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Abstract

A previously developed procedure that aims at monitoring the process of vegetation 
recovery in areas affected by major fire episodes is revisited and assessed in terms of 
consistency and robustness. The procedure is based on 10-day fields of Maximum Value 
Composites of the Normalised Difference Vegetation Index (MVC-NDVI). The identifica-
tion of fire scars is first achieved based on cluster analysis of persistent NDVI anomalies 
during the year following the fire event. Post-fire vegetation behaviour is then character-
ised based on maps of recovery rates as estimated by fitting a mono-parametric model of 
vegetation recovery to NDVI data over each burned scar. Results obtained indicate that 
reliable estimates of vegetation recovery times may be achieved using time series of NDVI 
of moderate length. It is also shown that consistent results are obtained when time series 
are derived either from 1-km spatial resolution data retrieved by the VEGETATION sen-
sor on-board SPOT or from 250-m spatial resolution data from the MODIS instrument on-
board Aqua and Terra. The regeneration model is also applied to estimate recovery rates 
in the case of recurrent fires. Overall results point out that the proposed methodology 
may play an important role in studying vegetation recovery and species succession after 
recurrent fires, namely when one vegetation type is replaced by another that regenerates 
faster, despite being more flammable and therefore increasing the risk of severe and large 
fires. The robustness of the proposed model highlights its adequacy to assess post-fire 
vegetation dynamics and therefore the procedure reveals as a promising tool for planning 
and implementing of better fire management practices before and after fire events.

Keywords: vegetation recovery, large fires, mono-parametric model, MODIS, NDVI

1. Introduction

Wildfires are a major disturbance striking most terrestrial ecosystems [1, 2], with important 
impacts on land degradation and desertification, vegetation composition, biomass loss [3, 4] 
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and changing the hydro-ecological regimes [5, 6]. Forest fires induce soil impoverishment due 
to the loss of nutrients during and after the fire, by runoff. The erosion processes may be acceler-
ated due to the loss of soil cover; a minimum of 30% in soil cover is required to protect the soil 
against erosion [7], and the time needed to reach this protection level influences the erosion risk.

In Mediterranean regions, fire is frequent and plays an important role in controlling the evo-
lution of ecosystems [4]. Despite being mostly of anthropogenic origin, the influence of the 
expected rise of temperature and evapotranspiration in the near future will contribute to 
increasing the frequency and severity of wildfires in the region [8, 9]. Other factors related with 
land-use management, namely rural abandonment and replacement of crops by grassland, also 
contribute to increasing fire frequency [10]. Although some plant species are able to recover 
and regenerate by means of either resprouting [11, 12] or germination of fire-protected seeds, 
stored in the soil or in the canopy [13, 14], not all plant species survive forest fires. Therefore, 
vegetation density and composition of Mediterranean ecosystems should be affected by recur-
rent fires [8, 13]. The replacement of pre-fire forest areas by shrubland or grassland after recur-
rent wildfires is mainly associated with the elimination of species that take long recovery 
times, such as Pinus halepensis Mill., that require almost two decades to fully recover [15]. Días-
Delgado et al. [8] found that areas dominated by Quercus spp. were more resilient than forests 
in Central Portugal, dominated by Pinus spp. The regeneration in forests dominated by P. pin-

aster in Portugal was slower than in an area mainly populated by Eucalyptus that may quickly 
re-sprout from buds after fire [16]. Nevertheless, small intervals between fire occurrences may 
lead to plant species not reaching reproductive maturity, as happened to P. pinaster popula-
tions in Portugal [17]. Results from Tessler et al. [18] indicate that forest recovery after recurrent 

fires is more related with time within fires than with the number of previous fires.

During the process of recovery, vegetation may also be influenced by several environmental 
factors, such as fire severity/damage and climatological extreme events. Vegetation recovery 
depends on several climate factors, such as the occurrence of droughts, which may inhibit 
vegetation growth, but also on precipitation of high intensity, which contributes to nutrient 
loss and erosion by runoff [19]. In Portugal, fire damage has been identified as a main driving 
factor of vegetation recovery [20], but drought episodes occurring in post-fire conditions have 
also been shown to delay recovery times for several months [21].

