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Abstract—This article presents an architecture for managing
the identification of applications responsible for generating traffic
in a network. The identification is to be explored by network
auditing systems, which cooperate with surveyed systems to
get the relevant information about the source applications. The
ultimate goal of the system is to provide network auditors, such
as NIDS, enough information about the exact sources of network
traffic. This way, auditors are able to detect unauthorized
applications or to detect anomalies in the traffic created by known
applications, possibly as a consequence of the action of some
malware in the source application or host.

I. INTRODUCTION

Network intrusion detection systems (NIDS) are valuable
tools for detecting anomalies in the traffic generated by a
network of hosts under surveillance. However, NIDS are not
capable of knowing, solely from the traffic they inspect, the
application that was responsible for sending it. This informa-
tion could enable a NIDS to detect abnormal applications’
behaviour, in the exact same way as host-based intrusion
detection systems (HIDS) or personal firewall systems do.
Furthermore, it could enable NIDS to enforce authorization
policies regarding applications running in the surveyed hosts.

In a previous work, we have proposed an architecture for
tagging traffic with source-related tags [1]. This tags are
transmitted in a way that complies with existing IP standards
— encapsulated in a new IP header option field. Four different
tags are included in this option: Entity Pseudonym (EP),
Role Identifier (Roleld), Application Identifier (Appld) and
Authenticator (see Fig. 1).

EP is a 6-byte pseudonym of a person or a service that
is exploring the source host. Pseudonyms are temporary; the
same entity may have different pseudonyms on the same
machine along the time. A specific network service, the
Pseudonym Manager (PM), maps EP’s to detailed entity-
related information. This information is provided only to
authenticated and authorized network auditors, such as autho-
rized NIDS. Roleld is a 8-byte identifier of the role played
by the source entity when running the source application.
This field helps to separate the traffic generated by an entity
into many different entity-defined roles. The ultimate goal of
this field is to facilitate the detection of traffic anomalies
by enabling the implementation of a previous, role-based
traffic separation strategy. Appld is a 8-byte identifier of the
application responsible for the packet. Finally, Authenticator
is a cryptographic packet origin authenticator.
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Op. Type [ Op. Len |
Entity Pseudonym (EP, 6 bytes)
Role Identifier (Roleld, 8 bytes)
(encrypted with TSK)
Application Identifier (Appld, 8 bytes)
(encrypted with TSK)
Authenticator (8 bytes)

Fig. 1. Structure of the IP option containing the source tags
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Fig. 2. Packet tagging architecture proposed in [1], where a traffic tagging

application on a surveyed host shares a temporary pseudonym (EP) and
a related master tagging key (MTK) with a Pseudonym Manager, and an
authorized auditing application uses PM for getting the MTK given an EP

For privacy sake, the tags Roleld and Appld are encrypted
with a tag secrecy key (TSK). The PM maintains a master
tagging key (MTK) for each current EP, from which TSK
is computed. The PM distributes MTK upon request to au-
thorized network auditors, which enables them to compute
TSK and observe the cleartext value of Roleld and Appld
of captured packets (see Fig. 2).

The architecture described in Fig. 2 assumes a cooperation
between surveyed network hosts and network auditors. The
absence of this cooperation, or the provisioning of wrong
information by the surveyed hosts, will eventually trigger the
detection of a generic host anomaly. On the other hand, the
provisioning of correct information regarding compromised
applications, or unwanted applications, will as well eventually
trigger the detection of an anomaly relatively to application-
specific network profiles (e.g. abnormal traffic generated by
an application infected by a virus) or an anomaly relatively
to the set of expected applications running in the surveyed
host. Therefore, ultimately we should be able to detect the


https://core.ac.uk/display/32243435?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

activity of malicious or otherwise unauthorized code running
in surveyed hosts by using produced traffic and its source as
evidence of the presence of that code.

A. Problem

The space available for options within IP header is limited,
and the space occupied by the tag-carrying IP option is
already close to the limit. Therefore, tags are very short
for including detailed information, namely about the source
application. This means that Appld can only be an index
of more detailed information about the source application,
which should be stored somewhere and provided to authorized
auditing applications when needed. This issue was not solved
in the original paper describing the packet tagging strategy.

