
Packet Tagging System for Enhanced Traffic
Profiling

André Zúquete, Pedro Correia and Hassan Shamalizadeh

IEETA / Univ. of Aveiro Campus Univ. de Santiago
Aveiro, Portugal, 3810–193
Email: andre.zuquete@ua.pt

Abstract—This paper describes the design and implementation
of a system for managing the tagging of traffic, in order to create
detailed personal and applicational profiles. The ultimate goal of
this separation is to facilitate the task of traffic auditing tools,
namely in their struggle against botnets. The architecture was
designed for domestic or enterprise facilities and uses the 802.1X
authentication architecture as the base support infrastructure
for dealing with unequivocal traffic binding to specific entities
(persons or servers). Simultaneously, such binding uses virtual
identities and encryption for preserving the privacy and pro-
tection of traffic originators from network eavesdroppers other
than authorized traffic auditors. The traffic from each known
originator is profiled with some detail, namely it includes a role
tag and an application tag. Role tags are defined by originators
and only partially follow a standard policy. On the contrary,
application tags should follow a standard policy in order to reason
about abnormal scenarios raised when correlating traffic from
several instances of the same application. A first prototype was
developed for Linux, using iptables and FreeRADIUS and
conveying packet tagging information on a new IP option field.

I. INTRODUCTION

The Internet is growing at an unprecedented rate. With its
wide spread use amongst all kinds of people, it has become the
favourite platform for network criminals and hackers. Botnets
are not a new problem [12], but are becoming a frequent and
severe security problem [17]. The risks raised by bots are
numerous, both for the hosts where they get installed, where
they are able to do all sort of illegal actions, but also for
organizations attacked by botnets, which are unable to find
and persecute the actual attackers screened by the botnet.

A. Motivation
No matter the malicious goal of a bot, it needs to interact

with some managing entity, both for getting instructions and
for providing information. This has a direct consequence
on the organization were the bot was installed: it generates
abnormal traffic. Nevertheless, in most cases it may be difficult
to clearly identify that traffic as abnormal, because for doing
that we need first some notion about what normal traffic is.
However, the traffic is changing all the time, mostly because
new applications (or plugins/add-ons) are frequently being in-
stalled in computers or old applications are patched/upgraded.
Therefore, to have a clear notion of what is normal or
abnormal, we need to detect traffic variations on particular
applications, or caused by new applications.

B. Problem
A network auditing tool (e.g. the network intrusion pre-

vention and detection system Snort 1) has limited capacities
for building profiles of normal traffic, in order to be able to
clearly identify abnormal traffic immediately when it appears.

1http://www.snort.org

In particular, it cannot extract from the inspected traffic
some fundamental information that can help to build detailed,
personal profiles. Such profiles are critical for implementing a
divide-to-conquer strategy. The fundamental information that
we are talking about is traffic authorship, i.e., which user,
operating system and application is in fact producing the
traffic.

Without this notion of authorship, it becomes very hard to
build trustworthy traffic profiles. In fact, IP addresses are not
a good source for extracting user authorship, as a person may
be using several machines and may get different IP addresses
each time it establishes a network session. Therefore, we need
to be able to extract from packets a stronger notion of user
authorship other than the source IP address.

Furthermore, packets only refer the originating host, not the
originating application. Transport ports are not helpful, as they
can be used by any application. Once again, this information
can be vital to build profiles, since a particular traffic may be
normal when generated by one application but unusual when
generated by another one. Therefore, we need to be able to
extract from packets some information about the originating
application, in order to improve the accuracy of profiles. With
this information, we are able to build per-application profiles
instead of profiles per operation system.

C. Contribution
The goal of this paper was to design and implement a

solution for facilitating the traffic separation in many different
profiles, in order to facilitate its analysis by auditing tools, such
as Snort. The ultimate goal of such analysis is to find evidences
of the presence of bots. Furthermore, as network users benefit
from this system, because they are the initial victims of bots,
we conceived a cooperation strategy where users help auditing
tools by providing relevant traffic separation hints.

