

[95] Merten U. Flow relationships in reverse osmosis. Industrial & Engineering Chemistry

Fundamentals. 1963;2:229-232

[96] Widjojo N, Chung T-S, Weber M, Maletzko C, Warzelhan V. The role of sulphonated

polymer and macrovoid-free structure in the support layer for thin-film composite (TFC)

forward osmosis (FO) membranes. Journal of Membrane Science. 2011;383:214-223

[97] McCutcheon JR, Elimelech M. Influence of membrane support layer hydrophobicity on

water flux in osmotically driven membrane processes. Journal of Membrane Science.

2008;318:458-466

[98] Yu Y, Seo S, Kim I-C, Lee S. Nanoporous polyethersulfone (PES) membrane with

enhanced flux applied in forward osmosis process. Journal of Membrane Science.

2011;375:63-68

[99] Song X, Liu Z, Sun DD. Nano gives the answer: Breaking the bottleneck of internal

concentration polarization with a nanofiber composite forward osmosis membrane for

a high water production rate. Advanced Materials. 2015;23:3256-3260

[100] Bui N, Lind ML, Hoek EMV, McCutcheon JR. Electrospun nanofiber supported thin film

composite membranes for engineered osmosis. Journal of Membrane Science. 2011:385,

10-386, 19

[101] Fayyazi F, Feijani E, Mahdavi H. Chemically modified polysulfone membrane contai-

ning palladium nanoparticles: Preparation, characterization and application as an effi-

cient catalytic membrane for Suzuki reaction. Chemical Engineering Science. 2015;134:

549-554

[102] Setiawan L, Wang R, Li K, Fane AG. Fabrication of novel poly(amide–imide) forward

osmosis hollow fiber membranes with a positively charged nanofiltration-like selective

layer. Journal of Membrane Science. 2011;369:196-205

[103] Saren Q, Qiu CQ, Tang CY. Synthesis and characterization of novel forward osmosis

membranes based on layer-by-layer assembly. Environmental Science & Technology.

2011;45:5201-5208

[104] Qiu C, Qi S, Tang CY. Synthesis of high flux forward osmosis membranes by chemi-

cally crosslinked layer-by-layer polyelectrolytes. Journal of Membrane Science. 2011;

381:74-80

[105] Hong SU, Bruening ML. Separation of amino acid mixtures using multilayer polyelec-

trolyte nanofiltration membranes. Journal of Membrane Science. 2006;280:1-5

Fouling in Forward Osmosis Membranes: Mechanisms, Control, and Challenges
http://dx.doi.org/10.5772/intechopen.72644

175



[106] Hong SU, Ouyang L, Bruening ML. Recovery of phosphate using multilayer polyelec-

trolyte nanofiltration membranes. Journal of Membrane Science. 2009;327:2-5

[107] Bruening ML, Dotzauer DM, Jain P, Ouyang L, Baker GL. Creation of functional mem-

branes using polyelectrolyte multilayers and polymer brushes. Langmuir. 2008;24:7663-7673

[108] Stanton BW, Harris JJ, Miller MD, Bruening ML. Ultrathin, multilayered polyelectrolyte

films as nanofiltration membranes. Langmuir. 2013;19:7038-7042

[109] Malaisamy R, Bruening ML. High-flux nanofiltration membranes prepared by adsorp-

tion of multilayer polyelectrolyte membranes on polymeric supports. Langmuir. 2005;21:

10587-10592

[110] Zhang G, Yan H, Ji S, Liu Z. Self-assembly of polyelectrolyte multilayer pervaporation

membranes by a dynamic layer-by-layer technique on a hydrolyzed polyacrylonitrile

ultrafiltration membrane. Journal of Membrane Science. 2007;292:1-8

[111] Jin W, Toutianoush A, Tieke B. Use of polyelectrolyte layer-by-layer assemblies as

nanofiltration and reverse osmosis membranes. Langmuir. 2003;19:2550-2553

[112] Lee H, Lee Y, Statz AR, Rho J, Park TG, Messersmith PB. Substrateindependent layer-

by-layer assembly by using mussel-adhesive-inspired polymers. Advanced Materials.

