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Abstract

Over the past decade, hyperspectral imaging has been rapidly developing and widely 
used as an emerging scientific tool in nondestructive fruit and vegetable quality assess-
ment. Hyperspectral imaging technique integrates both the imaging and spectroscopic 
techniques into one system, and it can acquire a set of monochromatic images at almost 
continuous hundreds of thousands of wavelengths. Many researches based on spatial 
image and/or spectral image processing and analysis have been published proposing 
the use of hyperspectral imaging technique in the field of quality assessment of fruits 
and vegetables. This chapter presents a detailed overview of the introduction, latest 
developments and applications of hyperspectral imaging in the nondestructive assess-
ment of fruits and vegetables. Additionally, the principal components, basic theories, 
and  corresponding processing and analytical methods are also reported in this chapter.

Keywords: hyperspectral imaging, fruits and vegetables, nondestructive quality 
assessment

1. Introduction

In recent years, consumer demand for fruits and vegetables tends to be diversified, and more 
attention has been paid to the external quality of apples. Generally, such attributes include its 
ripeness, size, weight, shape, color, condition, or presence/absence of defects, stems or seeds, 
as well as a series of internal properties such as sweetness, acidity, texture, hardness, among 
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others [1]. Consequently, the accurate, rapid, and objective assessment system in the process-

ing stage is essential to ensure the quality of fruits and vegetables during processing opera-

tions. Food process control necessitates real-time monitoring at critical processing points [2].

Traditional optical sensing techniques, such as imaging and spectroscopy, have limitations to 
acquire adequate spatial and spectral information for nondestructive evaluation of food and 
agricultural products. Generally, conventional imaging cannot acquire spectral information 
and spectroscopy measurement cannot cover large sample area. In general, the frequently-
used vision systems for fruits and vegetables sorting are based on color video camera that 
imitates the vision of the human eye by capturing images using three filters centered on red, 
green and blue (RGB) wavelengths [3, 4]. Thus, they are limited to observing scenes and are 

usually not able to obtain much information about the external or internal composition of the 
products or to detect some defects or alteration whose color is similar to the color of the sound 
skin. In addition, traditional methods of fruits and vegetables monitoring involving analytical 
techniques are too time consuming, expensive and require sample destruction.

Over the past decades, with the rapid development of information science, image processing 
and pattern recognition technology, optical sensing technologies have been emerged as sci-
entific tools for nondestructive assessment for quality of fruits and vegetables. Spectral imag-

ing technology, combining conventional imaging and spectroscopy techniques, can acquire 
spatial and spectral information from the target, which is used for evaluating individual food 
products. In particular, hyperspectral imaging has been widely researched and developed 

by integrating spectroscopy and imaging techniques into a system that can obtain a spatial 
map of spectral variation, resulting in many successful applications in the quality assessment 
of fruits and vegetables. A typical spectral image is composed of a set of monochromatic 
images corresponding to certain wavelengths, and hyperspectral image systems have the 

natural advantage compared to the traditional computer vision, even the human vision [2]. 

Hyperspectral imaging systems can make it possible to extract some appearance features that 
are difficult or impossible with the traditional computer vision systems.

This chapter focuses on hyperspectral imaging technologies in the quality nondestructive 
assessment of fruits and vegetables. In the second section, overview, components, and dif-
ferent image acquisition technologies of hyperspectral imaging are explained and discussed. 
Hyperspectral images generate a large amount of information that can be processed using 
different statistical techniques [1]. In the third section, varying nondestructive processing and 

analysis methods are illustrated in detail. Finally, applications of this technology are discussed, 
and conclusions are given.

2. Hyperspectral imaging technique

2.1. Overview of hyperspectral imaging

Hyperspectral imaging, known also as chemical or spectroscopic imaging, is an emerging tech-

nique that integrates conventional imaging and spectroscopy to simultaneously collect spatial 
and spectral information from an object. The term “hyperspectral imaging” was derived from 
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works in remote sensing first mentioned by Goetz et al. in [5] to make a direct identification 
of surface materials in the form of images. Although originally developed for remote sensing, 
hyperspectral imaging system is gradually found to have natural advantages over the traditional 
computer vision systems [2] in such diverse fields as agriculture [6–9]. With the development of 
optical sensing and imaging techniques, hyperspectral imaging has recently emerged as a sci-
entific and efficient inspection and assessment tool for quality of fruits and vegetables. The goal 
of hyperspectral imaging is to obtain the spectrum for each pixel in the image of a scene, with 
the purpose of finding objects, identifying materials, or detecting processes [10]. To obtain high 

spectral resolution and narrow band image data, hyperspectral imaging is generally combined 

with spectroscopic technique, two-dimensional geometric space and one-dimensional spectral 
information detection.

2.2. Components of hyperspectral imaging system

Figure 1 shows the schematic of the hyperspectral imaging system commonly used in our 
research. As shown in Figure 1, a typical hyperspectral imaging system usually consists of the 
following components: a light source (illumination), a wavelength dispersion device (spectro-

graph), an area detector (camera), a transportation stage and a computer with corresponding 
software [11].

Light source for spectral imaging applications can generally be classified into two categories: 
illumination and excitation source. Broadband lights are generally used as the illumination 
sources for reflectance and transmittance imaging while narrowband lights are commonly 
used as the excitation sources. Therefore, illumination is a crucial part of the hyperspectral 
imaging system. Compared with the naked eyes, vision systems are affected by the level and 
quality of illumination. Illumination devices generate light that illuminates the inspected tar-

get objects; thus, the performance of the illumination system can greatly influence the quality 
of images and plays an important role in the overall efficiency and accuracy of the system 
[12]. Good illumination can help to improve the success of the image processing and analy-

sis by reducing noise, shadow, reflection, and enhancing image contrast [2]. In  addition, 

Figure 1. A schematic of the hyperspectral imaging system.
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Figure 2. Operating principles of diffraction grating and prism.

the positions, types of lamps, and color quality of the illumination are all considered when 
choosing the most suitable illumination. Incandescent lamps, fluorescent lamps, lasers, and 
infrared lamps are the commonly used light sources [13].

The wavelength dispersion device is one of the key components of hyperspectral imaging 
system. Filter, grating and prism are three typical wavelength dispersion devices. These opti-

cal devices are used to disperse broadband light into different wavelengths and project the 
scattered light onto the area detector. The principles of prism and diffraction grating are illus-

trated in Figure 2. In a word, filter is always used in the multispectral imaging system, while 
prism and grating are widely used in the hyperspectral imaging system [2]. Besides, the effi-

ciencies of the transmission components (e.g., prisms) are generally lower than those of the 
reflective optical component (e.g., mirrors). An optical wavelength dispersion device includes 
[14, 15]: a first substrate; an input unit formed on the first substrate having a slit for receiving 
an optical signal; a grating line formed on the first substrate for generating a diffracted light 
beam of the optical signal; a first optical reflector formed on the first substrate to the reflected 
output beam from the diffraction grating for the output; and a second substrate covered on 
the top of the input unit and the grating. The wavelength dispersion is capable to disperse 
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broadband light into varying wavelengths. Typical examples include filter wheels, imaging 
spectrographs, acousto-optic tunable filters, liquid crystal tunable filters, Fourier transform 
imaging spectrometers, and single shot imagers [16].