B. Contribution

This article presents an architecture for managing Appld
tags and for establishing bounds between Appld values and
detailed information about applications. The architecture is to-
tally distributed, in the sense that there is no central repository
for storing the information related with the identification of
applications. Furthermore, the information about applications
is produced and stored on a needed basis.

Each surveyed host manages a local set of bindings between
local applications and their local Appld. Therefore, hosts con-
forming with our tagging system do not need to interact with
any central system for managing Appld’s. Network auditors
that analyse Appld tags do not also use any central information
registry; all their information is mainly collected from captured
network packets and from the respective source hosts.

For a proof of concept, we implemented a Linux prototype
of the components of the architecture. Namely, we developed
an application for binding applications to Appld tags and an
application for capturing packets, collect information about
their source application from the Appld, and build a registry
with links between captured packets and detailed information
about their source applications. Performance evaluations of the
most frequent and time-critical operation, the fetching of an
Appld of an enrolled application in the traffic source host,
show that the latency penalty imposed to the packet tagging
procedure is acceptable, but has room for improvements.

II. ARCHITECTURE

The architecture for managing information about applica-
tions responsible for producing network traffic is formed by
two main components (see Fig. 3): a registry local to the traffic
source (Source Application Registry, SAR), and a registry
local to each auditing tool (Auditing Register, AR).

A. Source Application Registry (SAR)

The SAR is the component that keeps, on each host (oper-
ating system), a mapping between applications and Appld’s.
This mapping is created on a needed basis, not in advance.

Each time an application sends a packet to the network, the
packet must be tagged with an Appld, and the packet tagging
application gets it from the SAR. The SAR keeps a database of
Appld’s previously assigned to local applications and checks
if the current source application is already registered or not.
If yes, then it already has an Appld, which is provided to
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Fig. 3.  Evolution of the tagging architecture of Fig 2 with the Source

Application Registry (SAR) and the Auditing Register (AR) components

the tagging application. If not, then the SAR allocates a new
Appld and enrols the application in the database. Therefore,
the database is not build in advance with records of all existing
applications, but instead only when needed.

The SAR database maintains, for each Appld, a record with
the following fields:

o The name of the package containing the application;

« The version of the package;

o The path name of the application’s binary;

o The last modification time of the application’s binary;

o A digest (e.g. with SHA-1 [2]) of the application’s binary;

The operation of SAR to find an application’s Appld,
possibly enrolling the application in the database, has the
following steps:

1) Given a process identifier (PID), provided by the packet
tagging application, the SAR begins by finding the path
to the binary of the related process and reads its last
modification time.

2) Queries its database, searching for an entry with the path
and the observed last modification time.

3) If there is a record with these fields in the database, its
Appld is returned.

4) Otherwise, SAR will search for the application’s pack-
age name and version, computes the binary digest,
allocates a new Appld and creates a new database record
for the application.

This Appld fetching process is very efficient for getting the
Appld of registered applications, being naturally slower for
applications when they are absent and are first registered. The
modification time of the binary is a simple but yet powerful
enough mechanism for detecting the upgrade of applications,
since usually such upgrade implies a change in the binary
modification time.

1) Modification time vs. content digest: An alternative
approach for detecting modifications on applications could be
to use binaries’ digests. This is the approach that is usually
followed by personal firewalls, for implementing application-
based authorization policies, or by HIDS, for detecting ab-
normal modifications in the application’s code (e.g. in Trip-
wire [3]). But using digests is much more expensive and the
possible advantage is not interesting for us, as explained below.



As a matter of fact, for malware it is easier to deceive SAR
when this uses modification time of binaries instead of the
digest of binaries’ contents. However, we are not interested
in detecting malware using evidences of modifications in
binaries, but rather to detect malware using evidences of mod-
ifications in the traffic generated by applications. Therefore,
if an application’s binary is tampered by malware, and if
that modification is hidden from SAR, the tampering will
ultimately, and hopefully, be detected by network auditors that
are able to assert the application’s normal network behavior.

The digest kept in each application record is maintained
for enabling network auditors to detect applications that have
the same name, path, and belong to the same exact package,
but nevertheless are effectively different at the binary level.
Note that this may simply happen because the binaries were
build for different hardware architectures, or compiled differ-
ently. But it can also be used by network auditors to detect
unexpected modifications of the applications’ binaries, which
may be an evidence of modifications introduced by malware.
Therefore, SAR checks the digests on a regular basis, and
upon update creates a new record for the application, with a
new Appld, and removes the previous record.

