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Abstract

The philosophy and the historical development of Kalman filter from ancient times to
the present is followed by the connection between randomness, probability, statistics,
random process, estimation theory, and the Kalman filter. A brief derivation of the filter
is followed by its appreciation, aesthetics, beauty, truth, perspectives, competence, and
variants. The menacing and notorious problem of specifying the filter initial state,
measurement, and process noise covariances and the unknown parameters remains in
the filter even after more than five decades of enormous applications in science and
technology. Manual approaches are not general and the adaptive ones are difficult. The
proposed reference recursive recipe (RRR) is simple and general. The initial state covari-
ance is the probability matching prior between the Frequentist approach via optimiza-
tion and the Bayesian filtering. The filter updates the above statistics after every pass
through the data to reach statistical equilibrium within a few passes without any opti-
mization. Further many proposed cost functions help to compare the present and earlier
approaches. The efficacy of the present RRR is demonstrated by its application to a
simulated spring, mass, and damper system and a real airplane flight data having a
larger number of unknown parameters and statistics.

Keywords: adaptive EKF, expectation maximisation, maximum likelihood, Cramer Rao
bound, probability matching prior

1. Brief introduction to the historical development of Kalman filter (KF)

1.1. Conceptual beginning of KF in ancient Indian astronomy

As is well known if there is one thing that does not change in nature it is the change. Such a

change has to be captured by some means. In general, neither the change nor the capture is

exact. Hence based on some suitable criteria a combination can be derived to correct. Such an
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update process has to be repeated at suitable intervals. The above philosophy of ‘change,

capture, and correct’ is the one that is followed in the Kalman filter. The ancient Indian

astronomers had understood the above philosophy.

The ancient Indian astronomers, at least since AD 500, used the above concept to update the

parameters for predicting the position of celestial objects for timing their Vedic rituals based on

measurements carried out at various time intervals which can be stated as

Updated parameter ¼ Earlier parameterþ Some quantity
� �

� Measured� Predictedð Þ Position of the celestial object
(1)

The ‘some quantity’ as we will see later on is the Kalman gain. Further, note the measured

longitude of the celestial object is different from the state that is updated, which is the number

of revolutions in a yuga just as state and measurements are in general different in many

Kalman filter applications!

They needed to calculate the position of the celestial objects like Sun, Moon, and other planets

to carry out the Vedic rituals. But their predicted positions changed over many centuries due to

unmodeled or unmodelable causes. The French historian Billard [1] noted that measurements

were carried out (in fact extending over many years or even decades!) at various times starting

from around AD 500 by Aryabhata to AD 1600 and the parameters were corrected to make the

predicted position of the objects consistent with new observations. Table 1 shows such revi-

sions over a period of time from Sarma [2].

During the above period, Nilakantha (around AD 1443) had stated that the eclipses cited in

Siddhantas can be computed and the details verified. Similarly, other known eclipses, as well

as those currently observable, are to be studied. In the light of such experience, future ones can

be computed and predicted (extrapolation!). Or eclipses occurring at other places can be

studied taking into account the latitude and longitude of the places and on this basis the

method for the true Sun, Moon… can be perfected (data fusion!). Based on these, the past

and future eclipses of one’s own place can be studied and verified with appropriate refinement

of the technique. This is just the idea of ‘smoothing’! Billard had a problem for later Indian

Table 1. Corrections of planetary parameters in ancient India. From Sarma [2] (Sun 43,20,000; Number of days per

yuga = 1,57,79,17,000+).

Kalman Filters - Theory for Advanced Applications2



astronomers as ‘If the elements of Aryabhata are now wrong, they must have been accurate

when he was living. Thus, we ought to establish the astronomical elements upon both on his

own at his time and the new observations of the present time’. He noted that based on the

above reasoning, some Indian canons were evolved and one such canon around AD 898 shows

a very high accuracy valid over a larger number of centuries [1].

1.2. Development of the concepts in KF during the medieval period

On January 1, 1801, Piazzi, while searching for a wrong entry in a star catalogue, discovered the

largest and the first of the asteroids Ceres. He tracked its position for the next 41 days, before it

was lost in space. He wrote to Bode who felt it to be the missing planet in his formula. Its orbital

elements could not be determined by the then available methods. Newton had stated it as the

most difficult nonlinear problem then in astronomy. Piazzi’s discovery was published in 1801.

Gauss tackled the problem and estimated its orbit and sent it to Piazzi who found it again on the

last day of 1801! Gauss published his orbit determination methods only in 1809 [3] describing his

1795 method of least squares (LS) used in his estimates of the Ceres orbit. Gauss had an ideal

situation with a good system model and only the measurement noise, and thus with his least

squares approach he could get an estimate and a qualitative measure for the uncertainty.

Independently, the method of LS had been discovered and published by Legendre of France

and Robert Adrian of the United States. In fact, even before Gauss was born, the physicist

Lambert had used it! Gauss has provided almost all the essentials of present day estimation

theory. He postulated that a system model should be available, minimum number of measure-

ments for observability, the redundant data helping to reduce the influence of measurement

errors, a cost function based on the difference between the measurement and that predicted by

the model should be minimised. There should be some a priori knowledge concerning the

unknowns to be estimated. Further, since the errors could be unknown or unknowable, he had

given hints about probabilistic approach, normal distribution, and method of maximum likeli-

hood estimation, linearization, and the Gaussian elimination procedure. Gauss did not balance

the governing differential equation, but tried to fit the measurement with the prediction. If he

had tried the former, he would have been led to a biased solution! Fortune favours the brave!

This is where a proper mathematical framework helps to understand if an algorithm converges

to the correct value with more and more measurements. The post Gaussian contributions in ET

consists of the method of moments, method of maximum likelihood estimation, the Kalman

filter and its variants, frequency domain approach, and handling time varying dynamical state

and parameters. Further, the use of matrix theory, sequential instead of batch processing, and

real-time processing by computers exist. We are dealing with more difficult situations, but the

conceptual framework to solve these problems had been fully laid out by Gauss!

1.3. Mature KF during the twentieth century and beyond

Almost every concept in present day science and technology seem to have its root in ancient

times as mentioned earlier. It must be understood that the classic papers by Kalman [4] and

Kalman Bucy [5] was conceptually preceded earlier by Thiele as mentioned by Lauritzen [6],

Swerling [7], Stratonovich [8] and some other researchers. The development of the Kalman filter

is one of the most interesting and useful innovations of the twentieth century, and it owes its
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origin to the least squares solution proposed by Gauss. For Gauss, the state equations were the

exact Newton’s laws ofmotion and onlymeasurement noise existed. The sequential least squares

were rediscovered by Plackett [9] and Kalman [4]. Thus, in fact, Sprott [10] has questioned if the

Kalman Filter is really a significant contribution when Gauss was far ahead! The point is that the

frequency domain approach of the Wiener filter [11] has been improved to the natural time

domain approach. Further the shift from batch to the sequential approach is very convenient to

handle continuous measurement data flow. It is to the credit of Kalman apart from unifying

earlier results that he introduced the concept of controllability and observability, which means

the system to be identified has to be properly excited and observed thus making the estimation

problem systematic and consistent. The only slight difference, but very momentous between the

Recursive Least Squares (RLS) and the Kalman filter is the time propagation of the state and

covariance estimates between measurements (see for example [12]). Presently, the scale and

magnitude of many difficult and interesting problems that estimation theory (ET) is handling

could not have been comprehended by Gauss or Kalman. Examples are airplane flight test data

analysis [13, 14], target tracking [15], evolution of the space debris scenario [16], fusion of GPS

and INS data [17], study of the tectonic plate movements [18], high energy physics [19], agricul-

ture, biology, and medicine [20], dendroclimatology [21], finance [22], source separation problem

in telecommunications biomedicine, audio, speech and in particular astrophysics [23], and atmo-

spheric data assimilation for weather prediction [24].

2. Randomness, probability, statistics, random process, estimation theory,

and Kalman filter

The connection among probability, statistics, random process, and estimation theory by

Ananthasayanam [12] as shown in Figure 1, are ubiquitous in science, technology, and life.