The camera, which is one of the image acquisition devices, is another core component of the 
hyperspectral imaging system. It is the carrier of the physical or chemical information and 
the light generated from the light source. Other image acquisition devices used in food appli-
cations are computed tomography (CT), magnetic resonance imaging (MRI), ultrasound and 
electrical tomography [17]. Charge coupled device (CCD) and complementary metal oxide 
semiconductor (CMOS) image sensors are two different means to generate the image digitally 
[2]. A CCD is a device for the movement of electrical charge, generally from within the device to 
an area where the charge can be manipulated. In the CCD image sensor, pixels are represented 
by P-doped metal oxide semiconductor (MOS) capacitors. When image acquisition starts, these 
capacitors are biased above the threshold for inversion, allowing the conversion of incoming 
photons into electron charges at the semiconductor-oxide interface [18]; then, the CCD is used 
to read out these charges. The CMOS image sensor consists of millions of pixel sensors, each 
of which includes a photo detector. As light enters the camera through the lens, it strikes the 
CMOS image sensor, allowing each photo detector to accumulate an electric charge based on 
the amount of light that strikes it. CMOS is also sometimes referred to as complementary-sym-

metry metal–oxide–semiconductor (COS-MOS). In general, the CMOS image sensor is used in 
applications with less exacting quality demands, and the CCD image sensor is widely used in 
medical, scientific and professional applications where high-quality image data are required.

Compared with the traditional computer vision system, a wavelength dispersion device and 

a transportation stage are additional components of hyperspectral or multispectral computer 
vision systems. The translation stage is used to move the sample past the objective lens when 
the camera captures only a line of the illuminated object.

The computer is not only used to control the hyperspectral imaging system for data acquisi-
tion, processing and analysis of image and spectral data for specific application, but also can 
provide storage space for hyperspectral image. By scanning the entire surface of the speci-
men, a complete hyperspectral image is created and displayed by the computer [19].

2.3. Generation of hyperspectral images

Hyperspectral image is three-dimensional hyperspectral cube, composed of two spatial and one 
wavelength dimension [20]. There are three approaches to build hyperspectral images based on 

the method by which spatial information is acquired as whiskbroom, pushbroom, and tunable 
filter known as point scanning, line scanning, and area scanning, respectively [21], as illustrated 

in Figure 3. The point-scan method (Figure 3a) is a basic spectroscopic approach, where a single 
point is scanned along two spatial dimensions by moving the sample or the detector. When a 

single point is scanned, the sample moves to the next measurement point and another spectrum 
is captured. By moving the sample systematically in two spatial dimensions, a complete hyper-

spectral image can be obtained. However, it is not suited for fast image acquisition because 
the scan of many points for two spatial dimensions is a time-consuming process. The line-scan 
method (Figure 3b) can be considered as an extension of point scanning method. In the line-scan 
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method, a slit of spatial information and full spectral information for each spatial point in the 
linear field of view can be acquired simultaneously. But the line-scan method requires the use of 
an imaging spectrometer, in which a diffraction grating disperses light entering through a thin 
slit and projects. Food commodities normally are moved linearly along a production line [11]. 

Consequently, the line-scan method is appropriate for online inspection of individual food. The 
area-scan method (Figure 3c) does not require the relative movement between the sample and 
the detector and is usually used to collect images from the fixed scene. The line-san camera holds 
an advantage over area-scan camera. Unlike these area-scan cameras, a line-scan camera can 

expose a new image while the previous image is still reading out its data. A detailed description 
of data preprocessing methods can be found in the literature [22, 23].

As shown in Figure 4, hyperspectral imaging system is generally carried out in reflectance, 
transmittance or interactance modes according to the specific light-output captured by hyper-

spectral imaging system [24]. In the external quality inspection of fruits and vegetables, the 
reflectance mode is considered to be the most suitable approach. Position of light source and 
the optical detector (cameral, spectrograph, and lens) are different for each acquisition mode 
[21]. In the external quality inspection of fruits and vegetables, the reflectance mode (Figure 4a) 
is considered to be the most suitable approach. In reflectance mode, to avoid specular reflection, 
the detector captured the reflected light from the illuminated sample in a specific conformation. 
The transmitted light captured through the sample is often very weak but carries more valuable 
information and the detector is located on the opposite side of the light source. Transmittance 
mode (Figure 4b) is usually used to determine internal component concentration and detect 
internal defects of relative transparent materials [16]. Interactance mode (Figure 4c) is a combi-
nation of reflectance and transmittance where both light source and the detector are located in 
the same side of sample and parallel to each other.

Figure 3. Three different approaches to generate a hyperspectral image. (a) The point-scan method. (b) The line-scan 
method. (c) The line-scan method.
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2.4. Characteristics of the hyperspectral images

In the conventional RGB images, some unobvious quality character, which is even not visible 
to the human eyes, is impossible or difficult to detect. Unlike the conventional RGB images, 
whose spectrum information is very limited, the hyperspectral images contain extensive 
monochromatic image [2]. In one or several monochromatic images, the unobvious external 
quality characters can be very clear or easy to detect. Hyperspectral images are composed of 
numerous continuous wavebands for spatial position of an object studied.

Figure 5 illustrates the conceptual view of a hyperspectral image, which contains a stack of 
two-dimensional images one behind each other at different wavelengths and can be described 

Figure 4. Three different modes to generate a hyperspectral image. (a) The reflectance mode. (b) The transmittance 
mode. (c) The interactance mode.

Figure 5. The conceptual view of a hyperspectral image with spectral and spatial domains.

Hyperspectral Imaging and Their Applications in the Nondestructive Quality Assessment…
http://dx.doi.org/10.5772/intechopen.72250

33



as I(x, y, λ) [21]. The diagram shows that the raw hyperspectral cube consists of a series of 
contiguous sub-images one behind each other at different wavelengths [16], and each sub-

image provides the spatial distribution of the spectral intensity at a certain wavelength. The 
hyperspectral images can be viewed either as a spectrum I (λ) at each individual pixel (x, y) 
or as an image I (x, y) at individual wavelength λ. Each image acquires spatially distributed 
spectral information at pixel level and can be used to analyze the biochemical constituent of a 
sample according to the spatial information. Each pixel containing a complete spectrum can 
be used to characterize the composition of that particular pixel.

2.5. Calibration of hyperspectral images

The hyperspectral imaging is a useful tool to acquire and record the raw hyperspectral infor-

mation of fruits and vegetables. However, due to the differences in camera quantum and 
physical configuration of imaging systems, the uncorrected radiance for the different sys-

tems, even for the same system used in different times, might be very different for the same 
sample taken under the same condition [25]. Therefore, accurate calibrations for a hyperspec-

tral imaging system are necessary to guarantee the stability and acceptability of the extracted 
hyperspectral image data and the consistent performance of the system. The original hyper-

spectral images can be calibrated into the reflectance mode based on black and white reference 
images. The hyperspectral reflectance images  R  for a spatial pixel ( i ) at a given wavelength 
was calculated by using the following equation [26, 27].

   R  
i
   =  (  

R  S  
i
   − R  D  

i
  
 ________ 

R  W  
i
   − R  D  

i
  
  )  × 100%  (1)

where RS, RD, and RW are respectively the raw intensity values of identical pixels from the 
sample image, dark reference image, and white reference images. R

i
 is the calibrated hyper-

spectral image in a unit of relative reflectance. The dark reference image RD (with ~0% reflec-

tance), which can be obtained with the light source turned off completely and the camera 
lens covered completely with its nonreflective opaque black cap, is used to remove the dark 
current effect of the area detectors [28]. The white reference image RW (with ~99% reflectance) 
represents the highest intensity values. RW can be acquired from a Teflon white surface under 
the same condition of the raw image.