Forest fires are recurrent in Portugal where the flammable material is high, and the moisture 
content is low, either due to climate conditions, to land-use change, or to a combination of 
the two. Wet and mild winters, together with dry and warm summers, favour the growth of 
the vegetation and its subsequent low moisture content, due to water stress [4], whereas the 
replacement of agricultural land by forest plantations or shrubland increases the available 
fuel [13, 22]. Large fires are promoted by the occurrence of high temperatures and drought 
episodes [23] that may lead to total burnt areas several times larger than the average, such as 
the burnt areas in 2003 and 2005, with amounts of 425,000 and 339,000 ha, respectively, that 
were until this year record breakings in the national history of fire events [24]. The fire season 
of 2017 in Portugal has been catastrophic by most accounts. The authorities reported more 
than 100 human fatalities, with about 500,000 ha of estimated burnt area which corresponds 
to the maximum record since 1980.
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In the last decades, information from different sensors on-board several satellites has revealed 
to be a powerful tool to study and monitor vegetation dynamics, such as the influence of 
climate on vegetation [25, 26] including the effect of droughts [27, 28]. The Normalised 
Difference Vegetation Index (NDVI), as derived from SPOT-VEGETATION imagery, has been 
successfully used to identify large burnt areas in Portugal, given that burnt scars present very 
low values of NDVI anomalies following the fire [16].

Monitoring vegetation recovery is a very challenging and expensive task, and remote-sensing 
information has also been successfully used to monitor post-fire vegetation recovery [29–33]. 
Gouveia et al. [16] presented a procedure that allows monitoring the vegetation regeneration 

in the years following the 2003 fire season using 10-day fields of Maximum Value Composites 
of NDVI at 1-km x 1-km spatial resolution derived from the VEGETATION instrument. They 
selected two large burned scars located in Central and South-western Portugal and they 
showed that the post-fire vegetation dynamics in those areas could be characterized by fitting 
a mono-parametric model of vegetation recovery to NDVI over each burned scar. The pat-
terns of recovery time over the two regions highlighted the different regeneration processes of 
different forest types, the region located in Southwestern Portugal presenting a faster recov-
ery, which could be associated with a dominance of Eucalyptus. However, the dataset from 
VEGETATION available at the time was restricted to 1998–2006, a period not long enough 
to allow assessing the accuracy of the model’s estimates. Later, Bastos et al. [20] provided a 

preliminary assessment of the model accuracy by comparing the regeneration rates obtained 
by the application of the model described to the same two regions analysed in Gouveia et al. 
[16] but using both the original 8-year dataset (1998–2006) and an updated one, extended 
to 11 years (1998–2009). They also successfully applied the technique to seven other burned 
areas of fire seasons from 2003 to 2005.

NDVI has also been used to assess the impacts of drought conditions on vegetation recovery 
[20, 21]. For instance, the occurrence of a severe drought event in 2004–2005 led to a decrease 
in recovery rates in the case of the burned scars of the 2003 fire season, delaying the regen-
eration process. When a severe drought event is observed in regions affected by fires in the 
following one or 2 years, water-stress conditions will limit photosynthetic activity and net 
primary production, thus reducing vegetation growth and regeneration.

The recent availability of several long-term remote-sensing datasets for monitoring vegeta-
tion conditions opens the opportunity to use them in areas where fire occurrence is high or 
when less in situ information about vegetation is available. Therefore, studies to assess the 
robustness of present techniques and their adaption to new indices and sensors are crucial. 
In this respect, the overall consistency of obtained results with the mono-parametric model 
of vegetation recovery [16, 20], together with the model simplicity in terms of formulation, 
anticipates that it may be quite easily adapted to other low-resolution satellite data, as well 
as to other types of vegetation indices. In the present chapter, an assessment will be made on 
the portability of the mono-parametric model originally developed using NDVI data from 
the VEGETATION sensor on-board SPOT [16] with 1 km of resolution by applying the model 
to NDVI data at 250 m of spatial resolution from the MODIS instrument on-board Aqua and 
Terra satellites.
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2. Data and methods

2.1. Data

The NDVI time series were retrieved from the MODIS Terra V6 product, covering the period 
February 2000 to June 2017 over a region extending from 36.8910° to 42.3276° N and from 
9.8280° to −6.1938° W. The time series used corresponds to the MODIS 16-day (MOD13Q1) 
product with a spatial resolution of 250 m, supplied on a sinusoidal projection. The pixel 
reliability index provided with the data was used to eliminate values that did not present 
the highest reliability level. Monthly composites were obtained using the Maximum Value 
Composite method [34] and the missing values were linearly interpolated.