RANDOMNESS IS COMMON TO P, S, R AND ET

SEQUENTIAL ET IS KALMAN FILTERING

PROBABILITY (P)STATISTICS (S)

RANDOM                        

PROCESS (R)

ESTIMATION 

THEORY (ET)

INVERSE, DIFFUSE DIRECT, SHARP

TIME INDEPENDENT

TIME DEPENDENT

Figure 1. Relationship between probability, statistics, random process, and estimation theory.
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The randomness is common to all and sequential time-dependent statistical analysis can be

called as Kalman Filtering.

2.1. Randomness

We have moved unambiguously from determinism to randomness ever since ancient times to

the present. We are compelled to understand, model, estimate and control nature which is

random in a probabilistic way. Randomness occurs inevitably in all walks of life. The ontology

(the true nature) is one thing and the epistemology (our understanding) is another thing. A

computer generating a sequence of random numbers is deterministic ontology, but for the user

who does not know how they are generated it is probabilistic epistemology. Randomness is

patternless but not propertyless. Randomness could be our ignorance. Chance is no longer

something to worry about or an expression of ignorance. On the contrary, it is the most logical

way to present our knowledge. We are able to come to terms with uncertainty, to recognise its

existence, to measure it and to show that advancement of knowledge and suitable action in the

face of uncertainty are possible and rational. Random chance may be the antithesis of all law.

We look for the alternatives and provide the probabilities of their happening as measures of

their uncertainties. Knowing the consequences of each event and the probability of its happen-

ing, decision making under uncertainty can be reduced to an exercise in deductive logic. It is

no longer a hit and miss affair. But, the way out is to discover the laws of chance and convert

chance to choice in life. The aim of life is to make the earth a happy place to live.

Randomness could occur due to the uncertainty, variability, complexity, or enormity. A classic

example is the deterministic coin tossing. There is enormity in dealing with a large number of

air molecules, the complex interaction of air among themselves and with the coin, variability of

the initial condition, and the uncertainty due to air currents. Of course, many deterministic

mathematical problems could be handled using probabilistic approaches called Monte Carlo

techniques. Quantum Mechanics seems to possess true randomness. One feels that random-

ness is a nuisance, and should be avoided. However we have to live with it and compulsively

need it in many situations. In a multiple choice question paper, no examiner would dare to put

all the correct answers at the same place! As another example the density, pressure, and

temperature, or even many trace constituents in air can be measured with a confidence only

due to the random mixing that invariably takes place over a suitable space and time scale. As

we will see later, the introduction of random process noise into the kinematic or dynamical

equations of motion of aircraft, missiles, launch vehicles, and satellite system helps to inhibit

the onset of Kalman filter instability and thus track these vehicles. The well-known statistician

Rao [25] states that statistics, as a method of learning from experience and decision making

under uncertainty, must have been practiced from the beginning of mankind. The inductive

reasoning in these processes has never been codified due to the uncertain nature of the

conclusions drawn from any data. The break through occurred only at the beginning of the

twentieth century with the realisation that inductive reasoning can be made precise by speci-

fying additionally just the amount of uncertainty in the conclusions. This helped to work out

an optimum course of action involving minimum risk in uncertain situations in the deductive

process. This is what Rao [25] has stated as a new paradigm of thinking to handle uncertain

situations as
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Uncertain knowledge þ Knowledge of the amount of uncertainty in it

¼ Usable knowledge
(2)

The Kalman filter dealing with only the estimates and their uncertainties thus has minimal

additional information to handle.

2.2. General remarks on P, S, R, and ET

Though randomness exists in all the above, due to the undercurrent of some determinism

wrapped by uncertainty the processes are not completely haphazard. The P and S are time

independent, whereas R and ET are their time-dependent analogues. The P and R are direct

using deductive logic; whereas S and ET are inverse problems using inductive logic, thus more

difficult than the former. The S and ETdeal with data that are insentient and do not speak. The

analyst gives life to the data to find out the underlying model mechanism based on intuitive

and subjective analysis to obtain results and conclusions which are meaningful and useful.

In an inverse problem with a limited sample size from the population with or without noise,

the problem is considered, as well posed if (i) there exists a solution to the problem (existence),

(ii) there is at least one solution to the problem (uniqueness), and (iii) the solution depends

continuously on the data (stability). Generally, an acceptable and reasonable solution can be

worked out by specifying some subjective criterion cast in terms of a quantitative cost function

to match (in some reasonable way) the model and the measurements made on the system.

Further, no matter whatever technique one adopts unless and until the model structure of the

system is appropriate and the parameters in it are identified along with the noise sequence,

one can never obtain the true value but only be around it all the time. When a system model

characterises many effects, then the model structure should reflect each one appropriately and

the parameters in them estimated for apportioning the different effects.

2.3. Probability (P)

The probabilistic approach subsumes in general the deterministic laws of physics (but one can

include them also) or others postulated for any system. It utilises the axiomatic rules governing

probability leading to outcomes regarding the behaviour of the ensemble. The probability itself

can be broadly specified based on Classical, Bayesian, and the Frequentist approaches [26].

These are, respectively, based on the ‘principle of indifference thus equiprobable’, ‘degree of

belief’, and ‘limiting frequency’ of the occurrence of the events. The law of large numbers and

the central limit theorem under very general conditions (leading to a Gaussian distribution)

assist in reaching practical conclusions.

2.4. Statistics (S)

In order to define statistics, it seems best to follow Feller [27] which in our language is to

analyse the measurement data to develop a mathematical model with the intuitive mind

providing the methodologies. The mind is nebulous, measurement is spotty, and model is

smooth if one may say so. Then, the simplest definition of statistics seems to be a good

translation of measurements into a model by the mind. Of course, the three are randomly

Kalman Filters - Theory for Advanced Applications6



used for progress in science, technology, and life. An intuitive subjective idea is cast in an

objective form to help the analyst decide if the difference between measurement and model

can be attributed to statistical fluctuation or deterministic change. Such a decision is always

based on extra statistical (!) implications. All the concepts and problems of statistics go over to

estimation theory, and in turn to Kalman filter which is to sequentially process the time-

dependent data. Generally, in statistics, linear relationship among the variables is prolific since

it is the simplest and anything else would have to be justified a priori.

The philosophical discussions about the Classical, Bayesian, and Frequentist approaches to

probability and statistics can go on endlessly. The most prevalent view is Frequentists deal

with data only, but Bayesians try to incorporate well established ‘a priori’ information as well

into the problem. But no matter whichever approach is followed, eventually one has to take a

practical view and ensure the final results are credible and useful.

2.5. Random process (R)

Here, in R, the simplest characterisation of time-dependent noise is white in time following a

Gaussian distribution, thus containing the least amount of information! However, due to the

undercurrent of some amount of determinism wrapped by uncertainty, the processes are not

completely haphazard. If the atmosphere and earth quakes behave like white noise then meteo-

rologists, geologists would have no work! The underlying deterministic processes are wrapped

in noise providing some underlying correlations. The white noise is the worst data that will fail

any algorithm for prediction, but used most prolifically in ET since it is mathematically tractable!

2.6. Estimation theory (ET)

The basic framework of ET in analysing a given measurement data consists of qualitatively

modelling the system, measurement and all the noise characteristics, a criterion to match or

mix the model output with the measurements in some optimal sense, a numerical algorithm

for the above task and consequently estimate the unknown parameters and the noise statistics

together with their uncertainties and lastly an internal consistency check to ensure that the

assumptions regarding model and measurement noise above are consistent and if not the

above steps have to be modified and repeated.

There is a general feeling that ET solutions have to be objective with little scope for subjectivity.

However, it is interesting to note that subjectivity cannot be avoided, but it is the one that helps

all the way from the formulation of the problem to obtaining the final solutions. Deterministic

approaches of the early period have given way to probabilistic approach that is neither a

fashion nor the truth (!) The probabilistic rules aid in modelling the scenario and the statistical

approach of analysing the data with all its subjectivity provides acceptable quantitative esti-

mates together with their uncertainties.