For facilitating such separation, we designed an architecture
for managing virtual identities and for tagging the traffic
subject to inspection with extra information useful for traffic
separation and analysis. The extra information is composed by
a virtual identification of the user using the originating host
and identity of the originating application. This extra infor-
mation can help (authorized) network auditing tools to build
accurate personal profiles, which we believe could help a great
deal on the detection of abnormal traffic and, consequently, on
the detection of bots.

Virtual identities are identifiers composed by two types of
attributes: entity pseudonym and role. The entity pseudonym
is an semantic-free identifier of a person or network server
(host) that can be linked to that person or server by specific
authentication services. The role is the reason behind the
generation of the traffic. For people, the roles may be ordinary
user, network administrator, security inspector, etc. User roles

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional da Universidade de Aveiro

https://core.ac.uk/display/32243439?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Fig. 1. Proposed architecture for enhanced packet tagging.

may be further detailed to encompass business roles. Roles are
also used to separate traffic originated by operating systems
from the traffic created by users’ applications.

These virtual identities allow auditing systems to improve
their accuracy, by providing the means to build more fo-
cused network profiles of traffic originators. By using virtual
identities, auditors can become insensible to normal network
activities that introduce confusion in the mapping of traffic to
specific originators. Examples of such activities are dynamic
allocation of IP addresses and IP translations performed by
NAT boxes.

In this paper, we also studied the feasibility of a real-time
traffic tagging and auditing system, that tags each packet of
traffic at the originating machine running the profile stamping
application. IP packets at present only allow differentiation
with protocol-specific identifiers (source and destination ad-
dresses/ports, protocol number, etc.). Our differentiation mech-
anisms allows us to inspect and identify the packets based on
the application that generated them, the originating entity and
the role it was running.

Additionally, our system enables auditors of the tagged
traffic to authenticate the carried tags. This protection is fun-
damental for preventing profile poisoning attacks, i.e., attacks
with fabricated or spoofed tags with the goal of disturbing
existing profiles.

Finally, our differentiation tags can also help creating im-
proved application-specific traffic profiles. Accurate applica-
tion inference is a prerequisite for many network manage-
ment tasks, such as QoS, accounting and anomaly detection,
etc. Service providers commonly infer application classes by
means of traffic flow measurements provided by routers [7].
With our system, we do not need to resort to such inference.

II. ARCHITECTURE

In this section we describe the architecture of our packet
tagging system. The system encompasses several components,
namely: a Pseudonym Manager, a Client Tagging Applica-
tion and a Packet Validation Helper. Figure 1 shows the
components of our packet tagging system, as well as some
interactions among them.

At some initial stage, possibly when a computer joins
the network, its owner (or user) initiates a session with a
Pseudonym Manager (PM). The goal of this session is to
obtain a pseudonym for a network session. For network session
we mean period of time where the computer will generate
traffic on behalf of its owner/user. Different sessions should
yield different pseudonyms, otherwise it could become trivial
to eavesdroppers to identify each and every person/service.

Each pseudonym is provided together with a session key.
The session key will be used to prove the honesty of packet

tags added by the pseudonym holder. In other words, it will
be used to prove the origin authentication of the packet
tags. Session keys are at start shared only by the PM and
the computer that holds the related pseudonym. This allows
the PM to act as a validator of packet tags for untrusted
third parties. For untrusted third parties we mean network
elements/equipments that may be authorized to perform traffic
analysis tasks while not being trusted enough for getting access
to session keys. For trusted third parties, the PM may convey
session keys, in order to offload that costs of tag validation to
other hosts.

Hosts connected to the network run voluntarily a Client
Tagging Application (CTA). The CTA adds a set of tags
to each outbound packet; inbound traffic is not affected or
analysed. The packet tags include:

• The entity pseudonym (EP); it would be used to aggregate
traffic belonging to a particular entity (person or server),
independently of other network identification paradigms
(MAC addresses, IP addresses, etc.). Therefore, it will
facilitate the task of building personal profiles.

• The identification of the originating application (AppId);
it would be used to aggregate traffic belonging to the
same application, in the same operating system or not.
Therefore it will enable the task of building application’s
profiles.

• The identification of the application’s role (or, in other
words, the role of the user exploring the application,
RoleId); it will be used to aggregate normal interactions
within each role of each person/server. Therefore, it will
promote the subdivision of personal profiles in smaller
profiles, where anomalies are likely to be detected more
easily.