Information about land cover was based on the Corine Land Cover (CLC) map, available on a 
250-m spatial resolution for Europe and respecting to the years of 2000 and 2006 (http://land.
copernicus.eu/pan-european/corine-land-cover/). The CLC classification offers an inventory 
of surface, with 44 classes of land cover. The thematic maps were resampled to the NDVI-
MODIS projection.

2.2. Identification of burnt areas

In the present work, the fire seasons of 2003, 2005 and 2012 were analysed. The identifica-
tion of burnt areas followed the procedure proposed by Gouveia et al. [16] and Bastos et al. 
[20]. Burned areas are identified by means of unsupervised clustering of the NDVI monthly 
anomalies, based on the K-means method [35, 36]. Due to the short number of years of the 
time series, and in order to mitigate the lever effects of extreme values, monthly anomalies 
were computed as departures from monthly medians instead of monthly means. Considering 
that the fire occurrences provoke a very sharp reduction in the NDVI values that persists on 
the following months [16], the clustering analysis was performed on the following hydrologi-
cal year, which starts in September [27].

Burnt areas appear associated to the cluster whose centroid presents persistent negative anoma-
lies during the entire vegetation cycle. The number of clusters required to adequately separate 
between burnt and non-burnt areas is not fixed and depends on several factors, such as the 
occurrence of a drought episode, which can also reduce NDVI [20]. In this work, four clusters 
were required in 2012, and three clusters in the remaining years analysed. Burnt areas may pres-
ent low anomalies of NDVI that persist for more than 1 year after the fire [20], and for this reason 
burnt pixels from the two previous years were previously identified and removed from the 
analysis. Results obtained from the cluster analysis were visually compared with the maps of 
yearly burnt area made available from the National Institute of Nature and Forest Conservation 
(ICNF), and a very good agreement was found in the case of large burnt scars. Figure 1 shows 

the burnt area and the centroids obtained by cluster analysis for the fire season of 2012.

2.3. Model of vegetation recovery

The model of vegetation recovery used in the present work is the mono-parametric model 
proposed by Gouveia et al. [16] and based on NDVI. The model is given by
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  y (t)  = a e   −bt    (1)

where  y  is the so-called lack of greenness, defined as the departure of NDVI from the so-called 
Gorgeous Year (GY) that is defined as a hypothetic annual vegetative cycle associated to an 
ideally healthy state of vegetation. Parameter b in Eq. (1) characterises the recovery time and 
parameter a characterises the lack of greenness at the time of the occurrence of the fire event, 
being therefore viewed as an indicator of fire damage. The use of departures of NDVI from 
GY aims at minimising the impact of the inter-annual variability of NDVI. The monthly val-
ues of GY are computed by selecting the maximum value of NDVI in the pre-fire period for 
each month. Noting that

    
y (t) 

 ___ a   =   
NDVI (t)  − GY (t) 

  ___________________  
NDVI (t = 0)  − GY (t = 0)      (2)

the value of b is estimated by means of regression analysis performed on the following linear 
model:

  ln  [  
y (t) 

 ___ a  ]  = − bt   (3)

The mono-parametric model allows estimating the vegetation recovery time (tR), defined as 
the period elapsed from  t = 0  (when the fire took place) up to the time when the modelled 
curve of  y  crosses the threshold defined as 90% of the median value in time of the spatially 
averaged lack of greenness over the pre-fire period.

In this work, the methodology described earlier was adapted to the MODIS Terra V6 
product with a spatial resolution of 250 m from 2000 to 2016. The methodology will be 
applied to NDVI monthly composites for several large burnt areas detected in 2003, 2005 
and 2012. Results obtained for 2003 and 2005 will then be compared with the findings 

Figure 1. Left panel: Burned areas in continental Portugal during the fire season of 2012 (black pixels in the left panel) as 
identified by means of cluster analysis and annual cycles of monthly MVC-NDVI anomalies; top-right panel: centroids 
of the four identified clusters; centroid associated with burned areas is presented in black; bottom-right panel: burned 
areas selected to apply the recovery model.
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by Gouveia et al. [16] and Bastos et al. [20] allowing to assess whether the methodology 

may also be successfully applied to sensors with a resolution different from the one of 
SPOT-VEGETATION.