2) Appld allocation and database identification: The Ap-
pld is allocated locally using a simple counter, starting in 1,
and growing consecutively up to 254 — 1, the maximum value
supported by the packet tagging mechanism. This range for
Appld is high enough for preventing its exhaustion forever.

Different hosts will allocate the same Appld for different
applications. This is not a problem for network auditors as
long as they are able to identify the source database. In other
words, we can promote Appld to unique identifiers just by
concatenating them to a unique database identifier.

Consequently, each database managed by a SAR instance
has a unique identifier (DbId). A Dbld is a 128-bit value
generated randomly each time a database is created by a
SAR instance. A 128-bit space is high enough for preventing
involuntary Dbld collisions. Nevertheless, the unlikely occur-
rence of a collision between Dbld’s can be solved in a very
simply way just by removing both and creating new ones.
Since the whole auditing system using Appld’s relies on a
cooperation between network auditors and surveyed hosts, this
simultaneous reset of Dbld’s can be triggered using a direct
contact with the persons responsible by the involved hosts.

3) Remote querying: The SAR has a server interface that
allows network auditors to query information about local
applications, given their Appld. The service interface has
only one function, which receives an Appld and an access
authorization credential and returns the Dbld and all the data
of the record containing that Appld.

The authorization credential prevents unauthorized clients
from getting information about the applications registered in
SAR. This protection is mainly included for enforcing a need-
to-know policy, i.e., SAR servers only provide information to
clients that can make good use of it. Access credentials are
composed by a fresh, random response encryption key (REK)
encrypted with an access key (AK). This AK is a key derived
from MTK following the same approach taken in [1]:

AK = KDF (MTK, “Access key”) (1)

where KDF means key derivation function, defined in [4] as
an iterative construction based on a pseudo-random function.

MTK must be known by an authorized network auditor,
otherwise it cannot have access to TSK and to the cleartext
Appld’s from captured packets (see Figs. 1 and 2). Therefore,
from the SAR’s point of view, anyone that also knows MTK
would naturally be an authorized network auditor.

The SAR server decrypts the received access credential with
AK, uses the result as REK, and encrypts the whole response
with it. This way, only legitimate clients will have access to
the cleartext of the response.

C — SAR : {REK, Appld} o
SAR — C : {Dbld, Appld, App. information}gpg

Fig. 4. Query/response dialog between the SAR server and a client C

The SAR client uses also REK for authenticating the
response, since it must contain the Appld supplied in the
request. Together, the Appld and the REK act as challenges,
which the SAR must use properly, with the correct AK, to
produce an acceptable response.

B. Auditing Register (AR)

The AR is an application that captures network packets and
links them to detailed information about the source application.
In other words, it resolves the Appld field in each captured
packet to detailed application information provided by a SAR
server.

The AR maintains some volatile information in caches to
speed up its operation. These caches are used to resolve sets
of identifiers to other identifiers, as presented in Table 1.

TABLE I
IDENTIFIER MAPPINGS CACHED BY AR TO INCREASE ITS PERFORMANCE

EP — TSK | Mapping between a packet EP and the key used

to encrypt the packet’s Roleld and Appld.

EP, Src IP — Dbld | Mapping between a packet EP and source IP

address to a DbId of its SAR database

The operation of AR is the following:

1) Captures a packet and looks for the IP option with the
source tags.

2) Resolves EP to TSK, using a local cache (see Table I)
or the PM (to get an MTK and, from it, TSK).

3) Decrypt with TSK the IP option field that contains
Appld, retrieving this last identifier.

4) Resolves the EP and the source IP address to a Dbld
using the local cache (see Table I).

5) If this last resolution succeeds, queries a local database
for and entry indexed by Dbld and Appld.

6) If steps 4 or 5 do not succeed, queries the SAR service
on the packet’s source host for information regarding its
Dbld and the packet’s Appld.

7) Updates the mappings cache with the information about
Dbld and updates the local database containing the
information about applications registered in all known
SAR databases.



The AR only uses remote communications, with the PM or
with a SAR service, when strictly required. After some time of
operation, and after processing enough packets from surveyed
hosts, an ATS database becomes sufficiently populated to
reduce contacts with remote SAR services to very sporadic
situations (new applications installed, upgrade of existing ap-
plications, etc.). The remote interaction with the PM depends
mainly on the frequency that the hosts (or the users using
them) get a new EP.