3. Nondestructive assessment methods

The spectrum may be complicated by instrumental noise, complex chemical composition of 
products, environmental factors and other sources of variability [19]. As a consequence, spec-

tral and image preprocessing and correction are necessary to improve the quality of the data 
before data analysis [29]. Moreover, the chemometrics is crucial for information extraction 
and better interpretation of the acquired data. The methods for spectral preprocessing and 
correction, optimal wavelength selection, and imaging processing and analysis models are 

introduced in detail in the following sections, as illustrated in Figure 6.
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3.1. Spectral analysis methods

3.1.1. Spectral preprocessing methods

The spectra of solid and scattering samples such as vegetables are influenced by physical 
properties such as shape, size, etc. This creates baseline shifts and noises in the spectra with 
broad wavelength regions when analyzing quality parameters [30]; thus, preprocessing of 
near-infrared (NIR) spectral data has become an integral part of chemometrics modeling. The 
goal of the preprocessing is to remove physical effects in the spectra in order to improve the 
subsequent multivariate regression, classification model or exploratory analysis. Selecting 
suitable preprocessing methods should always be considered in relation to the successive 

modeling stage. The whole data processing generally consists of the following several steps: 
spectral preprocessing, calibration model and model validation. A detailed description of data 
preprocessing methods can be found elsewhere [24, 31]. Some of the preprocessing methods 
are presented in the following sections.

3.1.1.1. Averaging

Averaging over spectra is generally performed during the acquisition spectrum to reduce the 
thermal noise of the detector. The number of scans depends on the application: the PDA spec-

trophotometer operates at a typical acquisition time of less than 50 ms, with almost no time 
to get multiple scans in the online classification, while the PDA spectrophotometer measure-

ment time is less critical and can average several spectra without affecting the measurement 

Figure 6. The flowchart of analyzing methods with hyperspectral image.
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throughput rate in the laboratory [32]. Averaging over wavelengths is used to smooth the 
spectrum or to reduce the number of wavelengths. Overall, most spectrophotometers may 
provide a better spectral resolution than the actual optical resolution.

3.1.1.2. Centering

For all practical purposes, it is recommended that data be centered or mean centered. The first 
stage in centering is often to subtract the average from each variable. The objective of center-

ing is to ensure that all results will be interpretable in term of variation around the mean [32]. 

This is especially crucial if the variables differ significantly in their relative magnitudes, as the 
values with the greatest variance will be favored in regression analysis.

3.1.1.3. Smoothing

Smoothing is used to reduce high-frequency noise from the spectral data and signal-to-noise 
without reducing the number of spectral variables. Its principle is to acquire an optimal esti-
mation value by averaging or fitting several points in a window. The broader the window is, 
the lower the spectral resolution would be [24]. Consequently, it is important to choose the 
window width properly. Smoothing improves the vision of the original spectra in addition to 
remove the useless information. Based on different smoothing fit methods, smoothing could 
be divided into moving average smoothing, Gaussian filter smoothing, median filter smooth-

ing and Savitzky-Golay smoothing (S-G smoothing) [33, 34]. Different smoothing algorithms 
are adapted to different specific types of noise models. In other words, the appropriate 
smoothing algorithm should be selected flexibly according to the noise situation contained 
in the actual image.

3.1.1.4. Standard normal variate

Standard normal variate (SNV) is a row-oriented transformation which is capable of remov-

ing the multiplicative interferences from spectral caused by scatter and particle size effects 
from spectral data. SNV removes scatter effects by centering and scaling each individual 
spectrum [35, 36]. The method assumes that the absorbance of each wavelength point in the 
spectrum meets some certain distribution such as Gaussian distribution. Each spectrum can 
be calibrated based on this assumption. Firstly, the average value of a spectrum is subtracted 
from the original spectrum, and then the result is divided by the standard deviation [24]. This 

method is widely used when the variables are measured in different ranges or in different 
units, and it cannot be used for NIR spectroscopy because the noise from variables with small 
standard deviations may explode and lead to unreliable or incorrect models.

3.1.1.5. Multiplicative scatter correction

Multiplicative scatter correction (MSC) is a transformation method used to compensate for 
additive or multiplicative effects in spectral data [36, 37]. It is performed by correcting the 
scatter level of each to the level of an average spectrum. Similar to SNV, the objective of MSC 
is to eliminate the deviations caused by particle size and scattering [36]. The difference is that 
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MSC standardizes every spectrum using the mean spectrum of all spectra while SNC use only 
the data from that spectrum. Therefore, for MSC effects on each spectrum alone, the correc-

tion capability of MSC is usually weaker than that of SNV. In SNV correction, each individual 
spectrum is normalized to zero mean and unit variance [32].

3.1.1.6. Derivative correction

Derivative is used to remove overlapping peaks and baseline shifts induced by the variation 
of particle sizes and instrumental conditions, so that more details within the spectra can be 
revealed [31, 32]. The first derivative of a spectrum is simply a measure of the slope of the 
spectral curve at every point [38, 39]. The slope of the curve is not affected by baseline offsets 
in the spectrum, and thus, the first derivative is a very effective method for removing baseline 
offsets. However, peaks in raw spectra usually become zero-crossing points in first derivative 
spectra, which can be difficult to interpret. The second derivative is a measure of the change 
in the slope of the curve. In addition to ignoring the offset, it is not affected by any linear that 
may exist in the data, and is therefore a very effective method for removing both the base-

line offset and slope from a spectrum. The second derivative can help resolve nearby peaks 
and sharpen spectral features. Peaks in raw spectra change sign and turn to negative peaks 
with lobes on either side in the second derivative. Two commonly used spectral derivative 

approaches are Gap-Segment derivative and Savitzky-Golay (S-G) derivative [24].

3.1.1.7. Transformation

In spectral analysis, Fourier transformation (FT) and Wavelet transformation (WT) are often 
used for data compression, smoothing and filtering, as well as for the extraction of effective 
information. FT is a very important signal processing technique, which can realize the trans-

formation between time domain functions and frequency domain functions. The principle of 
it is to decompose the original spectrum into the sum of sinusoidal waves of many varying 
amplitudes, frequencies and directions. WT is based on the idea of decomposing chemical 
signals into scale compositions according to their different frequencies by applying a basis 
function [24]. WT is similar to FT with a completely different merit function. The main differ-

ence is that FT decomposes the signal into sines and cosines; in contrary, WT uses functions 
that are localized in both the real and Fourier space [40].

3.1.2. Optimal wavelength selection methods

Due to the high resolution of modern spectroscopy instrumentations, the acquired spectral 
data set may have thousands of variables/wavelengths and hundreds or thousands of samples 
[41, 42]. Thus the hyperspectral imaging inspection algorithm will be very  time-consuming 

due to the large-scale massive data. In order to simplify the complexity of computation, 
improve the efficiency of the detection, and meet the inspection speed required by the indus-

try, variable selection (wavelength selection) is the most necessary and important step to select 
the optimal variables and remove the highly calibrated variables [43]. Many methods based 
on different criteria have been developed for this purpose. Some of them include competitive 
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adaptive reweighted sampling (CARS), random frog (RF), successive projections algorithm 
(SPA), genetic algorithm (GA) and uninformative variables elimination (UVE) which can be 
implemented prior to the construction of both regression and classification models.