The fire seasons of 2003 and 2005 in Portugal were outstanding, with annual amounts of 
burnt area substantially larger than the 1980–2002 mean. The exceptional fire season of 
2005 further coincided with the 2004/2005 drought, one of the most severe episodes since 
the early twentieth century [21, 27]. During the hydrological year of 2011/2012, Iberia was 
hit by another severe drought event. The events of 2004/2005 and 2011/2012 correspond to 
two of the worst drought episodes, in both magnitude and spatial extent, ever recorded in 
this semi-arid region [37, 38]. During the hydrological years of 2004/2005 and 2011/2012, 
drought episodes caused negative anomalies of NDVI over large sectors of Iberia for up 
to 7 months (out of 11) of the vegetative cycle. While in the case of the drought episode of 
2005, the impact on vegetation covered roughly two-thirds of the Iberian Peninsula [21]; in 

the recent episode of 2012 the deficit in greenness affected a more restrictive area located 
in central Iberia. The effect of drought on post-fire vegetation is reflected by a delay in the 
regeneration rates, whereas the influence on pre-fire vegetation may be related with the 
dryness of fuel and on fire damage and severity [21]. The important role of drought on pre- 
and post-fire behaviour of vegetation strongly suggests also applying the methodology to 
monitor burnt scars and vegetation regeneration rates to the larger burned areas of 2012 
fire season.

3. Results

3.1. Modelling vegetation recovery using NDVI-MODIS and comparison with 
NDVI-SPOT for 2003 and 2005 fire seasons

The original mono-parametric model to estimate vegetation regeneration times after 
large fire events relied on 10-day values of Maximum Value Composites of Normalised 
Difference Vegetation Index at 1-km spatial resolution as obtained from the VEGETATION 
sensor. In the present work, NDVI monthly values were computed by means of the maxi-
mum composite performed using MODIS 16-day (MOD13Q1) with a spatial resolution of 
250 m.

After burned scars were identified by means of a cluster analysis on NDVI monthly anom-
alies (see Section 2.2), the regions to be studied in this chapter were chosen among the ones 
already selected by the authors in previous works [16, 20] for the 2003 and 2005 fire sea-
sons over Portugal. The burnt scars chosen were the so-called regions I and II by Gouveia 
et al. [16] from the 2003 fire season (hereafter named R1 and R2, respectively) and the 
so-called regions RVII and RVIII [20] from the 2005 fire season (hereafter named R4 and 
R3, respectively). Figure 2 shows both the location of the four chosen burned areas (left 
panel) and the corresponding land-cover types, as obtained from CLC2000 (right panel). 
The fractions of the main land-cover types in the selected burned areas are presented in 
Table 1.
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The comparison of the obtained burnt areas using cluster analysis over NDVI anomalies as 
obtained using the MODIS dataset with previous results based on NDVI anomalies retrieved 
from SPOT [16, 20, 21] reveals very similar shapes on both cases, despite the different period 
of the available NDVI datasets, highlighting the robustness of the methodology used. The 
slight differences observed may be related with the different spatial resolution and projection 
of NDVI-MODIS.

It may be noted that, due to the different projection used in MODIS dataset, regions R3 and 
R4 include some pixels from other regions (i.e. pixels from R3 (R4) in R4 (R3)). Figure 2 (right 
panel) and Table 1 show, as expected, that R1 is mainly occupied by coniferous forest (76%, 
P. pinaster) and R2 by broadleaved forest (59%, Eucalyptus) (Table 1). In the cases of R3 and 
R4, they are mainly occupied by transitional woodland-shrub (around 40% in both cases) and 
coniferous forest (around 30%) (Table 1).