3. Overview of Kalman filter

The simplest formulation of a Kalman filter is when the state and measurement equations are

linear, a well-known fact as mentioned by Brown and Hwang [28]. For linear systems during
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evolution and update the form of the normal distribution is maintained, but with changed

mean and covariance. However, the Kalman filter has found its greatest application for

nonlinear systems. Particularly in many aerospace applications, the unknown parameters

multiply the state variables to provide force or moments acting on the vehicles. If the unknown

parameters are treated as additional states then the system of equations become nonlinear.

Thus, the Extended Kalman filter (EKF) formalism can be used. The EKF formulation provides

the simplest scenario to present the proposed Recurrence Recursive Recipe (RRR). Other filter

formulations contain the effect of further approximations, discretizations and other features. A

typical continuous state with discrete measurements in time forms a nonlinear filtering prob-

lem and can be written as

x kð Þ ¼ f x k� 1ð Þ;Θ;u k� 1ð Þð Þ þw kð Þ (3)

Z kð Þ ¼ h x kð Þ;Θð Þ þ v kð Þ, k ¼ 1, 2, 3,…::N (4)

where ‘x’ is the state vector of size (n � 1), ‘u’ is the control input, Θ is the parameter vector of

size (p � 1) and ‘Z’ is the measurement vector of size (m � 1). The ‘f’ and ‘h’ are nonlinear

functions of state and measurement equations, respectively. The process and measurement

noise are assumed to be zero mean with covariance Q and R, respectively, and their sequences

are uncorrelated with each other. The states are generally not directly observable, but the

measurements are related to the states.

In EKF formulation, the parameter vector Θ is augmented as additional states. Thus,

x kð Þ

Θ kð Þ

� �

¼
f x k� 1ð Þ; Θ k� 1ð Þ; u k� 1ð Þð Þ

Θ k� 1ð Þ

� �

þ
w kð Þ

0

� �

(5)

The nonlinear filtering problem is now redefined as

X kð Þ ¼ f X k� 1ð Þð Þ þw kð Þ (6)

Z kð Þ ¼ h X kð Þð Þ þ v kð Þ, k ¼ 1, 2,…::N (7)

where ‘X’ and ‘w’ are, respectively, the augmented state and process noise vector of size

((n + p) � 1). The control symbol ‘u’ is not shown for brevity. The solution for the above

filtering problem can be summarised as

Initial State Estimate X 0j0ð Þ ¼ X0 ¼ E X t0ð Þ½ �, (8)

Initial State Covariance Matrix P 0j0ð Þ ¼ P0 ¼ E X0–X t0ð Þð Þ X0–X t0ð Þð ÞT
h i

(9)

Prediction Step : X kjk� 1ð Þ ¼ f X k� 1jk� 1ð Þð Þ, (10)

P kjk� 1ð Þ ¼ F k� 1ð ÞP k� 1jk� 1ð ÞF k� 1ð ÞT þQk (11)

We presume that X kjk� 1ð Þ and P kjk� 1ð Þ represent the estimates of the state and its covari-

ance matrix at time index k, based on all information available up to and including time index

Kalman Filters - Theory for Advanced Applications8



k�1. Then, we update the state value from X kjk� 1ð Þ to X kjkð Þ using the measurement Z kð Þ

with uncertainty denoted by R kð Þ based on the value of K kð Þ called the Kalman gain such that

the updated covariance P kjkð Þ has the individual terms along its major diagonal is a minimum

leading to

Update Step : K kð Þ ¼ P kjk� 1ð Þ H kð ÞT H kð Þ P kjk� 1ð Þ H kð ÞT þ R kð Þ½ ��1 (12)

X kjkð Þ ¼ X kjk� 1ð Þ þ K kð Þ Z kð Þ � h X kjk� 1ð Þð Þ½ � ¼ K kð Þνk (13)

P kjkð Þ ¼ I�K kð ÞH kð Þ½ �P kjk� 1ð Þ (14)

where P denotes the uncertainty, F k� 1ð Þ is the state Jacobian matrix (∂f/∂X) evaluated at X ¼

X k� 1jk� 1ð Þ and the measurement Jacobian H kð Þ evaluated at X ¼ X kð Þ. The X kjk� 1ð Þ

denotes the value at t(k) based on the process dynamics between t(k-1) and t(k), but before

using the measurement information. The observation (measurement) of the process is at

discrete time points in accordance with the local linearised relationship H = (∂h/∂X) evaluated

at X ¼ X kð Þ at the measurement time point. The quantity which is the difference between the

actual measurement and the predicted model output

νk ¼ Z kð Þ � h X kjk� 1ð Þð Þ½ � (15)

is called the innovation. Further when the measurement is compared with the updated state

X kjkð Þ, then the quantity

νf ¼ Z kð Þ � h X kjkð Þð Þ½ � (16)

is called the filter residue. As the filter passes through the measurement data, the last measure-

ment provides the best estimate using all the data points. In order to obtain similar estimates at all

the intermediate time points using all themeasurements, the filter can be operated backwards and

with a proper blending provides the smoothed estimates such as by Rauch et al. [29]. The quantity

νs ¼ Z kð Þ � h X kjNð Þð Þ½ � (17)

is called as the smoothed residue where X kjNð Þ is the smoothed state at time t(k) based on all

the measurements N.

It may be noted that when the innovation is white it means all the information has been

extracted from the data and no further information is left, with both the models and the

algorithm have done their best job!

Note that we have combined the local state estimate and the measurement both at time t(k) to

obtain an updated state. Further, the use of only the estimate and covariance all over the filter

tacitly implies the state and measurement variables are all distributed or approximated as

quasi Gaussian. Thus, if initially the state is assumed to be distributed normally with mean

X0 and covariance P0 then the KF involves iterative operation of two steps: prediction and

after an update (also called correction) step there is a subtle reset as a Gaussian. Thus, with all

such subjective features, the final answer can only be an answer rather than a unique answer.

A Reference Recursive Recipe for Tuning the Statistics of the Kalman Filter
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There are five steps in the Kalman filter, namely state and covariance propagation with time,

Kalman gain calculation and the state and covariance updates by incorporating the measure-

ment. The state propagation and update refer to the sample while the covariance propagation,

update and the Kalman gain refer to the ensemble characteristics. It is possible that at times

based on the measurements the updates may move locally away from the true values, but with

increasing data it will move towards the true value. But this should be noted as the behaviour

of the sample. What the filter gain denotes is that in an overall probabilistic ensemble sense

the Kalman filter will outperform many other estimators. This is analogous in life to some

righteous persons who appear to loose but that in the long run they will win! These steps that

statistically combine two estimates at any given time point, one from state and the other from

measurement equation, are formal if only their uncertainties denoted by their covariances are

available. Thus, the states can be estimated given the initial X0 and P0 as well Q and R over

time. Over a time span in order to match and minimise the difference called the innovation, in

some best possible sense, a well-known criterion is the method of maximum likelihood esti-

mation (MMLE). The innovation follows a white Gaussian distribution which is operationally

equivalent to minimising the cost function.

J ¼ 1=Nð ÞΣ νk H kð ÞP kjk� 1ð ÞH kð ÞT þ R kð Þ½ ��1
ν
T

k
¼ J X0;P0;Q;R;Θð Þ (18)

based on summation over all the N measurements and has to be solved for X0, P0, Q, R, Θ. The

importance of the innovation followingwhite Gaussian for filter performance was brought out by

Kailath [30]. Generally, mathematical treatment is terse (as the original paper of Kalman deriving

the filter from the orthogonal projection principle) and refers to large data. But the sensitivity of

the final results to the intermediate statistical quantities for filter consistency (at what confidence

level?) is not apparent and sometimes lead to physically unacceptable results as noted in Shyam

et al. [31]. Hence, for engineering applications, it is desirable to look for other statistics from the

filter. When Q � 0, the MMLE is called as the output error method with the Kalman gain matrix

being zero. When Q > 0, the method is called as filter error method. In the usual Kalman filter

implementation generally one does not solve for the statistics P0, Q and R but they are adjusted

manually to obtain acceptable results. The numerical effort of minimising J has to appear in the

estimation of the filter statistics. The Kalman filter is not a panacea to obtain better results when

compared to simpler techniques of data analysis. The accuracy of the results using Kalman filter

depends on its design based on the choice of X0, P0, Θ, R and Q. If the above values are not

chosen properly then the filter results can be inferior to those from simpler techniques.