3.1.2.1. Competitive adaptive reweighted sampling (CARS)

Competitive adaptive reweighted sampling (CARS) is a novel wavelength selection algorithm 
employing the “survival of the fittest” principle from Darwin’s evolution theory [44]. It is 

originally developed to select informative wavelengths from contiguous spectral data, specifi-

cally applied for the first time to NIR spectroscopy. The method selects wavelength subsets 
sequentially from the sampling runs in an iterative manner. It basically consists of a number 
of iterations involving [45]: (1) Monte Carlo (MC) model sampling, (2) wavelength reduction 
by exponentially decreasing function (EDF), (3) wavelength reduction by adaptive reweighted 
sampling (ARS), and (4) model building with each subset of selected variables and CV to cal-
culate prediction error. Figure 7 shows the scheme of the CARS algorithm. For each MCS run 
or iteration, the four steps mentioned above will be repeated, obtaining an error for each one. 
Finally, the subset with the lowest RMSECV value will be determined as the optimal subset 
[46]. The key wavelengths selected by CARS are considered as the wavelengths with the large 
absolute regression coefficients in a multivariate linear regression model. The exponential 
decay function is used to control the retention rate of variable in the algorithm, and it has the 
potential to select an optimal combination of the wavelengths.

3.1.2.2. Random frog (RF)

Random frog (RF) algorithm is a useful wavelength selection technique based on the frame-

work of reversible jump Markov chain Monte Carlo (MCMC) or the multiple  decision 

Figure 7. The flowchart of the competitive adaptive reweighted sampling algorithm.
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trees. Like CARS, it works in an iterative manner; meanwhile, it calculates the selection 
probability for each variable. Briefly, random frog works in three steps [47, 48]: (1) initial-
izing randomly a variable subset V

0
 containing Q variables; (2) generating a candidate 

variable subset V* including Q* variable; accept V* as V
1
 with a certain probability and let 

V
0
 = V

1
; repeat the above procedures until N iterations are finished; and (3) computing a 

selection probability of each variable which can be used as a measure of variable impor-

tance. The schematic is shown in Figure 8. The advantage of random frog is that it does not 
require any rigorous mathematical formula. And it do not need to use the previous distri-
bution in formal reversible jump MCMC methods, which makes it easier to implement and 
compute. There are five tuning parameters to control the RF performance, which can be 
optimized in the routine. The two most important parameters are the number of variables 
contained in the number of iterations and the initial variable set.

3.1.2.3. Successive projections algorithm (SPA)

The successive projections algorithm (SPA), a forward selection method which uses simple 
operations in a vector space to minimize variable collinearity, is a novel variable selection 

strategy in hyperspectral image analysis for multivariate calibration [49, 50]. The main pur-

pose of SPA is to select wavelengths with minimal redundancy [43]. In summary, the steps to 

execute SPA are: (1) carrying out projections on the N matrix and generating K chains of M 

variables each, (2) evaluating candidate subsets of variables extracted from the chains gener-

Figure 8. The flowchart of the random frog algorithm.
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ated in the first phase, and (3) eliminating procedures aimed at discarding uninformative 
variables without significant loss of prediction capability. Many successful applications have 
proven SPA to be an outstanding variable selection approach.

3.1.2.4. Genetic algorithm (GA)

The Genetic algorithm (GA) is an effective globe searching algorithm. Based on a fitness func-

tion, GA is an iterative process starting from a population of randomly generated individuals 
and achieves optimal solutions through genetic operations including crossover, selection and 

mutation [24]. The steps of GA involved are [51]: (1) building an initial population of variable 
sets by setting bits for each variable randomly, (2) fitting a PLS regression model to each variable 
set and computing the performance, (3) a collection of variable sets with higher performance 
are selected to survive, (4) crossover and mutation, (5) the surviving and modified variable sets 
from the population. Through such operation, irrelevant spectral information is eliminated and 
the number of spectral variables is reduced.

3.1.2.5. Uninformative variable elimination (UVE)

The uninformative variable elimination (UVE) is a method for variable selection based on 
an analysis of regression coefficient of PLS. The UVE method was employed by Sun et al. 
Readers are referred to the corresponding references for details about many effective variable 
selection methods [52]. The method builds a large number of models with randomly selected 
calibration samples at first, and then each variable is evaluated with a stability of the corre-

sponding coefficients in these models. Variables with poor stability are known as uninforma-

tive variable and are eliminated [53].

3.1.3. Calibration models

Multivariate regression techniques (quantitative analysis) aim to establish a relationship 
between the observed response values and spectral matrix. In our research, partial least 
squares (PLS) regression is a common multivariate method used in calibration of spectros-

copy data. The principle of PLS is to use a linear least squares fitting technique. It builds 
linear models between an independent matrix X (spectral data) and a dependent matrix Y 

and estimate the regression coefficient matrix using least squares fitting techniques. Least 
squares support vector machines (LS-SVM) can deal with nonlinear relationships between 
variables.

3.1.3.1. Partial least squares (PLS)

Partial least squares (PLS) analysis is widely used for calibration in present chemometric analy-

sis. It is an unsupervised statistical method used when not only a data array coming from X 

data is available but also a Y array that we want to predict from our X data [32]. Normally, there 
are two variable selection methods using PLS regression: using variable importance in projec-

tion scores and using regression coefficients estimated by PLS regression [54, 55]. The aim of 
PLS analysis is to find a latent variables linear regression model by projecting the X variables 
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and the Y variables into a new latent space, where the covariance between these latent variables 

is maximized [1]. PLS analysis can be performed to establish the regression model leading 
to the content prediction of chemical components. PLS considers simultaneously the variable 
matrix Y (the values of SSC, pH) and the variable matrix X (the spectral data). Generally, the 
first step in PLS is to decompose the matrix, and the model is given:

  X = TP + E  (2)

  Y = UQ + F  (3)

In these equations, X is a n × m spectral matrix (n is the number of samples, m is the number 

of wavelengths), T and U are the score matrices of X matrix and Y matrix, P is the m × k matrix 
of X matrix and Q is the loading (l × k), and y is the reference data (n × l) that needs to be pre-

dicted from X (k is the number of latent variables), and E and F are the errors which come from 
the process of PLS regression [43]. The second step is that T and U are processed by linear 

regression. It must build the following linear correlation:

  U = BT + E  (4)

where B represents the internal relations between U and T. In order to reach this object this 
object, the coordinate of T is rotated.

3.1.3.2. Least square support vector machine (LS-SVM)

Least square support vector machine (LS-SVM) is a set of related supervised learning 
method that analyzes data and recognizes patterns, and is used for classification and regres-

sion analysis. PLS method can only handle linear problems and builds a linear relationship 
between spectral variables and target chemical response such as SSC value. However, some 
researchers reported that the latent nonlinear information might be existed in the spectra 
data of fruit and the nonlinear models were better than linear models. The computational 
complexity and quality of the SVM does not directly depend on the dimension of input data. 
Therefore, least square support vector machine (LS-SVM) was applied to build a nonlinear 
model for a comparison of the prediction performance with linear PLS models. LS-SVM is 
widely applied in pattern recognition and function regression for the advantage of limited 
over-fitting, high predictive reliability and strong generalization ability [24]. More details of 
LS-SVM method can be found in the paper [56, 57]. The final LS-SVM regression model can 
be expressed as:

  y (x)  =  ∑ 
k=1

  
N

     a  
k
   K (x,  x  

k
  )  + b  (5)

where K(x, x
k
) is the kernel function, x

k
 is the input vector, α

k
 is the Lagrange multiplier called 

support value, and b is the bias. The radial basis function (RBF), which is a frequently used 
kernel function K(x, x

k
), is used in this study and defined as follows:
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In the equation, ‖x
k
-x‖ represents the distance between input vector and threshold vector, and 

σ is a width vector. Generally, the selected variables by wavelength selection methods could 
be used as the inputs to build the LS-SVM models.