The Packet Validation Helper (PVH) is a library that helps
network auditing tools to understand and validate tagged
packets. The functionality of this helper is to enable auditing
tools to fetch all elements that may be required to properly
conduct its activities.

A. Pseudonym Manager (PM)
As previously referred, the PM is the component that keeps

bindings between people/servers and their entity pseudonyms
(EP). The later are semantic-free numbers, that can only be
resolved to identities of people/servers by the PM. Further-
more, the PM keeps a link between pseudonyms and session
keys. Finally, auditing applications, using the packet validation
helper, interact with the PM to validate packets’ tags or to fetch
session keys.

Considering all these requirements, the most natural way
to deploy a service like the PM is by integrating it with a
AAA (Authentication, Authorization and Accounting) service,
such as RADIUS [14]. AAA services provide the means to
authenticate users (and, indirectly, the hosts they are using),
provide the means to authenticate applications (or the hosts
where they run) and are usually extensible.

We designed our PM to be integrated with a AAA server
(RADIUS) within a 802.1X authentication framework [11],
[4]. 802.1X is a scalable, port-based network access control
architecture, suitable for authenticating the entities running
hosts wishing to attach to a LAN or WLAN.

In the 802.1X jargon, a host wishing to attach to a network
is called a supplicant. During the attach process, the supplicant
and a central Authentication Server (AS), typically a RADIUS
server, authenticate each other using an authentication protocol
encapsulated in EAP (Extensible Authentication Protocol [1]).



One of the outcomes of the authentication protocol is a secret
key, EMSK (Extended Master Session Key), shared only by
the supplicant and the AS.

Our PM was designed as an extension of a AS and using a
key derived from EMSK. Such key derivation follows the rules
stated in [16], which explains how Usage-Specific Root Keys
(USRK) are derived from EMSK. We used the rules of this
standard for computing several values, namely pseudonyms
and keys (hereafter referred as tagging keys):

EP = KDF (EAP Session-ID, “Tagging system”,EMSK)

MTK = KDF (EMSK, “Master tagging key”)
TSK = KDF (MTK, “Tagging secrecy key”)
TIK = KDF (MTK, “Tagging integrity key”)

where EP means Entity Pseudonym, MTK means Master
Tagging Key, TSK means Tagging Secrecy Key, TIK means
Tagging Integrity Key and KDF means key derivation function.
According to [16], EP is a USRKName, i.e., a name for
referring a USRK (in our case, MTK). MTK is our session
key, linked with EP; it is a USRK, since it is the root
key for our tagging system for each session. The TSK is a
key that will be used to provide secrecy to tags, in order
to prevent unauthorized eavesdroppers from collecting useful
information from them. Finally, TIK is a key that will be used
to authenticate tags, allowing authorized auditors to assert their
integrity.

The supplicant does the same computations than the PM,
reaching the same values for EP and MTK. Thereafter, it
will only use EP for tagging outbound traffic and MTK for
computing TSK and TIK, which will be used to enforce
confidentiality and origin authenticity to traffic tags.

The PM keeps a permanent store with mappings between an
EP and the related MTK. It also maintains a mapping between
a EP and a descriptor of the entity (person or server). This
last mapping is crucial for building entity-related profiles from
tagged traffic. Furthermore, for each descriptor the PM must
keep a persistent, unique number (ID) for allowing auditing
tools to aggregate traffic originated by different EPs without
bothering with the details of their real-world identification.

B. Client Tagging Application (CTA)
The CTA is a component that theoretically stays between

the host and the network. It is responsible for tagging all
outbound traffic with the correct values expected by auditing
tools. Note that the CTA does not know if such tools exist;
they are transparent for it. Therefore, the CTA simply assumes
that they may exist, and as such does its job all the time.

For tagging traffic, the CTA must know the current EP and
its MTK. This data is provided by the application that manages
the 802.1X supplicant after creating each EAP session. Fur-
thermore, the CTA needs to know the originating application
(for fetching its AppId) and the RoleId of the role played by
the entity that launched it.

1) Role management and inference: The management of
roles is not straightforward, as it raises a new requirement for
users that they are not used to. Namely, users have to manage
some sort of binding between the applications that run in their
machine and a role.