III. IMPLEMENTATION

We implemented our application identification system as a
complement of the system implemented in [1]. It was imple-
mented im Linux and we used SQLite to manage databases.
The SAR application was implemented in C, while the AR
application was implemented in Java.

Our AR was implemented with and extra feature: a graphic
interface for presenting the captured packets and the associated
source application information. This interface allows a network
operator to monitor in real time the applications that are
responsible for the current traffic.

Our SAR implementation uses the /proc file system to find
the path to the binary of an application, given its PID (in file
/proc/ [PID]/exe). For finding the package of a binary, it
uses .1ist files stored in /var/1lib/dpkg/info, which
files and their contents need to be searched sequentially
until finding a match. Once the package name is known,
the application finds the package version by searching in the
file /var/lib/dpkg/available, where is kept detailed
information about all packages. The version is extracted from
this file as a text string (e.g. for Ubuntu 10 the current Firefox
3 version is 3.6.24+build2+nobinonly-Oubuntu0.10.04.1).

The SAR implementation is in fact formed by two compo-
nents: (i) a library component, that provides an Appld given a
process PID and updates the database of Appld’s if required,
and (ii) a server process, that provides a Dbld and detailed
application information given an Appld. The library is used
by the application that tags outbound packets. The SAR server
listens for UDP packets from remote clients, namely AR
instances. Both components access the same SQLite database.
The Dbld of the database is stored in itself.

The UDP messages exchanged between a SAR server and an
AR are encrypted with AES-128 [5]. For computing a 128-bit
AK out of MTK, we used equation 1 and the HMAC-SHA-
256 [6], [2] to implement KDF, as suggested in [4]. The result
of KDF, a 256-bit digest, is transformed to a 128-bit AES key
by folding, with XOR, the high-order 128 bits with the low-
order 128-bits.

SAR database has two tables: PKG_TBL stores the name
and version of a package; APP_TBL stores the path name,
the modification time, the content digest and the index of the
package entry in PKG_TBL. The Appld is not stored, it is the
index of an entry in APP_TBL. Entries in APP_TBL are in
fact never removed when no longer needed, their content is
simply filled with zeros.

The consequence of this non-removal policy is that at certain
time in the future, after many upgrades and adding/removing
many applications, the database can be filled with holes or
with useless allocated entries. In this case, a host can decide

to compact the database, which implies changing its Dbld to
a new value and discard any EP currently in use. For network
auditors, after this operation a host will be regarded as a new
machine, with a new database instance. A problem remains,
though, which is the garbage collection of useless information
in network auditors regarding databases that “disappeared”
upon being compacted (due to its renumeration). The handling
of this issue is scheduled for future work.

Our current AR implementation does not store persistently
information about captured packets. Information about them
is partially stored in volatile memory, just for being presented
by the graphic interface. The information stored, for each
packet, is composed only by the source and destination IP
address, transport protocol, source and destination transport
ports, Appld and Dbld. The AR uses a single database table
to store information returned by SAR servers; that information
is indexed by the concatenation Dbld with Appld.

IV. SECURITY EVALUATION

The proposed system maintains the privacy guaranties of
the original architecture. The remote dialogs between network
auditors and surveyed hosts does not reveal any useful in-
formation to eavesdroppers, namely the Appld and related
information, as they do not know the access key AK nor the
response encryption key REK. Past Appld resolution requests
can be replayed, but with no other benefit for anyone than
performing a denial of service (DoS) attack, because the
answer will always be the same.

On the other hand, no one can have access to information
maintained by a SAR without knowing the current MTK of
its host. Since this key changes each time the host gets bound
to a new EP, network auditors must regularly prove their
legitimacy, namely each time an host’s EP changes. However,
attackers can send bogus requests to a SAR, which generate
bogus replies (i.e. replies about an Appld unknown to the
attacker and encrypted with an REK also unknown to the
attacker). Therefore, a SAR is open to DoS attacks using bogus
requests, an issue that we need to tackle in the future.

Because AR’s use a different, random REK on each request
and the Appld of the request must be in the response,
replayed responses are detected an discarded. Furthermore,
randomly-filled responses spoofed by attackers are unlikely
to succeed, since the probability to contain a valid Appld is
2764 Therefore, SAR responses to an AR cannot be spoofed
by attackers to achieve a benefit other than to create a limited
DoS scenario.