3.1.4. Model validation

Validation procedures are crucial to assess the accuracy of the calibration and to avoid over-
fitting. The prediction ability of a calibration model can be evaluated by the correlation coef-
ficient (r), root mean square error of prediction (RMSEP) and calibration (RMSEC) between 
the predicted value and the measured value in validation set [24]. In order to establish use-

ful calibration models, different methods in spectral preprocessing and calibration modeling 
as mentioned above should be investigated. When cross validation is employed, the predic-

tion performance could also be assessed by the root mean square error for cross validation 
(RMSECV). These indices are defined as follows:
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where,    y  ̂   
i
    is the predicted value of the ith observation, y

i
 is the measured value of the ith obser-

vation, y
m
 is the mean value of the calibration or prediction set, n, n

c
, and n

p
 are respectively the 

number of observations in the data set, calibration and prediction set. Generally, a good model 
should have higher correlation coefficients, lower RMSEC, RMSEP, and bias values [58, 59].

3.2. Image processing and analysis techniques

Image processing and image analysis are considered to be the core of the hyperspectral 
imaging system with various algorithms and methods available to complete the specific clas-

sification and measurement. As illustrated in Figure 9, image processing and analysis are 

performed in three levels. The low level processing is the basic processing of image, which 
involves image acquisition and image preprocessing, and is the important step in image 
processing and analysis, which involves image segmentation, feature extraction, representa-

tion, and description [60]; the high level processing is the key step of image analysis, which 
involves recognition, interpretation and classification [2].

Hyperspectral Imaging in Agriculture, Food and Environment42



3.2.1. Image processing methods

The assessment accuracy of fruits and vegetables quality is highly related to the images. 
However, owing to the imperfections of the image acquisition systems, the images acquired 
are subject to various defects that will need subsequent processing. Image processing plays 
an important role in hyperspectral data analysis. The image processing involves a series of 
steps, which can be divided into three major steps: image preprocessing, segmentation and 
feature extraction [61].

The purpose of image preprocessing and calibration is to improve the quality of the obtained 
images by removing the noise, increasing the contrast and correcting the distortion [2]. Generally, 
the frequently used preprocessing methods include basic point operations (intensity mappings) 
and histogram equalization [43]. Basic point operations, such as luminance inversion and mul-
tiplicative brightness scaling, can improve by stretching the brightness levels into a mapping 

between the input level and the output level. Histogram equalization provides a sophisticated 
method for modifying the dynamic range and contrast of an image by changing the image so that 
its intensity histogram has a desired shape. Histogram model use nonlinear and nonmonotonic 

transfer functions to map the pixel intensity values of input and output images. Other typical 
image preprocessing techniques include filtering, transformation and arithmetic operations.

Image segmentation is the most vital and challenging step to partition the image into regions 

of interest (ROI). The goal of image segmentation is aimed at simplifying and altering the 
representation of an image into something more meaningful and easier to analyze. Image seg-

mentation is typically used to locate objects and boundaries (lines, curves, etc.) in images. The 
accuracy of image segmentation plays an important role in the subsequent image processing. 
Threshold-based segmentation, edge-based segmentation, region-based segmentation, and 

classification-based segmentation are four major types of segmentation methods [62–64].

Feature extraction is a key step in connecting image processing and analysis, which converts 
image data or segmented regions into a set of feature vectors. In image processing, feature extrac-

tion builds features intended to be informative and nonredundant, facilitating the subsequent 

Figure 9. Different levels of image processing.
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learning and generalization step [65]. When the image segmentation is successfully performed, 
if the data in ROI to an algorithm is too large to be processed, it can reduce its dimensionality. 
Feature extraction is related to dimensionality reduction. Thus, feature extraction is crucial to 
the accuracy of quality assessment. In general, shape features, texture features, color features 
and size features of the target are typically extracted for quality assessment.

3.2.2. Image analysis methods

Image analysis is a nondestructive method of calculating measurements and statistics based 
on the interesting values of images’ pixels, and their corresponding spatial location. The image 

analysis is performed on the feature extracted from the image, and interprets the results. It 
uses intuitive explanations to display images and mathematically processing images, helping 
to solve the problem of computer vision. Vision measurement and pattern classification are the 
most crucial parts of image analysis.

Vision measurement is a quantitative analysis method in the image analysis. Visual measure-

ment is the process of quantifying the parameters of interest from the features extracted from 
the image. It is the process of quantitative measurement of interest parameters based on the 
characteristics extracted from the image [66]. The computer vision systems can achieve different 
types of measurements. Generally, typical measurements include the size, texture and color.

Pattern classification, also known as pattern recognition, is a method for qualitative analysis in 
the image analysis. It is the science of reasoning based on measurement characteristics through 
probabilistic, statistical, computational geometry, multivariate analysis and algorithm design 

techniques. The classification techniques can be divided into two types: supervised meth-

ods and unsupervised methods. In the image analysis, the supervised methods are the most 

widely used. In most cases, the supervised classification method aims to build a model or a 
classifier for classification of labels according to the corresponding characteristics, while the 
unsupervised classification method is mainly used to classify image by finding out similarity 
between the selected features and using clustering algorithm. The widely used pattern classi-
fication methods in image analysis include Artificial Neural Network (ANN), Support vector 
machine (SVM), K-Nearest Neighbor (KNN), Adaptive Boosting, and decision tree. ANN is a 
nonlinear statistical data modeling tool that attempts to mimic the fault tolerance and capac-

ity to learn biological neural systems by modeling the low-level structure of the brain [1]. 

ANN is widely used in hyperspectral image analysis, because it can handle a large amount 
of heterogeneous data with considerable flexibility and nonlinearity. It is composed of a set 
of interconnected artificial neurons, which are like a parallel system that capable of resolving 
the paradigm that linear computing cannot. SVM is a supervised nonparametric statistical 
learning model with associated learning algorithms that analyze data and recognize patterns, 
used for classification and regression analysis. In addition to performing linear classification, 
SVM can use the so-called kernel technique to efficiently perform nonlinear classification and 
map its inputs implicitly into high-dimensional feature spaces. As SVM, AdaBoost is one of 
the most successful supervised classification methods with the aim to maximize the minimum 
margin of a training sample [2]. KNN is another unsupervised classification method which is 
able to predict the response of the new sample by analyzing a certain number of the nearest 
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neighbors in the feature space of the sample. In KNN, dataset is classified by minimizing the 
sum of squares of distances between each category and the corresponding cluster centroid 
[67]. Decision trees are commonly used in hyperspectral image analysis, to help identify a 
strategy that is most likely to reach a goal.

4. Applications in the quality assessment of fruits and vegetables

4.1. Applications of surface defect detection

The presence of surface defects influences the quality and price of fruits and vegetables, and 
weeding out the fruits and vegetables with serious defects early can prevent the infection of 
the whole patch. Therefore, detection of surface defects is the most commonly extended appli-
cation of image and spectral analysis to the external quality inspection of fruits and vegetables.