We decided to use the following policy for simplifying the
role management workload on Linux hosts with or without
graphical interface. An application exploring I/O devices capa-
ble of interacting visually with the user (consoles, X terminals,
graphical interfaces) is considered a user application. Appli-
cations other than user applications are considered operating
system applications, with the operating system (OS) role.

Fig. 2. Layout of the IP option used to convey our profiling tags

User applications running with a root (0) real UID are
considered to be on a self-administration role. Note that
applications running with elevated privileges due to set-UID
mechanisms are not included in this role. User applications
with a graphical interface have a role that is given by the
virtual desktop where the interface is shown. Non-graphical
user applications producing output to a Linux console have a
role extracted from an environment variable.

This policy for obtaining the role of an application makes
it easier for users to manage roles. In fact, the only workload
they have is to (i) create a set of virtual desktops equal to the
number of roles they play, (ii) give to each virtual desktop
a different, arbitrary role name and (iii) run on each virtual
desktop only the applications needed for its role.

The user (entity) has the ability to create as many virtual
desktops as he wants in order to clarify the roles he plays.
Furthermore, role names are arbitrarily chose by users, there
is not a universal policy for choosing names.

On the other hand, users should not go berserk with role
names, because that ultimately would introduce entropy in
auditing systems. Note that users only gain by collaborating
with the tagging system, as it allows auditing tools to de-
tect malicious code running on their machines, namely bots.
Therefore, users should maintain a stable set of names for their
roles and commit to them faithfully, otherwise they introduce
entropy in role-based profiles.

2) Packet tagging: For adding our tags to packets we had
to chose a standard way, in order to enable tagged packets
to be accepted by all systems. Consequently, we decided to
encapsulate tags within a single IP option.

The new IP option will contain the following fields:
• EP: 6 byte value, computed as described in Section II-A.
• RoleId: 8 byte value. Its 2 high order bits have these

values: 00: OS; 01: self-administration; 10: user-defined;
11: reserved. The other 62 bits are filled with bits from
an hash of operating system identity (e.g. as given by
the Linux “uname -sr command”), for the OS role
and for the self-administration role, or the user-provided
role name, extracted from the application’s execution
environment.

• AppId: 8 byte value.
• Authenticator: 8 byte value, part of the result of the

encryption with TIK of the digest of tags with some parts
of the IP packet.

For privacy sake, the role and application fields are en-
crypted together with TSK, in order to hide information about
operating systems and applications used by the originator of
the packet. This way, we prevent this useful information to
be reveled to others than the authorized network auditing
applications.

The computation of the authenticator poses some concerns.
On one hand, we would like to bind and authenticator to
the entire packet contents, in order to prevent authenticators



from being easily copied to other packets. On the other hand,
we need to take care with existing network equipments that
may change the packet contents transparently for its originator
(routers, NAT boxes, etc.). We decided the use the following
original packet data for computing the authenticator:

• Destination IP address.
• Modified IP payload. The modification consists in the

zeroing of all fields that are likely to be modified by
network elements, namely NAT boxes, such as transport
source ports (UDP or TCP ports), GRE keys [6], etc.

The total length of an IP option is two bytes more than its
optional data. This means that that, in our case, the total length
of the tagging option is 2+6+8+8+8 = 32 bytes (see Fig. 2).
This value is intentionally a multiple of 4 bytes, because IP
headers must have a length multiple of 32-bit words. It also
fits in most IP headers, that have a minimum size of 20 bytes
and can grow up to 60 bytes.

C. Packet Validation Helper (PVH)
This component is to be used by authorized auditing tools

that need to interpret the IP options field previously described.
For doing so, the PVH provides the following functionalities.

First, it allows authorized tools to establish a secure (au-
thenticated) session with an AS (e.g. a RADIUS server). For
this goal, it uses the same methods that are normally used by
RADIUS clients (Network Access Devices, Network Access
Servers, etc.): request/response authentication by means of a
secret key, shared with the AS.

Second, the PVH enables an authorized auditor to fetch
the key MTK of a given EP from the AS. The purpose of
this functionality is to enable the auditor to perform packet
validations and inspections using only local resources, i.e.
without requiring further help of the AS for that EP.