Other cost functions can and have been used in Kalman filter work such as the Integral of Time

multiplied by Absolute Error with time as a scaling factor. This is meaningful since it is

important to ensure a zero error after the filter has converged. This is given by

JITAE ¼ 1=Tð Þ

ð
1=Nð Þ

X
aiνi dt (19)

where the ai is suitable weight related to the innovation covariance. Another cost function

useful to study the effects of inadequate modelling in state estimation problem that is very

common in Kalman filter studies has been proposed and used in rendezvous and docking

problem by Philip and Ananthasayanam [32] as
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JMODEL ¼ 1=Nð Þ
X

x ið Þ–xref ið Þ
� �

P�1
x ið Þ � xref

� �T
(20)

with the summation is over all the N time points and the suffix ‘ref’ refers to a desired

reference trajectory to be followed and the argument in x (.) denotes the time step or point.

The P is the covariance matrix obtained with nominal values for the unknown disturbances. If

the variations or a deficiency in the modelling is beyond the statistical fluctuations as denoted

by the covariance, then the above cost function changes substantially and indicates a degrada-

tion of the filter performance. Further cost functions are introduced here to obtain confidence

in the results from the proposed RRR for tuning the filter statistics.

3.1. An appreciation of the Kalman filter

Science and technology has progressed through theories and experiments. It is only in

Kalman filter that both theory and experiment are handled simultaneously almost all the

time. Due to the seemingly unpretentious fact of splitting the state and measurement equa-

tions and switching between the state propagation and its update using the measurements,

very interesting outcomes have been shown to be possible. This is similar to any amount of

deep study and understanding of the state or the measurement equations (theory and

experiment) separately may not be able to comprehend the exciting possibilities and abilities

when both are combined together. This is similar to the components of a watch, or the cells in

an organism leading, respectively, to the time keeping ability or life, which do not exist in the

individual components. The GPS is another brilliant example of such a synergism. The

competence of the Kalman filter is similar to the saying ‘wholes are more than the sum of

their parts’ as stated by Minsky [33]. It is the above feature that can be called as synergistic,

parallel, operator splitting that is the remarkable and profound aspect of the Kalman filter

rather than describing it as a sequential least square estimator, or capable of handling time

varying states and measurements.

3.2. Aesthetics, beauty, and truth of the Kalman filter

The aesthetics of the Kalman filter is to consider only the estimate and the covariance

representing the uncertainty. Just only one additional quantity to move from a deterministic

case to probabilistic scenario for describing the results is economical.

In Kalman Filter, at the initial time, the probability density function is assumed to be Gaussian.

This need not be true if the state is not a measured quantity whence it could be true or an

assumption is made. If the state equations are nonlinear then after the state propagation the

probability density function becomes non-Gaussian. Next, in general, the combination of the

propagated states and measurements (with any one being non-Gaussian) need not lead to an

updated Gaussian. However, at a measurement update, only the estimate and the covariance

of the density functions which could be non-Gaussian is used. Thus, even in nonlinear prob-

lems after an update when the distribution need not be Gaussian is subtly reset to be a

Gaussian with the updated estimate and covariance.

These above are in some ways similar to many other problems in science and engineering

wherein only the first and second derivatives or moments alone are considered. This is just the
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reason and fortuitously as well for using velocity and pressure or temperature in equilibrium

thermodynamics, which depend on the first and second moments, respectively, of the distri-

bution function governing the random velocity of the gas molecules. This leads to the consid-

eration of fewer moments or states to describe the dynamics of the gas flow. What would

happen if higher order moments had been relevant! Even in classical dynamics in the equa-

tions of motion, the linear and angular accelerations are only the second derivatives! As

another example, take a rectangular distribution and with increase in sample size the lower

order moments converge faster than the higher order moments. This is because away from the

middle, the tail controls the higher order moments. For a very similar reason, the Boltzmann

equation in kinetic theory deals only with single particle distribution as against multi particle

distribution function.

The beauty in the Kalman filter is whether it is true or otherwise many random variables are

assumed to follow a multivariate Gaussian distribution, and thus the derived joint and marginal

density functions are all Gaussian. The Gaussian distribution provides an enormous amount of

mathematical tractability exactly for linear systems and approximately for nonlinear systems.

The truth in the Kalman filter equations is that once it is derived in one way, it is possible to derive

it in a variety ofwayswith slightly different assumptions, butmostly leading to similar set of basic

equations as for linear problems. The author of each book has his own derivation! It is interesting

to note that the simplest formulation of the Kalman filter is based on minimum amount of a priori

knowledge or information in probability, statistics, and random process providing, respectively,

the Gaussian distribution, linear relationship among the variables, and white noise [12]. Other-

wise one has to justify themwhich may not be simple or easy. If necessary other suitable distribu-

tions, nonlinearity, and coloured noise can be introduced later into the filter framework.

3.3. Different perspectives and competence of Kalman filter

The Kalman filter can be viewed as an inverse problem, deterministic or probabilistic approach,

reversing an ‘irreversible’ process. Also it can be considered as qualitative modelling and quan-

titative estimation, stochastic corrective process by Narasimha [34], data fusion and statistical

estimation by probabilistic mixing, optimization in the time (or frequency) domain. The compe-

tence of the filter consists of estimating unknown or inaccurately known parameters (including

deterministic errors) in the state and measurements, estimation of process and measurement

noise, improved states and measurements by smoothed filter estimates, estimation of

unmodelable inputs by modelling them in a probabilistic way, unobservables from observables,

expansion of the scenario, handling computational errors by noise addition, consistency check of

the whole process of modelling, convergence of the numerical algorithm, and the extraction of

the complete information from the data by checking the correlation of the innovation sequence.

All of the above are achieved based on the measurements and suitable modelling of the state and

measurement equations. The above aspects are discussed in [12, 31].

3.4. Kalman filter and some of its variants

For nonlinear systems, even if the initial distribution is assumed normal, it gets distorted after

propagation and so a suitable local approximation or quasi linearization has to be made. In the
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EKF the nonlinear systems and/or measurements equations are approximated by appropriate

first order Taylor series expansion. The probability density is approximated by a Gaussian,

which may distort the true structure and at times could lead to the divergence between the

filter prediction and the measurements. In the Unscented Kalman filter (UKF) by Julier et al.

[35] approach, instead of linearizing the functions, a set of chosen points are propagated

through the nonlinear transformation. These points are so chosen such that the mean, covari-

ance, and possibly also higher order moments match better with the propagated distribution.

At an update, only the estimate and covariance matters.

The particle filtering by Gordon et al. [36] is a Monte Carlo technique for state estimation that can

handle nonlinear models together with non-Gaussian noise. Here, the state probability density is

approximated by using point particles having positive weights. Based on the initial distribution,

the weights are chosen and then the particles are propagated following the system dynamics

together with the state noise. Then using the measurement, their weights are adjusted and

normalised among all the particles. The particles that can track the measurements gain weight

and the ones far away lose their weights. However, after a while, all but one weight will become

zero leading to degeneracy. A resampling scheme is introduced to solve the degeneracy problem

that discard the particles with small weights and focus on the particles with more significant

weights. Then, the procedure continues sequentially over the measurements.

For large size systems, such as those occurring in geophysical studies maintaining the covariance

matrix computationally being difficult, in the ensemble KF (EnKF) for large problems Evensen

[24], the estimate and the covariance matrix are replaced by the sample covariance from a large

number of ensemble members similar to a particle in the particle filter. Each member of the

ensemble is propagated including the process noise and later updated using a so-called virtual

observation. Again, the procedure continues sequentially over the measurements.

One may note the evolution of the variants of the Kalman filter possesses some similarities as it

progressed to handle simple, complex, to massive problems as in many other fields such as

fluid dynamics or structural mechanics. In these cases, commencing from simple geometries

one obtains closed form analytical solutions as in the linear KF, wherein the gains can be pre

computed to process the data as and when they arrive. Then for involved nonlinear state and

measurements one uses local linearization and numerical calculations as in EKF. When the

geometry is complex and the boundary conditions are involved, it becomes necessary to

discretise and form cells over appropriate space and time as in particle filtering to obtain the

solution. Further when massively complex geometries and boundary conditions occur other

innovative approaches like Ensemble Kalman Filter have been developed. An extensive bibli-

ography of the nonlinear estimation is provided by Georgios [37] and an excellent review of

nonlinear filters is given by Daum [38].