Visual inspection of fruits and vegetables with respect to color, texture, size, and shape by tra-

ditional computer vision is already automated in the commercial sorting machines. However, 

sorting by defects is still a challenging task due to the high variance of defect types and exis-

tence of stem/calyx concavities [68]. The color, texture, or internal components of defects may 
be different from that of the sound; therefore, color, texture, or spectral reflectance are usually 
selected as the defect features to discriminate the defects from the sound peel. Many applica-

tions aimed to detect defects based on these features have been described by using hyperspec-

tral or multispectral imaging system.

Due to lack of spectral information in conventional color images, traditional computer vision 
system is not efficient for the inspection of some defects with similar color and texture as sound 
peel, such as bruises, rottenness, or chilling injury. Hyperspectral and multispectral imaging 
systems provide powerful tools not only to detect skin defects but also to differentiate between 
a variety of defects that have similar color and texture or even to detect some defects that are 
not clearly visible [1]. Bruising is one of the familiar defects occurring on fruits and vegetables 
during post-harvest handling and processing stage. The existing commercial sorting machines 
are still not available in detecting bruises [69, 70]. An experiment of using a hyperspectral imag-

ing system for bruise detection on apples was conducted by Xing et al. [70]. PCA and PLSDA 
were used to extract the spectral and spatial features from the hyperspectral images in the 
region between 400 and 1000 nm. Their experiment proved that combination of image process-

ing and chemometric tools had a potential in detecting the bruises on apples. In order to detect 

the early bruises in apples, Baranowski et al. [69] proposed a system that included hyperspec-

tral cameras equipped with sensors working in the visible and near-infrared (400–1000 nm), 
short-wavelength infrared (1000–2500 nm) and thermal imaging camera in mid-wavelength 
infrared (3500–5000 nm) ranges. Results showed that the principal components analysis (PCA) 
and minimum noise fraction (MNF) analyses of the images could make it possible to distin-

guish between areas with defects in the tissue and the sound ones, and the fast Fourier analysis 
of the image sequences after pulse heating of the fruit surface could provide additional infor-

mation not only about the position of the area of damaged tissue but also about its depth. As 
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unsupervised methods, the class number and the color or intensity value for each class are 
always randomly assigned by PCA and MNF. The robustness and stability of their algorithms 
are needed to be tested in inline inspection situation.

Decay is another common defect with great potential risk for consumers, sellers and growers. 
To fast detect and visualize the early decay in citrus, Li et al. [71] developed multispectral 

image processing method with mean normalization reducing spectral variability due to spher-

ical fruit. The overall accuracy of 98.6% for test set with no false negatives was achieved. Their 
idea behind the proposed algorithm can be extended to detect the nonvisible damages of other 
fruit. Gómez-Sanchis et al. [72] presents the development of a hyperspectral system based on 
two liquid crystal tuneable filters for the acquisition of images of spherical fruits. They also 
designed a system that allows the filters to be exchanged quickly and without altering the 
acquired scene. The system and decay segmentation results are shown in Figure 10. Correctly 

classifying 98% of pixels as rotten or nonrotten tissues were achieved; however, changing the 
filters frequently decreases the detection efficiency, especially when working in the sorting 
line, the rotating products might cause the acquired scene vary with each of the filters.

Chilling injury is a common defect occurring during the storage and transportation at low tem-

peratures. Liu et al. [73] developed a hyperspectral imaging system to detect the chilling injury 
in cucumber by using band ratio and PCA methods. Results revealed that either band ratio 
algorithm (Q811/756) or PCA transform in a spectral region between 733 and 848 nm could 
detect the chilling injury with an accuracy of over 90%. Ariana and Lu [74] found that the 
hyperspectral imaging under transmittance mode has shown potential for detecting internal 

Figure 10. The system and decay segmentation results proposed by Gómez-Sanchis et al. (a) Hemispherical illumination 
chamber used to illuminate spherical objects (b) System created to facilitate the swap of two LCTF filters (c) RGB images 
and segmented images of mandarins with decay lesions [72].
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defect. However, the technique still cannot meet the online speed requirement because of the 
need to acquire and analyze a large amount of image data. They determined up to four-wave-

band subsets by a branch and bound algorithm combined with the k-nearest neighbor classi-

fier. The highest classification accuracies of 94.7 and 82.9% were achieved for cucumbers and 
whole pickles, respectively.

However, the acquisition and processing of the hyperspectral images is time-consuming, and 
the redundancy data makes the hyperspectral imaging system impossible to be used in-line 

or real-time. Actually, the hyperspectral imaging is always used for analysis and determin-

ing the effective wavelengths for a multispectral imaging system. Based on hyperspectral 
images and PCA, four efficient wavelengths (558, 678, 728, and 892 nm) were selected, and 
then a multispectral imaging system was developed by Xing et al. [75] to detect the bruises on 

apples. An overall accuracy of about 86% was obtained with their systems and algorithms. A 
near commercial multispectral imaging prototype for inline bruise detection was developed 
by Huang et al. [76] in NERCITA, China. Segmented principal component analysis (PCA) was 
conducted to eliminate data redundancy and select optimal wavelengths. Two dichroic beam-

splitters, two band-pass filters with the center at selected wavelengths and three prism-based 
2CCD multispectral progressive area scan cameras were used to develop the multispectral 

imaging system. Static and online tests were evaluated by their system, and 91.5% and 74.6% 
overall accuracy were achieved for static and online detection, respectively.

Table 1 shows a detailed summary of studies about the defect detection of fruits and veg-

etables by using hyperspectral imaging systems.

4.2. Applications of internal quality parameter measurement

4.2.1. Soluble solids content (SSC)

Soluble solids content, also named total soluble solids (TSS) content, is a collective index for 
sweetness measurement [77]. In the preharvest period, SSC profoundly dominates the opti-
mal harvest time for various fruits and vegetables, whereas changes of SSC during the shelf-
life period after harvesting would lead to quality fluctuation of fruits and vegetables [77]. 

Therefore, soluble solids content is an important internal quality attribute in determining fruit 
maturity and harvest time, and in assessing and grading post-harvest quality of apples [78].

In the past 20 years, many studies have been reported on predicting SSC in fruits using near-
infrared spectroscopic technique. Leivavalenzuela et al. [79] made a report on the applica-

tion of hyperspectral imaging technique for predicting the SSC of blueberries in the visible 
and short-wave near-infrared region of 500–1000 nm. In this study, Calibration models using 
partial least squares method were developed to predict the SSC, and the effect of fruit orienta-

tion on the model performance was evaluated. Results showed that hyperspectral imaging 
is promising for online sorting and grading of blueberries for firmness and perhaps SSC as 
well. Mendoza et al. [80] developed two different hyperspectral imaging systems: a station-

ary hyperspectral imaging system and a prototype on-line hyperspectral imaging system to 

evaluate the SSC in apples. The work used several methods, including discrete and continu-

ous wavelet transform and conventional image texture analysis. Finally, the results showed 
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Products Species Applications Types of 

CVS

Methods Accuracy Reference

Fruits Apple Quality grading MIS Statistical and 
syntactical 

classifiers

93.5% [81]

Apple Defect segmentation MIS ANN – [68]

Apple Quality evaluation MIS Flat-field 
correction

95% [82]

Apple Bruise detection HIS PCA, MNF, 
SIMCA, LDA, 
SVM

– [69]

Apple Defect detection HIS ASD – [83]