Third, the PVH enables an authorized auditor to get the
decrypted values of the role and application tags given an EP.

Finally, the PVH enables anyone to validate a packet. This
is useful for implementing network filters intended to drop
invalid packets. The validations are performed both by the
auditor and the AS. First, the auditor sends the EP and the
packet digest to the AS, which encrypts the later with TIK
and returns the relevant part of the result. Then the auditor
compares the packet authenticator with the value received from
the AS; if there is a mismatch, then the packet authenticator
is not valid and the packet is eligible for dropping.

It is worth noting that the authenticator digest should be
computed over the encrypted values of the role and application
tags, instead of their original values. Otherwise, it would be
impossible to validate packets without decrypting these values,
which would only create a useless computational overhead
without any relevant security gain.

III. IMPLEMENTATION

The CTA was implemented together by a modified suppli-
cant application (wpasupplicant) and a new application,
the packet marker. The former was written in C, the latter
was written in Python. The packet marker is able to run
on any Linux machine with a Python interpreter and Gnome
with Metacity support – a commonly used window manager
that provides the necessary libraries, such as libwnck, to
get access to details of the graphical interface of running
applications.

The PM was implemented as a RADIUS extension. We used
the FreeRADIUS distribution and did some modification on

Fig. 3. CTA architecture, using a modified version of wpasupplicant, a
new packer marker application and the iptables queueing facility.

the source code to include the PM functionality as an extension
to the implemented EAP functionality.

The PVH was implemented as a Linux library, written in
C++. It allows a network auditor to interact with the PM
using new EAP messages encapsulated in RADIUS messages.
For handling RADIUS messages we used the ACE RADIUS
library, a portable, open-source C++ implementation of the
RADIUS protocol.

A. CTA implementation details

The CTA architecture is presented in Fig. 3. The CTA packet
marker intercepts all outbound traffic using the iptables
queueing facility. To manipulate and dispatch queued packet,
the application uses the Scapy Python library [3].

The packet marker gets the values of EP and MTK (check
Section II-A) from the local wpasupplicant. The later was
modified to upload these values to the marker through a UNIX
socket. Each time the wpasupplicant negotiates a new
EAP session, new pseudonyms and master keys are uploaded
into the packet marker. Immediately after their upload, the
packet marker computes the derived keys TSK and TIK.

The marker needs to infer a RoleId and an AppId only from
the packet data. The base strategy for RoleId inference was
already presented in Section II-B1; here we explain how we
do it starting from each packet contents:

1) From the source IP address and source transport ports,
and using the proc file system, the marker maps a
packet to an origination process identifier (PID). Cur-
rently, we only handle UDP and TCP packets; all other
packets are not marked.

2) From the originating PID, the marker checks if it is using
directly or indirectly a graphical user interface. This is
done by querying the graphical window manager. If it
has, then it is a user process and, by default, its role is
going to be extract from the desktop name where the
interface is.

3) From the proc file system, the marker checks if the
process is using a console (tty device). If so, then it is
also a user process and, by default, its role is going to be
extracted from the process environment variables (again
from proc file system).

4) From the proc file system, the marker checks if the user
process has a real UID of 0. If so, the role is overruled to
Self-Administration; otherwise, we use the role obtained
with the previous rules.

5) Otherwise, the role is Operating System.
The AppId is currently extracted from the exe file of the

proc file system tree of a process (“/proc/[PID]/exe”).
Since AppId is limited to 8 bytes, we use the process’ file
name, either truncated to 8 bytes or null padded.

In the rest of this section we will detail some aspects of the
role inference process that was briefly describe above.



B. Packet to process PID mapping
The packet marker keeps a table of known mappings

between source transport ports and PIDs. Each time a new
source port appears, the marker iterates over proc file system,
namely in the per-process subdirectories and net/tcp and
net/udp directories, to produce a new table of mappings.

Since different applications may use the same transport port
over time, between different updates of the table, table entries
are validated before being used. Namely, we verify if the
process still exists and is still using the target transport port.
The detection of an invalid mapping triggers a complete update
of all mappings.