4. Tuning of the Kalman filter statistics

The solution for the linear filtering problem in discrete time was proposed in the famous 1960

paper by Kalman [4]. This was followed for continuous time in 1961 by Kalman and Bucy [5].
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Not many know that the enthusiasm that followed soon after Kalman introduced his filter was

damped, the solution was only formal and the statistics of the process Q and measurement

noise R had to be specified to design and implement the filter. After the 1960 paper of Kalman

by the time of Gelb’s book [39] in 1974 most filter approaches, applications and numerical

procedures except the tuning of the filter statistics were in place. Kalman when he proposed

the filter dealt with only state estimation. In many present day applications, one does not even

know the structure of the state and measurement equations as well as the parameters in them

and the statistical characteristics of the state and measurement noise. One can also add the

unknown initial state conditions X0. All the unknowns have to be estimated using the mea-

surements only. The estimation of the system parameters Θ, X0, P0, together with Q and R is

called filter design or filter tuning.

An interesting feature of KF is that one can use it to start with at least, without understanding

the derivation can tune the filter by trial and error procedures for the statistics without

carrying out an optimization as mentioned by Sorenson [40]. Even though the estimator

performance may be satisfactory for some ‘a priori’ reasonable choice of P0, Q and R, it could

lead to unacceptable results in many cases. Rarely, sensitivity studies on R and Q like by

Subbaraju et al. [41] while estimating the drag in the presence of thrust of Satellite Launch

Vehicles are reported. Most reports and publications write out detailed filter equations but the

tuning procedures are not spelt out. In fact, the ghost of filter tuning chases without exception

every variant or formulation of the Kalman filter. If not tuned properly, it is difficult to infer if

the performance of the filter is due to its formulation or filter tuning! It is surprising that most

text books on Kalman filtering provide a scanty treatment of the problem of filter tuning that is

at the heart of KF design.

One has to tune the statistics P0, Q and R for a satisfactory filter operation and even now this is

generally done manually! Usually, the filter statistics are tuned off line using simulated data

and subsequently used for on line and real time applications with some modifications. In spite

of its immense applications for more than five decades in many problems of science and

technology, the filter tuning has not matured to an easily implementable approach even to

handle a constant signal with measurement noise! Generally the tuning is manual or with ad

hoc quick fix solutions such as limiting P from going to zero, or adding Q to increase P before

calculating the gain and multiplying P by a factor to limit K, all have obviously limitations in

handling involved problems or scenarios. All the above introduce additional parameters to be

adjusted that varies for every problem. The present work provides a generalised heuristic

approach together with consistency check.

4.1. Qualitative features of P0, Q, and R the filter statistics

Should the P0 � Q � 0 then the filter will not learn anything from the measurements at all

which will be ignored. The P0 is tricky and generally the off-diagonal elements are set to zero

and the diagonal elements are set to large values. However their relative values are crucial for

an optimum filter operation. The R can be determined from the measured data. In fact if one is

satisfied with the measurement accuracy then no filter is needed. The main activity of the filter

is to follow the measurements and further reduce or suppress the effect of noise. In spite of

being labelled as ‘notorious’ it is only the Q that an analyst can estimate, account or offset for
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some deficiency, inaccuracy, or error in the following namely in the initial conditions, the

unmodelled or unmodelable errors in the system and measurement equations, control or

external input, measurement noise statistics, the errors in the numerical state and covariance

propagation, a small increase in Q to offset modest errors in Taylor series approximations in

EKF(!), or in the update operations of the Kalman filter. The Q helps to inject uncertainty into

the state equations to assist the filter to learn from the measurements and also controls the

steady state filter response. Too large a value of Q will lead to a short transient with large

steady state uncertainty of the estimates and a small Q vice versa.

The Q is helpful to track systems whose dynamical equations are unknown. Some classic

examples are the GPS receiver clocks, satellite, trajectory of aircraft, missiles, and re-entry

objects. These are handled by using the kinematic relations as state equations among the

position, velocity, acceleration and even jerk [42] driven by white Gaussian noise Q to enable

the filter to track these systems. In general one can simulate any real world dynamical systems.

Apart from simulating the dynamical system the process noise inhibits the onset of instability

of the filter operation. Though Q is considered notorious it is the life line of the Kalman filter.

4.2. Choice of X0 and P0 for states and parameters

Since some of the states are generally measured either the first or the average of the first few

measurements can be taken as the initial value X0 for the state. The initial parameters values

can be guessed if experimental or computational results are available. The P0 is one of the

important tuning parameters as stressed by very few like Maybeck [43], Candy [44], Gemson

[45], Gemson and Ananthasayanam [46], and Sarkar et al. [47]. Generally a guess P0 tends to

become very low after some data points. In order to make the filter learn from the subsequent

measurements an additional Q is introduced into the state equations even when there is no

model uncertainty. In the present RRR a proper P0 without any Q is shown to be possible for

the above. The choice of P0 can affect the final covariance from the filter operation, which can

be crucial in certain state estimation problems such as impact point estimation and its uncer-

tainty for target tracking. Even in parameter estimation problems the estimates and their

uncertainties can be important in the design of control systems.

4.3. Tuning filter statistics with both R and Q

When the data contains the effect of both R andQ it becomes notorious for analysis. With no R

andQ the system dynamics is exact. The process noise input at various times makes the system

to wander randomly. When measurements are made on this wandering dynamical state it is

blurred. The smoothing filter provides the best possible state estimate at all time points by

suppressing the effect of measurement noise. Hence it is best to consider the smoothed state in

order to estimate the process noise.

State dynamics with R � Q � 0
� �

þ Cumulative Effect of Q ¼ Smoothed State (21)

Smoothed Stateþ R ¼ Measured Signal or in other words (22)

Measured Signalþ Forward and Smoothing filter ¼ Smoothed State with R � 0 (23)
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Shumway and Stoffer [48] did just this using the Estimation Maximisation (EM) approach. The

book by McLachlan and Krishan [49] is well known on EM. Shyam et al. [31] introduced

another approach to estimate Q based on the difference between the stochastic and dynamical

trajectory called DSDTwhich provided statistically similar results to EM.

The interesting point is the filter by tracking the drifted dynamical behaviour withQ, it estimates

the parameters controlling the original dynamics of the system without the effect of R and Q.

Since R and Q occur, respectively, in the measurement and state equations their effects on the

filter are negatively correlated as stated by Bohlin [50]. Thus during simultaneous recursive

estimation if the statistics for estimating them are not properly chosen then R is overestimated

andQ is underestimated and vice versa. This is just the reason in Gemson [45] and Gemson and

Ananthasayanam [46] one has to update R and Q alternately. The filter operating on the data

generates prior, posterior, and smoothed state estimates and their covariances thus helping to

generate candidate ‘statistic’ to estimate R and Q. In EKF if the unknown noise covariances are

incorrectly specified biased estimates can arise. Even when the Θ are known, with an inaccurate

R andQ the filter may give poor estimates, or even diverge [51].

4.4. Adaptive Kalman filtering approaches

There are broadly four approaches for adaptive filtering namely Bayesian, Maximum Likeli-

hood, Covariance Matching and Correlation Techniques (Mehra [52]) apart from other tech-

niques. The present RRR falls in the category of covariance matching. Why there are so many

formulations for solving an optimization problem? The reason is the unknowns do not occur in

a simple way in the cost function, and there are many transformed variables with which one

tries to solve for the basic unknowns, further the size and the required compatibility conditions

among the transformed variables lead to the many difficulties not generally found in the

classical optimization problems. Also many attempts have been made using probabilistic

methods. However when the dimension, nonlinearity and the range of search space become

large these could become computationally prohibitive and could lead to local minimum. One

can summarise that either deterministic or probabilistic optimization approaches do not

appear to be easy and general for solving the filter tuning problem. A simple recursive filtering

approach was tried and fortuitously it did as will be shown subsequently.

Exact filtering solutions are very hard, approximate choice can lead to inappropriate results

but heuristic approaches provide the middle path in designing the Kalman filter like the RRR.