V. PERFORMANCE EVALUATION

Regarding performance, the component that is critical to
evaluate is SAR, as it has direct impact in the delay imposed
to outbound traffic. However, it is not very relevant to assess
the time it takes to create a new database entry, as it has
impact on the performance of outbound communications only
the first time an application creates outbound traffic. On the
other hand, the performance of SAR when retrieving an Appld
given a PID is very relevant, as it will happen very often.

For assessing the performance of this last case, we pre-
registered in SAR’s database different sets of applications
existing in one Linux installation, and we measured the



TABLE 11
PERFORMANCE IN THE FETCHING OF AN APPID GIVEN AN APPLICATION’S
PID WHEN QUERYING 50% OF THE REGISTERED APPLICATIONS

Registered | Registered | Appld query performance |
applications packages | min (ms) avg (ms) max (ms) o |
100 65 2.1 32 14.3 1.9
500 188 5.6 13.0 362.6 36.3
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Fig. 5. Example of the graphical interface of AR, showing the 7 source
applications responsible for 67 marked packets among 200 captured packets

performance to query a random sample of 50% of them. The
results, evaluated on a Linux ArchLinux running on a Intel
x86 Core 2 Duo at 2.53 GHz, are presented in Table II. Note
that the presented values account the time expended in the
entire process of resolving a PID to an Appld.

The performance figures are reasonable, in the sense that
they do not increase noticeably (for a human) the latency of
outbound packets, but there is room for improving them in
future implementations. The current database queries using
variable-length strings (path names) are not very efficient, but
they are straightforward, as binaries’ path names are unique
identifiers. Therefore, finding a faster querying strategy for
getting an application’s Appld is a task for future work.

VI. EXPERIENCE

We have not yet tested the whole system in a production
environment, therefore we do not have yet many experience
in the exploitation of the system. Nevertheless, we show an
example of the information provided by AR to an operator.
In Fig" 5 we show its interface after capturing 200 packets,
67 of them tagged and produced by 7 applications of the
same host. Currently, we are not yet showing detailed packet
information associated with source applications, but we are
actively working on it.

VII. RELATED WORK

There is a vast number of publication of the field of
traffic analysis, with different goals (traffic identification and
classification, intrusion detection, etc.). In the Cooperative
Association for Internet Data Analysis web page (http://www.
caida.org/home) the interested reader can find many publica-
tions about this topic, though many more exist that are not
listed there.

However, we do not know of any other approach, besides
our own described in [1], enabling network auditors to identify
the applications that are responsible for generating traffic on
a controlled network. Usually, this task is performed by an
HIDS, which is co-located in the same machine of the traffic
generator. However, an HIDS cannot have a wide, network-
level view to detect traffic anomalies in the traffic generated

by local applications (e.g. to compare with what happens in
other hosts), or may be deceived or disabled by local malware.
Our work is also different from the many existing NIDS
approaches (e.g. Snort [7], [8]) because these usually do
not assume any strong collaboration between the hosts being
surveyed and the network auditors. However, the lack of
collaboration is not an advantage, but rather a drawback, as it
limits the information that a NIDS can use to detect focused,
host-specif anomalies from a broader, network view.

VIII. CONCLUSION AND FUTURE WORK

In this paper we presented and architecture for managing
the association between Appld’s and more detailed application
information, such as the path name, the binary modification
time and digest and the package name and version. The
whole system works without central coordination other than
a central key distribution center (the PM) that deals with the
identification and authentication of the involved entities.

The information provided by the traffic source hosts,
through their SAR, to network auditors, such as our AR, can
help the latter to detect anomalies in the former. Therefore,
source hosts have all the interest to collaborate with network
auditors, being this a core assumption of our work.

The detailed application information gathered by network
auditors can help them a lot in the detection of abnormal
traffic of one particular application (for instance, using detailed
per-application traffic profiles) or to detect applications that
are responsible for particular types of traffic, a capability that
usually is not available to systems such as NIDS.

For future work we have still many open issues. Besides
the ones pointed out throughout the paper, we still have to
solve communication problems that a network auditor may
face when trying to reach source hosts behind NAT boxes,
such as systems running on virtual machines on top of real
machines.
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