1) Desktop role extraction: The names of desktop
workspaces can be configured in runtime using Metacity GUI
for desktop management. As an example, the workspace 1
from Gnome window manager can be called “Fun”, Workspace
2 “Work”, and so on, without any limitations on the number
of roles that a user can/want to have.

To extract the workspace where an application interface
lies, the marker application used the libwnck library. This
library allows the marker to list workspaces, to iterate over
each workspace and find the PID of each application that has
an interface object on the workspace. For our purpose, them
marker needs to check if a given PID has an interface object
of type WnckWindow.

In fact, the marker does not interact with the windows
manager each time it needs to mark a packet, because that
would be too costly. Instead, the marker keeps an updated list
of all PIDs that currently have a WnckWindow object. To keep
the list updated, the marker catches relevant window manager
events, namely window opening and closing events.

2) Detection of console applications: Console applications
running on Linux console use devices /dev/tty devices
for input or output. The processes used by these applications
are detected when the proc file system is iterated looking
for UDP or TCP sockets and their PID is recorded in a
separate table, together with the role extracted from the ROLE
environment variable (using the proc file system). If this
variable is not defined, a warning message is written in the
/dev/tty console of the process.

3) Packet marking: Once identified the RoleId and AppId
of a packet, the packet marker creates the new option that
will carry them in the packet. We used the free option number
88H (Copied Flag=1, Option Class=0 and used copied into
RoleId. Option Number=8). The role string is first hashed
with MD5 [15] and the low-order 62 bits are copied into
the low-order 62 bits of RoleId. Then, RoleId and AppId are
encrypted with TSK, using AES-128 [9], and the cleartext
authenticator is computed with MD5 over the destination IP
address, the new IP option (excluding the authenticator) and
the IP payload (excluding the source transport ports); The
authenticator is then encrypted with TIK and AES-128 and
the least significative 8 bytes are inserted in the IP option. At
the end, the IP checksum is recomputed; transport checksums
are maintained because they are not affected by IP options.

Figure 4 shows the IP options field of a marked DNS (UDP)
packet originated by a Linux host running our CTA. Just for
demonstration, we did not encrypt the RoleId and AppId fields,
otherwise the entire option value would be incomprehensible.
Furthermore, we did not hash the role name to generate the
low 62 bits of RoleId; instead, we filled its 7 low-order
bytes with the first characters of the role. In the displayed
example, we can see that the RoleId is 0x80 (user-defined
role) concatenated with “Work” and the AppId is “firefox-”,

Fig. 4. DNS packet marked by our CTA; the IP option with the added
tags is highlighted. The RoleId (80H concatenated with “Work”) and AppId
(“firefox-”) fields are in cleartext to facilitate their visualization. Furthermore,
the RoleId is not an hash of some value but a direct copy of the 7 first
characters of the role name.

the 8-byte truncated result of “firefox-bin”.

C. PVH implementation details
The interaction between PVH and PM uses RADIUS Access

Request/Accept/Reject messages, authenticated using a shared
secret key. Access Request messages contain an EAP-Message
attribute, encoding the called function and its parameters, and
a Message Authenticator attribute. Access Accept/Reject mes-
sages contain an EAP-Message attribute, encoding the results,
and a Message Authenticator attribute. These interactions fol-
low the guidelines for RADIUS EAP extensions [13], [2]. The
EAP message attribute on a RADIUS Access Request message
will trigger the activity of the RADIUS EAP component,
which will thereafter be responsible for handling the request
and produce the results.

Our EAP message attribute is a standard EAP message [1]
using a free EAP type (7, the first non assigned type). Since
this is a new type, we were free to chose the appropriate
way to pack the parameters and results conveyed in EAP
request/response messages (in the Type-Data field). In the
request, the first Type-Value byte specifies the operation and,
immediately after, we have the parameters or results.

D. PM implementation details
We implemented PM as an extension of the FreeRADIUS

EAP functionality. Each EAP method should generate EMSK
on its own particular way, but most of them do not do it
currently. Nevertheless, the EAP methods that use TLS [5],
such as EAP TLS [18] and PEAP, already produce internally
an EAP-EMSK value-pair (pair of name and value) and store
in it the list of attributes that are to be used to compose a
RADIUS reply.