An adaptive heuristic approach in general updates the X0, P0, Θ, R and Q at a point, over a

window, after a pass or after multiple passes by applying some corrections to them based on

changes, iterations or sample statistics such that the numerical solution does not diverge but

converges to the best possible estimates. Examples of heuristic approach is by Myers and

Tapley (MT) in [53] for R and Q and in [45, 46] for P0, Q, and R.

5. Cost functions along with RRR for checking Kalman filter tuning

The present RRR contains no direct optimization of any cost function. We have purely iterated

the filter on the measured data; but after each iteration, the unknowns X0, P0,Q, R andΘ have
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been updated. Such an iterative procedure leads to a converged solution for the estimate as

well as the CRB that is very close to that obtained using any optimization method that

minimises any suitable cost function. The estimates for the parameter, the covariance for

uncertainty, and the noise statistics reach very near their final values in about five to ten

iterations that can be extended for higher accuracy. Also, we introduce many cost functions as

below to provide an indication about the filter performance and consistency.

Fundamentally, the estimation theory (ET) is an optimization problem. Hence a suitable cost

function J is generally chosen. Essentially, there are two elements in ET: (i) defining a cost

function and (ii) adopting a suitable algorithm to minimise the cost function. The general log

likelihood cost L for normally distributed error ‘ek’ summed over N time points is given by

Gemson [45]

L Θð Þ ¼ 1=Nð Þ
X

ek Ak
�1 ek

T þ log det Akð Þð Þ (24)

where Ak is the error covariance matrix and det(A) represents determinant of matrix A. It may

be noted the parameters Θ occur implicitly in the cost function L. From the ekof the first term,

one can see the principle of weighted least squares, and L for N-1 and N terms the sequential

least squares with the constraint of the state equation as mentioned by Sorenson [40].

Further based on many available statistics from the filter operation it is possible to define many

more cost functions (not written here for brevity but available in Shyam et al. [31]), but only

describe them. The cost J0 is based on squaring X0–X t0ð Þð �½ and scaled with respect to P0 shows

howwell the initial conditions are balanced. Similarly the set of costs (J1, J2, J3) and (J6, J7, J8) are

respectively derived from the sets (νk,νf,νs) and (w1 kjNð Þ,w2 kjNð Þ,w3 kjNð ÞÞ which are differ-

ent estimates for local measurement and process noise samples. These indicate how well the

measurement and state equations are balanced and should tend to the number of measurement

and state equations for a good solution. When Q � 0, the cost J4 is the difference between

measurement and state dynamics based on the estimated parameter and is expected to tend

towards the trace of R. The cost J5 equals J1 + log (det(cov(νk)) is the negative of the log

likelihood based on the innovation. All such costs indicate how well the state and measurement

equations are balanced, and further the estimates and the covariances both given by the filter are

consistent as well. One can formulate any number of cost functions to estimate the parameters

and the filter statistics. But it is not possible to estimate the true value of the unknowns but be

only around them due to statistical fluctuations percolating all over the unknowns.

5.1. Probability matching prior interpretation for P0

This interpretation was given earlier in the paper by Ananthasayanam et al. [54], and used by

Shyam et al. [55]. As mentioned earlier the importance of P0 has not been much appreciated

in the literature on ET and more so in Kalman Filtering though statisticians have been

discussing the philosophical and practical differences between Frequentist and Bayesian

approach. The deterministic Newton-Raphson (NR) optimization of a cost function approach

in Ananthasayanam et al. [56] provides Frequentist results and the Kalman filtering approach

is the Bayesian route. Consider the simple case of a constant signal with measurement noise. In

the Frequentist approach the calculation of the mean and standard deviation and the noise is

A Reference Recursive Recipe for Tuning the Statistics of the Kalman Filter
http://dx.doi.org/10.5772/intechopen.71961

17



simple. However in the Bayesian approach the above result is not reachable unless a proper P0

is also chosen. The choice of appropriate P0 is the probability matching prior (PMP) providing

a bridge between the above approaches. With a large amount of data the differences in the

results from the above approaches vanish. Since PMP is not unique its choice depends on the

purpose. Presently P0 is chosen to obtain proper estimates and CRBs for the unknown param-

eters as well as the noise statistics R and Q. The success of RRR has been due to the choice of

P0 by scaling and further trimming it. Further in addition the simultaneous choice of appro-

priate statistics for R andQ has been made using the many filter statistics available after every

filter pass using the EM approach. When Q � 0 the choice for R is easy but when Q > 0 since

the Kalman filter is compulsory in both approaches we look for consistency based on simu-

lated studies by comparing the statistical characteristics of the injected and estimated R and Q

noise sample sequences. Further the various cost functions introduced earlier in RRR help to

obtain confidence in the results and more so while analysing real flight test data. Since the

present RRR is believed to provide near optimum but not an exact solution it is called as a

‘reference’ and not a ‘standard’.

5.2. Choice of X0 and P0 in RRR

Commencing from an assumed reasonable initial choice for X0, P0, Θ, R and Q the first filter

pass through the data is made. Then a backward smoothing is carried out using the Rauch

et al. [29] smoother. The smoothing leads to the best possible state and parameter estimates

and their covariances based on all the data. After smoothing the state estimates and their

covariances change but not those of the parameters. If one uses the smoothed initial state

covariance P(0|N) and use it as the P0 for the next pass then the final covariance will keep on

decreasing with further filter passes and eventually tend towards zero. In order to overcome

this, the final covariance at the end of the pass was scaled up by Shyam et al. [31] by N to

provide P0 at the beginning of the next pass:

P0 ¼ N� P NjNð Þ (25)

A heuristic reasoning from statistics is that the mean from a sample has an uncertainty P that

keeps decreasing with sample size as P/N where P is the population variance. Since, in the

filter steps, the estimates and their update refer to the sample and the other covariance

propagation and their update and the calculation of the Kalman gain refers to the ensemble

characteristics before every filter pass, we carry out the above scale up to obtain the P0 (after

further trimming as well) for the next filter pass.

5.3. Estimation of R and Q using the EM/DSDT, MS and MT methods

We now provide some estimates for the measurement noise covariance R. Bavdekar et al. [57]

use the extended EM given by:

R ¼ 1=Nð Þ
XN

1

νk ν
T

k
þH kjNð ÞP kjNð ÞH kjNð ÞT (26)
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The choice of Mohamed and Schwarz (MS) in [58] based on filter residue is

R ¼ 1=Nð Þ
X

N

1

νf ν
T
f þH kjkð ÞP kjkð ÞH kjkð ÞT (27)

The choice of Myers and Tapley (MT) in [50] based on innovation is

R ¼ 1=Nð Þ
X

N

1

νs ν
T
s �H kjk� 1ð ÞP kjk� 1ð ÞH kjk� 1ð ÞT (28)

Bavdekar et al. [57] use the smoothed statistic w1 kjNð Þ ¼ X kjNð Þ–f X k� 1jNð Þð Þ in EM esti-

mate as

Q ¼ 1=Nð Þ
X

N

1

w1 kjNð Þ w1 kjNð ÞT þ P kjNð Þ þ F k� 1jNð ÞP k� 1jNð Þ F k� 1jNð ÞT
n

�P k, k� 1jNð ÞF k� 1jNð ÞT � P k,k� 1jNð ÞTF k� 1jNð Þ
o

(29)

The DSDT statistic for Q is given in Shyam et al. [31]

Q ¼
1

N

� �

X

N

1

w2 kjNð Þ w2 kjNð ÞT þ P kjNð Þ þ Fd k� 1jNð ÞP k� 1jNð ÞFd k� 1jNð ÞT
n

�P k, k� 1jNð ÞFd k� 1jNð ÞT � P k,k� 1jNð ÞTFd k� 1jNð Þ
o

(30)

where w2 kjNð Þ ¼ X kjNð Þ–Xd kjNð Þ–Fd k� 1jNð Þ X k� 1jNð Þ–Xd k� 1jNð Þð Þ and with Xd 0jNð Þ

¼ X 0jNð Þ is the predicted state trajectory without measurement and process noise using the

estimated parameter Θ NjNð Þ. The P kjNð Þ is the smoothed covariance and P k,k� 1jNð Þ is the

lag-one covariance for k = N-1, N-2, …1.