Apple Defect and feces 
detection

MIS _ – [84]

Apple Bruise detection HIS PLS, SDA 93.95% [85]

Apple Efficient wavelength 
selection

MIS QDA – [86]

Apple Rottenness detection HIS LDA, CART 91.2% [87]

Apple Bitter pit detection HIS PLS – [88]

Apple Defect detection MIS ANN 95.4% [89]

Apple Defect detection HIS BR 99.5% [90]

Apple Defect detection HIS SD, PCA – [83]

Apple Decayed spot, wound 

and rot detection

MIS BR 92.42% [91]

Apple Bruise detection HIS PCA, PLSDA 86% [70]

Apple Bruise detection MIS PCA, MT 86% [75]

Apple Bruise detection HIS PCA >77.5% [75]

Apple Bruise detection HIS PCA, MNT 88%, 94% [92]

Apple Defect detection MIS Rotating 90% [93]

Apple Defect detection MIS PCA, ANN 79% [94]

Apple Chilling injury 
detection

HIS ANN 98.4% [95]

Citrus Canker detection MIS BR, T 95.3% [96]

Citrus Skin damage 
detection

MIS Bayesian 
discriminant 

analysis

86% [97]

Citrus Common defect 
detection

HIS PCA 93.7% [98]

Citrus Light correction HIS Light 

correction

– [87]

Citrus Rottenness detection HIS ANN, DT 98% [99]
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that the integration of spectral and image features for hyperspectral scattering technique sig-

nificantly improved firmness and SSC prediction (by the t-test) for all three cultivars but with 
a lesser degree of pronouncement for SSC.

Peng et al. [78] did a research on the hyperspectral imaging system for predicting soluble sol-
ids content (SSC) of “Golden Delicious” apples which was calibrated both spectrally and spa-

tially. Their proposed methods, evaluating and comparing different mathematical models for 
describing the hyperspectral scattering profiles over the spectral region between 450 nm and 
1000 nm coupled with the scattering profile correction methods, could improve the hyper-

spectral scattering technique for measuring fruit quality; and the study also showed the modi-
fied Lorentzian distribution function with three parameters without including the parameter 
for the asymptotic value which was most appropriate for predicting both fruit firmness and 
SSC. Rajkumar et al. [110] at three different temperatures used a hyperspectral imaging tech-

nique in the visible and NIR regions (400–1000 nm) to study bananas’ SSC. Some quality 
parameters like moisture content were also determined and correlated with the spectral data 

using PLS. Their proposed methods, coupled with the scattering profile correction methods, 
could improve the hyperspectral scattering technique for measuring banana fruit quality.

Products Species Applications Types of 

CVS

Methods Accuracy Reference

Pear Bruise detection HIS PCA, MLC, 
EDC, MDC, 
SAM

93.8–95% [100]

Strawberry Bruise detection HIS LDA, ND, 
ANN

100% [101]

Cherry Pit detection HIS NN 97% [102]

Jujube Insect infestation 
detection

HIS JMP, MA 97% [103]

Vegetables Cucumber Bruise detection HIS PCA, BR 75-95% [89]

Cucumber Chilling injury 
detection

HIS PCA, FLD 91% [104]

Cucumber Chilling injury 
detection

HIS BR, PCA >90% [75, 105]

Mushroom Bruise detection HIS PCA 79-100% [106]

Mushroom Freeze damage 

detection

HIS PCA, LDA 95% [107]

Mushroom Enzymatic browning HIS PLS-DA – [108]

Onion Sour skin disease 
detection

HIS MS – [109]

HIS: hyperspectral imaging system; MIS: multispectral imaging system; BR: band ratio; MS: mean reflectance spectra; 
ASD: asymmetric second difference; MT: moments thresholding; and T: thresholding.

Table 1. Summary of studies about the defect detection of fruits and vegetables.
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Applications of hyperspectral imaging in fruit and vegetable SSC measurement could also be 
found in other crop products, such as strawberries, pears and so on [111, 112].

4.2.2. Firmness

Firmness is an important textural attribute for fruits and directly influences their shelf life 
and consumer acceptance, and it is an important internal quality attribute in determining 
fruit maturity and harvest time, and in assessing and grading post-harvest quality of apples. 
Thus, nondestructive sensing of fruit firmness would provide the fruit industry with a mean to 
ensure the quality and consistency of individual fruit, increase consumer satisfaction, and thus 
improve industry profitability [113].

Peng and Lu [113] proposed ten modified Lorentzian distribution with three parameters to 
characterize spatial scattering profiles from scattering images for Golden Delicious apples. 
A multilinear regression analysis was performed to predict the relationship between 
parameters of the scattering profile and the firmness of apples. This new method, coupled 
with the scattering profile correction methods, improved the hyperspectral scattering tech-

nique for measuring fruit and vegetable quality. Fan et al. [114] acquired hyperspectral 
reflectance image from each pear in visible and near-infrared (400–1000 nm) regions by 
employing the hyperspectral imaging system to determine SSC and firmness of pears. In 
this study, the variables selected by SPA, CARS and the combination of CARS and SPA 
were used for PLS regression. The overall results indicated that the CARS-SPA was an 
effective way for the selection of effective variables and the hyperspectral imaging system 
together with CARS-SPA-PLS model could be applied as a fast and potential method for 
the determination of SSC and firmness of pear. Qin et al. [115] measured the absorption and 

reduced scattering coefficients of apples through a spatially-resolved hyperspectral imag-

ing technique and related them to fruit firmness. This research demonstrated the potential 
of using spectral absorption and scattering properties to evaluate internal quality attributes 
of horticultural products.

4.2.3. Acidity/pH

The acid content is often determined by a titratable method. A common method used for mea-

suring ethylene production is to extract a gas sample from the internal core space of fruit or 
from a sealed container, in which fruits have been kept for a period of time and then analyzed 
using gas chromatograph [116]. The quality of fruit or vegetables is determined by a series of 
properties, such as acidity, which makes them attractive to consumers, is very crucial.

Cayuela et al. [117] described a portable AOTF-NIR spectrophotometer with a wide spectral 
range between 1100 and 2300 nm, which was equipped with a reflectance post-dispersive opti-
cal configuration and an InGaAs detector used for NIR prediction of fruit moisture content 
and free acidity. ElMasry et al. [111] determined acidity in strawberries by feat of a visible/
NIR hyperspectral imaging system (400–1000 nm). It was found that the spectral pretreatments 
of mean-centering and automatic baseline correction enhanced PLS calibration model when 
compared with others pretreatments, such as Savitzky-Golay smoothing, MSC, and first and 
second derivatives.
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Rungpichayapichet et al. [118] proposed a new hyperspectral imaging technology using a 

newly developed frame camera which was applied to determine internal properties of mango 
fruits including firmness, total soluble solids (TSS) and titratable acidity (TA). In their study, 
prediction models were developed using spectral data from relative surface reflectance of 160 
fruits in the visible and NIR region of 450–998 nm analyzed by PLS regression. From their 
results, HSI can be used as a nondestructive technique for determining the quality of fruits 
which could potentially enhance grading capabilities in the industrial handling and process-

ing of mango. Baiano et al. [119] carried out acidity determination in 7 cultivars of table grapes 
using NIR HSI with PLS models performing on the mean-centering correction spectra, and 
they achieved the coefficients of determination for predicting titratable acid and pH of red 
grapes and white grapes. They concluded that spectra information was not correlated with 
the sensory data, making hard prediction of attribute perception.