To provide the required information to our module, we
modified the function that computes EMSK for all TLS-related
EAP methods, in order to compute also the EAP session ID
and store it internally in a value-pair. Then, we modified the
generic EAP module to compute EP and MTK from EMSK
and EAP Session ID and upload them to our PM. This action
takes place immediately before sending an Access-Accept
RADIUS reply to the supplicant To interact with the PVH,
we added extra code to the parser of EAP types within EAP
messages, for calling the appropriate functions of our module.



IV. SECURITY EVALUATION

A critical security concern of traffic tagging is privacy
preservation from unauthorized eavesdroppers. Since EP is a
semantic-free value that changes on each EAP session, per-
sonal information gathering from an EP is limited and mainly
based on data collected from the execution of other protocols
that are usually explored (802.1X, DHCP, etc.). The RoleId
and AppId, on the other hand, are transmitted encrypted,
thus not yielding any information for the eavesdropper. Even
considering the fact that an eavesdropper may aggregate data-
grams with the same encrypted values, we do not consider
that to be a dangerous information leak: it only reveals that
a particular (possibly unknown) application, running under a
particular (unknown) role, is responsible for some network
activity. Concluding, the tagging system preserves the privacy
of tagged traffic as long as the encryption keys TSK are known
only by the TM and authorized auditors.

MTK keys are at start locally computed and known by the
TM and the CTA of each supplicant, but may be communi-
cated to network auditors on demand. Since the traffic between
the TM and a network auditor is not currently encrypted,
just authenticated, then an attacker capable of eavesdropping
the traffic between an auditor and the TM may collect MTK
keys. It is up to the network administrator to ensure that such
communication occurs on a protected network.

The authentication used for our tags is based on encrypted,
partial MD5 digests, computed over the tags, the destination
IP address and the IP payload. MD5 has known collision
problems, and furthermore we use only part of its output.
Therefore, we believe that a powerful and determined attacker
may use an authenticated set of tags from one packet to mark
another different packet by exploring digest collisions. On
the other hand, we also think that the success rate is very
low to make this exploit worthwhile. Furthermore, layer-two
segregation strategies, such as basic switching and VLANs,
may prevent attackers, namely bots, from collecting tags from
other hosts in order to use them for their own fabricated traffic.

The EP is only 6-byte long, which may yield collisions.
However, since collisions among EPs do not imply collisions
among the related MTKs, a simple cooperation between the
PM and network auditors may solve this issue: the PM sends,
upon request, all the IDs and MTKs of all the current entities
using the same EP. Using the packet authenticator, and the
MTK for each ID, the network auditor can easily discriminate
the identity of the packet sender.

V. RELATED WORK

To the best of out knowledge, we do not know of any
other approach for tagging traffic with our source-related
information – identity of originator, role of originator and
originating application.

VLAN tagging capabilities introduced by 802.1Q [10] en-
able network administrators to implement source segregation
strategies based on frame tags, managed by access switches.
In theory, we could use VLAN tags to add our EP to layer-two
frames, but VLAN tags are naturally lost after passing through
a gateway or router. And, in any case, switches have no means
to provide the other tags we use, RoleId and AppId.

The exploitation of the 802.1X architecture and the EMSK-
rooted key hierarchy for adding security to a local network
is not a novelty, as it was previously used (cf. [19], [8]).
However, it was not used before as the basis for trustworthy
packet tagging, but instead for implementing LAN-wide secure
interactions and fast 802.1X reauthentications.

VI. CONCLUSION

We designed and implemented a packet tagging system for
enabling detailed traffic profiling based on source origin infor-
mation. That information includes a pseudonym of an entity
(person or server), the role it is playing and the application
that produced the traffic. The ultimate goal of such profiling
is the detection of abnormal activities on hosts, namely the
presence of bots on them.

The system uses the 802.1X architecture for producing and
distributing cryptographic credentials to all the stakeholders,
namely network clients and network auditors. Traffic tags are
voluntarily added by clients, which have all the interest to
collaborate with network auditors to protect themselves. The
added tags do not compromise the privacy of clients, as them
cannot be understood by unauthorized eavesdroppers. Finally,
the packing tagging mechanism with an IP option respects the
IP standard, therefore tagged packets should not be dropped
by network scrubbers or target hosts.