2008;20:1619-1623

[113] Akbari A, Desclaux S, Rouch JC, Aptel P, Remigy JC. NewUV-photografted nanofiltration

membranes for the treatment of colored textile dye effluents. Journal of Membrane Sci-

ence. 2006;286:342-350

[114] Akbari A, Desclaux S, Rouch JC, Remigy JC. Application of nanofiltration hollow fibre

membranes, developed by photografting, to treatment of anionic dye solutions. Journal

of Membrane Science. 2007;297:243-252

[115] Li X-L, Zhu L-P, Xu Y-Y, Yi Z, Zhu B-K. A novel positively charged nanofiltration

membrane prepared from N,N-dimethylaminoethyl methacrylate by quaternization

cross-linking. Journal of Membrane Science. 2011;374:33-42

[116] Deng H, Xu Y, Chen Q, Wei X, Zhu B. High flux positively charged nanofiltration

membranes prepared by UV-initiated graft polymerization of methacrylatoethyl trimethyl

ammonium chloride (DMC) onto polysulfone membranes. Journal of Membrane Science.

2011;366:363-372

[117] Miao J, Chen G-H, Gao C-J. A novel kind of amphoteric composite nanofiltration

membrane prepared from sulfated chitosan (SCS). Desalination. 2005;181:173-183

[118] He T, Frank M, Mulder MHV, Wessling M. Preparation and characterization of nanofil-

tration membranes by coating polyethersulfone hollow fibers with sulfonated poly

(ether ether ketone) (SPEEK). Journal of Membrane Science. 2008;307:62-72

[119] Achilli A, Cath TY, Childress AE. Selection of inorganic-based draw solutions for for-

ward osmosis applications. Journal of Membrane Science. 2010;364:233-241

Osmotically Driven Membrane Processes - Approach, Development and Current Status176



[120] Kim T-W, Kim Y, Yun C, Jang H, Kim W, Park S. Systematic approach for draw solute

selection and optimal system design for forward osmosis desalination. Desalination.

2012;284:253-260

[121] Yen SK, Mehnas Haja F, Su NM, Wang KY, Chung T-S. Study of draw solutes using

2-methylimidazole-based compounds in forward osmosis. Journal of Membrane Science.

2010;364:242-252

[122] Ling MM, Chung T-S. Desalination process using super hydrophilic nanoparticles via

forward osmosis integrated with ultrafiltration regeneration. Desalination. 2011;278:194-202

[123] Ling MM, Wang KY, Chung T-S. Highly water-soluble magnetic nanoparticles as novel

draw solutes in forward osmosis for water reuse. Industrial & Engineering Chemistry

Research. 2010;49:5869-5876

[124] Ge Q, Su J, Chung T-S, Amy G. Hydrophilic superparamagnetic nanoparticles: Synthe-

sis, characterization, and performance in forward osmosis processes. Industrial & Engi-

neering Chemistry Research. 2011;50:382-388

[125] Ling MM, Chung T-S, Lu X. Facile synthesis of thermosensitive magnetic nanoparticles as

smart draw solutes in forward osmosis. Chemical Communications. 2011;47:10788-10790

[126] Li D, Zhang X, Yao J, Simon GP, Wang H. Stimuli-responsive polymer hydrogels as a

new class of draw agent for forward osmosis desalination. Chemical Communications.

2011;47:1710-1712

[127] Li D, Zhang X, Yao J, Zeng Y, Simon GP, Wang H. Composite polymer hydrogels as

draw agents in forward osmosis and solar dewatering. Soft Matter. 2011;7:10048-10056

[128] Liu Z, Bai H, Lee J, Sun DD. A low-energy forward osmosis process to produce drinking

water. Energy & Environmental Science. 2011;4:2582-2585

Fouling in Forward Osmosis Membranes: Mechanisms, Control, and Challenges
http://dx.doi.org/10.5772/intechopen.72644

177