In addition to these fruits, the application of hyperspectral images acidity with broader range 
of 1000–2300 nm was acquired for the determination of total fat in beef cuts with good predic-

tion abilities [120]. In other study, Abdel-Nour et al. [121] applied hyperspectral transmittance 
imaging (900–1700 nm) to classify eggs into three types with different docosahexaenoic acid 
contents using K-means analysis, resulting in 100% classification accuracy. Liu and Ngadi 
[122] detected fertility and early embryo development of chicken eggs using near-infrared 
hyperspectral imaging.

4.2.4. Moisture/water content

A fruit or vegetable consists of many different constituents, where water is the major com-

ponent in fruits and vegetables [16]. Moisture content influences the taste, texture, weight, 
appearance, and shelf life of fruits and vegetables. Therefore, even a slight deviation from 
a defined standard can adversely impact the physical properties of a fruit or vegetable. For 
these reasons, the analysis to the moisture content of food products has a critical impact on 
quality and safety features [123].

Recently, hyperspectral imaging has also been used for determining the water content of other 
large variety of fruits and vegetables. Mollazade et al. [124] evaluated the potential of hyper-

spectral imaging combined with artificial neural networks to predict the moisture content in 
tomato fruit and to obtain spatial distribution maps. Their works displayed the spatial distribu-

tion of moisture content as a color map, where colors represent different values of predicted 
attribute. Finally, result showed that the feasibility of the method for characterizing the spatial 
distribution of an attribute in horticultural produce. Dong and Guo [125] proposed a hyper-

spectral reflectance imaging technology in near-infrared regions (900–1,70,002 nm) to evaluate 
soluble solids content (SSC), firmness, moisture content, and pH values of “Fuji” apples. They 
employed PLS regression, LS-SVM and back propagation (BP) network modeling methods to 
establish models to predict SSC, firmness, MC, and pH of apples, respectively. Results indicated 
that the moisture content could be predicted exactly by all developed models.

Firtha et al. [126] described an approach for the prediction of moisture content in carrot tissue. 
The work reduced the data load of hyperspectral experiments by using sample-specific vector-to-
scalar operators for real-time feature extraction and a systematic procedure for compensating for 
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 pixels in the NIR sensor. Results demonstrated that the approach to predict the moisture content of 
carrots is feasible. Except what we mentioned above, hyperspectral imaging can be applied on the 
moisture content of all kinds of fruits and vegetables such as strawberries and soybean [24, 127].

4.2.5. Starch content

Starch is the main form of carbohydrate in our food, which is present in a variety of grains, 
vegetables and fruits. During the ripening of fruit, starch is changed into sugar, which gives 
sweetness to ripe fruits [128]. The harvest time of fruits, matching the desired commercial 
characteristics, is assessed through starch-iodine test in practice [129].

Peirs et al. [130] employed a threshold value of the first principal component score image to 
measure the starch distribution and starch index of apple fruit during maturation. Results 
showed that the starch concentration obtained in each position of the fruit was continu-

ously measured compared with the discrete values obtained with the traditional technique. 
The method that they are proposed will speed up the application while the purchase costs 

decrease considerably and can be considered as a model system to map quality attributes of 
fruits. Menesatti et al. [129] researched the relationships of near-infrared (NIR) spectral images, 
starch/starch-free patterns visually assessed and RGB color images through PLS-DA to assess 
the starch index of apples. They studied the spectral region between 1000 and 1,70,002 nm 
through PLS-DA to assess the starch index in apples. Their proposed methods, avoiding 
expert’s subjective interpretation of starch index assignment, show the feasibility of NIR imag-

ing spectroscopy as a tool for fruit maturity determination.

Chen et al. [131] studied nondestructive detection of starch content in potatoes using the SPA-
MLR model and SPA-PLSR model, respectively. Results showed that the effect of the SPA-MLR 
model was superior to that of the SPA-PLSR model. Trong et al. [132] employed the starch 

index to estimate the optimal cooking time of potatoes. The changes caused by the microstruc-

ture and composition of starch affected the interaction of light with the starch granules at dif-
ferent regions inside the potatoes. In their research, the potential of hyperspectral imaging in 

the wavelength range of 400 nm to 1000 nm in combination with chemometric tools and image 

processing for contactless detection of the cooking front in potatoes has been investigated.

4.2.6. Ripening/maturity stages

The definition of apple maturity corresponding to the stage of fruit development, giving 
minimum acceptable quality to the ultimate consumer, implies measurable points in the com-

modity’s development and the need for techniques to measure maturity [133]. In addition, 

concerning the internal quality, maturity is extremely important to determine the harvest 
time and optimize the post-harvest treatment and environment [1, 16].

In recent years, many works on the determination of the maturity of fruits have been reported. 
An example of such studies is that of Rajkumar et al. [110] who studied banana fruit quality 
and maturity stages at three different temperatures by using hyperspectral imaging technique 
in the visible and near-infrared (400–1000 nm) regions to determine the quality parameters 
like moisture content. In their research, they concluded that the change in TSS and firmness 
of banana fruits stored at different temperatures during the ripening process followed the 
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 polynomial relationships and the change in moisture content followed a linear relationship at 
different maturity stages. And Garridonovell et al. [134] evaluated the potential of RGB digi-
tal imaging and hyperspectral imaging for  discriminating maturity level in apples. In their 

research, segmentation, preprocessing and PLS-DA are applied to hyperspectral data analy-

sis, while illumination correction, dimensionality reduction and linear discriminant analysis 

(LDA) are applied to RGB data analysis. Finally, they concluded that hyperspectral discrimina-

tion classified different storage regimes better than RGB.

Herrerolangreo et al. [135] developed an automatic procedure which is able to classify com-

mercial peaches according to their maturity stage through multispectral imaging techniques. 
They proposed and validated the process of evaluating peach maturity through spectral 
imaging, which is very crucial for ensuring its quality of optimum peach ripeness. The pro-

posed method is nondestructive and quick, and thus, it will have a good perspective for its 
application in fresh fruit packing lines. Girod et al. [136] introduced a nondestructive and 

quick technique that can measure the DM content to assess the maturity of avocados. The 
work analyzed avocado fruits at different maturity stages through hyperspectral imaging in 
reflectance and absorbance modes. The proposed method indicated that the reasonably accu-

rate models could be obtained for DM content with the entire spectral range. Applications of 
hyperspectral imaging to measure maturity stages of fruit and vegetable could also be found 
in pawpaws, tomatoes and grapes [1, 137, 138].

5. Conclusions

Over the past decades, hyperspectral imaging technique has been rapidly developing and 
widely applied in nondestructive fruit and vegetable quality assessment. This chapter pro-

vides the principles, developments and applications of hyperspectral imaging technology in 
the quality inspection of fruits and vegetables. The principal components, basic theories and 
corresponding processing and analytical methods are also reported in this chapter. Looking 

into the future of fast inline sorting industry, hyperspectral imaging faces both challenges 
and opportunities. The challenges include the influence of physical and biological variability, 
whole surface detection, discrimination between defects and stems/calyxes, unobvious defect 
detection, robustness of the features and algorithms, as well as rapid multispectral imaging 
system development. Though many solutions have been presented to solve the challenging 

problems in fruit and vegetable quality inspection by using hyperspectral imaging technique 
in previous studies by the scientific researchers worldwide, the challenges presented above 
will continue to be intractable problems for a long time.
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