The Mohamed and Schwarz [58] estimated Q in terms of the innovation and the smoothed

gain K kjNð Þ based on [29] by

Q ¼ K kjNð Þ
X

N

1

νs νs
T

( )

K kjNð ÞT (31)

The choice of Myers and Tapley [53] for Q with w3 kjNð Þ = X(k|k) - X(k|k-1) is

Q ¼
1

N

� �

X

N

1

w3 kjkð Þ w3 kjkð ÞT � F k� 1jk� 1ð ÞP kjk� 1ð ÞF k� 1jk� 1ð ÞT � P kjkð Þ
� on

(32)

All the process noise samples, w1 kjkð Þ, w2 kjkð Þ, and w3 kjkð Þ, are assumed to be of zero mean.

It turns out that the smoothed statistics w1 kjkð Þ and w2 kjkð Þ based on EM and DSDT, respec-

tively, are very close and either can be used for Q estimation.
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5.4. The RRR method for the EKF

The following steps explain the recursive or iterative RRR algorithm for the EKF:

1. Given the system model and the measurements, the first filter pass through the data of

EKF is carried out using guess values of X0, P0, Θ, R and Q.

2. The RTS smoother is used backwards to get smoothed state and covariance estimates.

3. If X0 is unknown, then the smoothed state values can be used as the initial state values.

4. The estimated smoothed P0 is scaled up by the number of time points N and further all

elements except the diagonal terms corresponding to the parameters are set to zero. Due

to the effect of statistical percolation effect, the estimated R and Q will in general be full.

But, only the diagonal terms in Q need to be used in the basic state equations and not in

the parameter states. Only the diagonal terms in R need to be used in the measurement

equations. These are summarised as below. The quadrant on the upper left denotes the

state, the bottom right the parameter states, and the others the cross terms. The 0ð Þ below

shows the null and D the diagonal matrices. This is followed for all iterations.

P0 ¼
0 0

0 D

� �

; Q ¼
D 0

0 0

� �

; R ¼ D½ � (33)

5. Then, the filter is run again using the above updates of X0, P0, Θ, Q and R till statistical

equilibrium is reached.

6. Different cost functions (J1–J8) are checked for convergence.

The convergences of the following quantities after all the iterations are analysed:

1. The parameter estimates Θ and their covariances P(Θ).

2. The sample noise sequences νk, νf, νs and of w1, w2, and w3 with �1 sigma bounds, their

autocorrelations and Q and R.

3. The state dynamics Xd (with R � Q � 0) based on the estimatedΘ, smoothed X(k|N) and

the measurement Z(k).

4. The various cost functions J1–J8 after the final convergence.

5.5. Some remarks on running the RRR

If the value of Q for any state is known to be zero, then the value of Q is set at 10�10 or lower

for all iterations to help the filter, which would otherwise generate a pseudo-Q, and then

slowly grind it to zero in thousands of iterations. For Q � 0 case, one can estimate R even by

ignoring the second order covariance terms. It is of interest to note that forQ > 0 case unless the

second order covariance terms are also included in the estimate for both R andQ the RRR does

not converge.
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6. Simulation study of a spring, mass, and damper (SMD) system

The RRR is first applied to a very simple spring, mass, and damper system with R � Q � 0.

For such a situation, the Newton Raphson optimization of the innovation cost [56] served as a

bench mark for tuning the filter statistics in RRR (with no cost optimization!) to get the closest

possible estimates and the CRB. Later, when Q is included, we looked for the consistency

between the injected R and Q noise sequences and their statistics. The SMD system with weak

nonlinear spring constant in time (t) is given by

_x1 tð Þ ¼ x2 tð Þ; _x2 tð Þ ¼ � Θ1 x1 tð Þ � Θ2 x2 tð Þ �Θ3 x
3
1 tð Þ (34)

where x1 and x2 are the displacement and velocity state with initial conditions 1 and 0,

respectively. The ‘dot’ represents differentiation with respect to time (t). The unknown param-

eter vector is Θ ¼ Θ1;Θ2;Θ3½ �T with true values θtrue ¼ 4:0; 0:4; 0:6½ �T. Θ3 is a weak parameter

and does not affect the system dynamics much. The complete state vector X ¼

x1; x2;Θ1;Θ2;Θ3½ �T is of size (5 x 1). The measurement equation is given by

Z kð Þ ¼ H X kð Þ (35)

where H =
1 0

0 1

0 0 0

0 0 0

" #

is the measurement matrix. The noise covariances are R = diag

(0.001, 0.004) andQ = diag (0.001, 0.002), thus keeping the noise levels of same order to test the

robustness of the RRR. The initial guess value of P0, Q, were chosen, respectively, as diagonal

with all values as 10�1, and R = 2�1 for all measurement channels. The initial Θ was chosen

within �20% error of the true values. A total of N = 100 measurement data are simulated with

the time varying from 0 to 10 s in very small steps of dt = 0.1 s. For zero process noise case, the

maximum number of iterations is set to 20 over 50 simulations, and for nonzero process noise

case, it is set to 100 over 50 simulations for obtaining generally four digits accuracy (though not

necessary). The brief results as presented in Figures 2 and 3. In the present RRR, it was noticed

that generally even if the initial P0,Q, and Rwere varied over a wide range of powers from �3

to +3 (or even more) together with all the initial Θ parameter set to zero leads to the same

estimation results for a given data showing its robustness. Further, it may be noted that for all

simulated and real data analysed and reported in [31] even if all the initial state and parame-

ters were set to zero the solutions converged to the appropriate values!

6.1. Analysis of simulated SMD data

The RRR, when compared to [53, 57, 58] has hardly any instability when processing the simu-

lated data, reaching statistical equilibrium in around 20 iterations. This can be seen from Figure 2

forϴ, their CRBs (= P0/N),R,Q, J1–J8. The cost functions J1–J8 provides confidence in the results

and to compareRRRwith other approaches. Figure 3 shows themeasurements wrap around the

smoothed estimates. More details are available in Shyam et al. [31]. For further insight, the

filter results with 500 iterations shown in Figures 4 and 5 indicate three phases. Firstly, from a
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nonequilibrium state the filter statistics reach statistical equilibrium in 10–20 iterations enough

for use in practice. The next phase shows the second moments R and Q converge earliest

followed by ϴ and finally their CRBs. This is at variance with the fact mentioned in Section 3.2,

namely lower order moments converge faster than higher order moments for samples from a

distribution. But the statistics derived here from the Kalman filter are not simple. Finally, there is

equilibrium with numerical fluctuations depending on computer accuracy.
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Figure 3. Xd, X(k|N), and Z(k) by (o) for displacement and velocity versus time (s).
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Figure 2. (i) Variation of Q and R, (ii) initial parameters Θ, and P0, and (iii) costs J1–J8 with iterations.
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Figure 4. Difference of the diagonal elements of R and Q from their values after 500 iterations.
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Figure 5. Difference of parameters Θ and their CRBs from their values after 500 iterations.
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6.2. Analysis of real airplane flight test data

The real airplane flight tests cannot always be conducted in an ideal situation of Q and R being

white Gaussian. The measurements may not be at the center of gravity, possess bias and scale

factors, which have to be modelled and estimated. The coupling between the longitudinal and

lateral motion brings in difficulty but makes the problem interesting. At times, the noisy mea-

surements from the lateral motion are fed into the longitudinal states, and thus are input as

process noise. This is an example of introducing subjectivity in estimation theory. The real data

set is obtained along with notations from [59]. There is a peculiar manoeuvre, where the elevator

angle (δe in deg) shown in Figure 6 is imparted when the aircraft (T 37B) is rolling through a full

rotation during aileron roll. The coupling between the longitudinal and lateral motion is

replaced by their measured values, namely the roll angle (φm), sideslip (βm), velocity (Vm), roll

rate (pm), yaw rate (rm) and the angle of attack (αm) as shown in Figures 6–8. The state equations

(n = 3) for the angle of attack (α), pitch rate (q), and the pitch angle (θ), respectively, are