For immediate future work we plan do improve the CTA
component, namely to improve its efficiency and to add a more
rich identification policy for source applications. We also plan
to test the system on field experiments, preferably using known
bots, to observe the reaction of users in the usage of roles and
to evaluate the usefulness of detailed profile building.

REFERENCES

[1] B. Aboba, L. Blunk, J. Vollbrecht, J. Carlson, and H. Levkowetz, “Exten-
sible Authentication Protocol (EAP),” RFC 3748 (Proposed Standard),
Jun. 2004.

[2] B. Aboba and P. Calhoun, “RADIUS (Remote Authentication Dial In
User Service) Support For Extensible Authentication Protocol (EAP),”
RFC 3579 (Informational), Sep. 2003.

[3] B. Burns, J. Granick, S. Manzuik, P. Guersch, D. Killion, N. Beauchesne,
E. Moret, J. Sobrier, M. Lynn, E. Markham, C. Iezzoni, and P. Biondi,
Security Power Tools. O’Reilly Media, Inc., Aug. 2007.

[4] P. Congdon, B. Aboba, A. Smith, G. Zorn, and J. Roese, “IEEE
802.1X Remote Authentication Dial In User Service (RADIUS) Usage
Guidelines,” RFC 3580 (Informational), Sep. 2003.

[5] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol
Version 1.2,” RFC 5246 (Proposed Standard), Aug. 2008.

[6] D. Farinacci, T. Li, S. Hanks, D. Meyer, and P. Traina, “Generic Routing
Encapsulation (GRE),” RFC 2784 (Proposed Standard), Mar. 2000.

[7] Y. Jin, N. Duffield, P. Haffner, S. Sen, and Z.-L. Zhang, “Inferring
applications at the network layer using collective traffic statistics,”
SIGMETRICS Perform. Eval. Rev., vol. 38, pp. 351–352, June 2010.

[8] R. Marques, E. Araújo, and A. Zúquete, “Fast 802.11 handovers
with 802.1x reauthentications,” Security and Communication Networks,
vol. 4, no. 3, pp. 267–283, 2011.

[9] N. I. of Standards and T. (NIST), “ADVANCED ENCRYPTION STAN-
DARD (AES),” FIPS PUB 197, Nov. 2006.

[10] L. S. C. of the IEEE Computer Society, “IEEE Standard for Local and
Metropolitan Area Networks: Virtual Bridged Local Area Networks,”
IEEE Std 802.1Q-2005, May 2006.

[11] ——, “IEEE Standard for Local and Metropolitan Area Networks: Port-
Based Network Access Control,” IEEE Std 802.1X-2010, Feb. 2010.

[12] R. Puri, “Bots & Botnet: An Overview,” SANS Institute InfoSec Reading
Room, Aug. 2003.

[13] C. Rigney, W. Willats, and P. Calhoun, “RADIUS Extensions,” RFC
2869 (Informational), Jun. 2000.

[14] C. Rigney, S. Willens, A. Rubens, and W. Simpson, “Remote Authen-
tication Dial In User Service (RADIUS),” RFC 2865 (Draft Standard),
Jun. 2000.

[15] R. Rivest, “The MD5 Message-Digest Algorithm,” RFC 1321 (Informa-
tional), Apr. 1992.

[16] J. Salowey, L. Dondeti, V. Narayanan, and M. Nakhjiri, “Specification
for the Derivation of Root Keys from an Extended Master Session Key
(EMSK),” RFC 5295 (Proposed Standard), Aug. 2008.

[17] C. Schiller, J. Binkley, G. Evron, C. Willems, T. Bradley, D. Harley, and
M. Cross, Botnets: The Killer Web App. Syngress, Feb. 2007, iSBN-10:
1597491357, ISBN-13: 978-1597491358.

[18] D. Simon, B. Aboba, and R. Hurst, “The EAP-TLS Authentication
Protocol,” RFC 5216 (Proposed Standard), Mar. 2008.

[19] A. Zúquete, “Protection of LAN-wide, P2P interactions: a holistic
approach,” Int. J. Commun. Netw. Distrib. Syst., vol. 3, pp. 408–426,
Aug. 2009.