_α ¼ �
q S

mVm Cos βm
� � CLα αþ CLδe δe þ CL0

� �

þ qþ
g

Vm Cos βm
� � cos ϕm

� �

cos αmð Þ cos θð Þð
�

þ sin αmð Þ sin θð ÞÞ � tan βm
� �

pm cos αmð Þ þ rm sinαm

� ��

(36)

_q ¼
qSc

Iyy
Cmα

αþ Cmq

c

2V
qþ Cm _α

c

2V
_α þ Cmδe

δe þ Cm0

� �

þ
Izz � Ixx

Iyy
rm pm (37)

_θ ¼ q cos ϕm

� �

� rm sin ϕm

� �

þ θ0 (38)
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Figure 6. Control input δe in deg, roll angle ϕm in deg, velocity Vm in ft/sec versus time (s).
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The measurement equations (m = 4) for angle of attack, pitch rate, pitch, and normal accelera-

tion are given by

αm ¼ Kα α� Kαxα
q

V
; qm ¼ q ;θm ¼ θ (39)

anm ¼
qS

mg
CNα

αþ CNδe
δe þ CN0

� �

þ
xan
g

_q (40)
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Figure 7. Sideslip angle βm in deg, roll rate pm in deg/sec, and yaw rate rm in deg/sec, versus time (s).
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Figure 8. Xd(cont), and Z(dashdot) for α (deg), Q (deg/sec), θ (deg), and an with time (s).
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The unknown parameters (p = 10) are CLα ;CLδe ;CL0 ;Cmα
;Cmq

;Cm _α ;Cmδe
;Cm0

;θ0;CN0

� 	T
with

the approximation CNα
¼ CLα and CNδe

¼ CLδe . The suffix δe denotes control derivatives, and

suffix zero refers to biases and all others are aerodynamic derivatives. The initial states are

taken as the initial measurements and the initial parameter values are taken as (4, 0.15, 0.2,

�0.5, �11.5, �5, �1.38, �0.06, �0.01, 0.2)T. The other constant values used are S = 184, m = 196,

Ixx = 6892.7, Iyy = 3952.3, Izz = 10416.4, g = 32.2, c = 5.58, Kαxα = �0.0279, xan = 0.101, and Kα = 1.

6.2.1. Remarks on the real data case results

All the real data studies were run for 100 iterations using the RRR with Q > 0, since the off-

diagonal elements of the correlation coefficient matrix C for parameter estimates reduced

substantially than for Q � 0. Figures 6–9 show the various input and output quantities from

the RRR, and Table 2 provides a comparison of the parameter estimates along with their CRBs
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Figure 9. (i) Q and R, (ii) initial Θ, and P0, and (iii) the costs J1–J8 with iterations.

Θ RRR NASA(Q�0) Gemson MT MS

CN0
0.2538 (0.0014) 0.2541 (0.008935) 0.2503 (0.0014) 0.2540 (0.0016) 0.2635 (0.0026)

CL0 0.2409 (0.0021) 0.2448 (0.009215) 0.2529 (0.0018) 0.2408 (0.0023) 0.2517 (0.0027)

CLα 4.9235 (0.0164) 5.1068 (0.1322) 4.9028 (0.0168) 4.9260 (0.0184) 5.0620 (0.0323)

CLδe 0.1554 (0.0271) 0.1909 (0.1602) 0.0879 (0.0267) 0.1587 (0.0302) 0.3594 (0.0508)

Cm0
�0.0425 (0.0009) �.0505 (0.002655) �0.0507 (0.0024) �0.0424 (0.0009) �0.0447 (0.0006)

Cmα
�0.5293 (0.0079) �0.6474 (0.02339) �0.6174 (0.0211) �0.5285 (0.0082) �0.5590 (0.0055)

Cmq
�11.8596 (0.2402) �14.2600 (0.6528) �18.8339 (0.8379) �11.8255 (.2483) �12.5965 (0.1400)

Cm _α �6.8959 (0.4891) �8.2700 (1.296) �7.1290 (1.544) �6.8798 (0.5062) �6.6713 (0.3021)

Cmδe
�0.9731 (0.0177) �1.1614 (0.05371) �1.1841 (0.471) �0.9711 (0.0184) �1.0247 (0.0129)

θ0 0.0003 (0.0021) �0.01177 (0.02528) �0.0037 (0.001) 0.0002 (0.0011) �0.0006 (0.0007)

Table 2. Real flight test data results (Θ, CRB Θð )).
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(in parenthesis) for the real data from different approaches. Since MT and MS do not specify

P0, the one in RRR is used. It turns out that even the parameters CLδe and Cmq
strongly

affecting the airplane dynamics is estimated vary widely among the various approaches. Also,

even if Θ are good the CRBs differ among the approaches such as for CN0
and Cm _α .

We noted earlier about the negatively correlated behaviour of R and Q. From Table 3, it may

be noted that the RRR relative to other methods generally provides a largerQ and a smaller R.

This implies that the larger Q assists in a better tracking of the wandering state. The smaller R

tightly wraps around the smoothed state and thus providing generally smaller CRBs. Figure 8

shows the close match of the measurements with the dynamics in this real case is due to the

small R and Q than in the SMD case. The convergence remarks for ϴ, their CRBs (= P0/N), R,

Q, J1–J8 as in SMD is valid here as well. The cost functions from RRR are generally closer to

the number of states and measurements as expected.

The rounded 100(Correlation coefficient) matrix Cij ¼ Pij=sqrt PiiPjj

� �

with P denoting the

covariance of parameter estimates is.

Method Measurement noise covariance R � 10�6 Process noise covariance Q � 10�6

RRR 1.241 0.051 0.460 5.668 0.180 2.954 2.646

MT 1.614 0.240 2.316 2.929 0.203 3.153 0.667

MS 3.160 37.242 9.341 841.55 0.00005 0.0003 0.2386

Cost functions J1–J8

RRR 3.934 4.223 3.616 0.0008 �44.1347 2.975 2.976 2.907

MT 3.766 4.519 3.838 0.0008 �43.7340 4.2266 4.228 2.949

MS 3.162 3.151 2.590 0.0007 �38.0517 8.477 8.466 3.022

Table 3. Real flight test data results (R, Q, J).

Θ CN0
CL0

CLα
CLδe

Cm0
Cmα

Cmq
Cm _α Cmδe

θ0

CN0
100 65 62 98 �13 �10 1 2 �12 0

CL0 65 100 41 64 �7 �4 �2 5 �5 0

CLα 62 41 100 67 �8 �19 1 1 �8 0

CLδe 98 64 67 100 �13 �11 2 1 �12 0

Cm0
�13 �7 �8 �13 100 88 9 84 99 0

Cmα
�10 �4 �19 �11 88 100 25 70 91 0

Cmq
1 �2 1 2 9 25 100 �27 21 1

Cm _α 2 5 1 1 84 70 �27 100 80 �1

Cmδe
�12 �5 �8 �12 99 91 21 80 100 0

θ0 0 0 0 0 0 0 1 �1 0 100
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Based on the C from RRR, the weakest parameter can be inferred as θ0, which is uncorrelated

with all other parameters and its estimates and uncertainty can vary widely among the

approaches. Next, it is possible to group the parameters as (CN0
, CL0 , CLα , CLδe ) and

(Cm0
, Cmα

, Cmq
, Cm _α , Cmδe

). If a certain state is excited relatively more than others, then the esti-

mated parameter that multiplies it will have lower correlation with other parameters in the set.

The downloadable MATLAB program available in Shyam et al. [31], which has many simu-

lated and real flight test data analysis can be used all the way from teaching, learning to carry

out research using Kalman filter.

7. Conclusions

A new approach called RRR has been proposed to handle the important problem of tuning the

Kalman filter statistics. The importance of P0 in EKF as the PMP is stressed. This along with

suitably chosen R and Q after every filter pass through the data based on various filter

statistics converges after few iterations without any optimization. Further, the many cost

functions indicate the balance of the state and measurement equations and the consistency of

the various filter statistics. These help the user to assess the results and compare RRR with

other approaches. The efficacy of the RRR is demonstrated by application to a simple SMD

system and a real airplane flight test data with a large number of unknown aerodynamic

parameters.
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