The mono-parametric model was then adjusted to the NDVI-MODIS time series spatially aver-
aged over the four considered regions (Figure 3). The vegetative cycle that characterises the 

Figure 2. Burnt areas in Continental Portugal in 2003 (R1 and R2) 2005 (R3 and R4) and 2012 (R5 and R6) as obtained by 
cluster analysis of NDVI anomalies over the year following each fire season (left panel). Selected areas for the present 
work and respective nomenclature are identified by the rectangular frames labelled from R1 to R6. Corine Land-cover 
2000 map for burned areas of 2003 and 2005 at 250 m spatial resolution (right panel).

All 

agricultural

Broadleaved 
forest

Coniferous 
forest

Mixed 

forest
Sclerophyllous 
vegetation

Transitional 
woodland-shrub

R1 4.82 1.42 76.41 3.13 0.00 13.24

R2 3.06 59.18 0.25 0.28 19.96 17.13

R3 3.29 0.48 30.83 3.61 0.00 43.10

R4 1.98 3.41 33.12 5.93 0.00 44.44

Table 1. Main land-cover types, as obtained using Corine Land Cover 2000 classification, that are present in the burned 
scars selected: R1 and R3 from 2003 and R4 and R5 from 2005.
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dominant vegetation type within the burned area is also shown in Figure 3. As expected, the 
vegetative cycle of vegetation over the R2 region presents a higher inter-annual variability than 
over R1, which is consistent with the broadleaved dominance in R2. The sharp decay in NDVI 
time series during the fire season of 2003 (Figure 3, top panel) and 2005 (Figure 3, bottom panel) 
corresponds to the loss of vegetation over the considered scars that resulted from the fires.

As described in the previous section, the time required for vegetation recovery (tR) is counted 
up to the month when the modelled curve of y intercepts the line defined as 80% of the 
median values of y during the pre-fire period (Figure 4). Obtained recovery times (averaged 
values over each burnt scar) are presented in Table 2. When compared with corresponding 
recovery times obtained in the previous works, estimates obtained with NDVI-MODIS data 
for scars R1 and R2 fall inside the 95% confidence interval of the previous estimates with 
NDVI-VEGETATION, whereas for scars R3 and R4 the estimated recovery times are 3 months 
longer than the upper bound of the 95% confidence interval. However, it should be noted that 
regions R3 and R4 of the present work include parts of external burn scars not included in 
RIII and RII of the previous study [20], respectively, and this may contribute to increasing the 
recovery rates obtained with NDVI-MODIS. On the other hand, the shorter ranges of the 95% 
confidence intervals obtained for the estimates with NDVI-MODIS are worth being empha-
sised. This could be associated with the larger post-fire period of available information which 
allows a better adjustment of the regeneration curve.

It may be noted that Gouveia et al. [16] and Bastos et al. [20] have used 90% of the median 
(instead of 80%) as the threshold. However, in the present work, when using the MODIS  dataset 

Figure 3. Time series of NDVI (grey curves) spatially averaged over the four considered burned scars: R1 and R2 for 
2003 (top panel) and R3 and R4 for 2005 (bottom panel) fire season. Black curves represent the Gorgeous Years (GY) of 
vegetation, given by the annual cycles of maximum NDVI for each month over the considered period.
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there is an increase in spatial resolution from 1km to 250m and therefore NDVI values present 
a less smooth behaviour inside the considered pixel. An additional feature is related with the 
differences observed for RED and NIR channels for the two sensors (i.e. RED: 0.62–0.67 and 
NIR: 0.841–0.876 μm for MODIS versus RED: 0.61–0.68 and NIR: 0.78–0.89 μm for SPOT).

Figure 5 presents the spatial distribution of recovery times over R1 and R2 from 2003 (bottom-
left panel) and R3 and R4 from 2005 fire seasons (bottom-right panel). A visual inspection 
reveals a very good agreement between the spatial patterns of vegetation recovery obtained 
using NDVI-MODIS with the ones obtained in previous works (Figures 6 and 7 from [1, 2]), 
when using NDVI-SPOT. Despite the obvious differences in spatial resolution, the spatial pat-
terns of higher (lower)-recovery time values (tR) are located in the same regions.

Despite the different periods covered by the available NDVI datasets, the differences associ-
ated with spatial resolution and projection and the slight differences in spectral channels used 

Figure 4. Time series of monthly lack of greenness, y (black line with asterisks) and modelled curve (solid line) of 
vegetation recovery, spatially averaged over R1 and R2 from 2003 (bottom left panel) and R3 and R4 from 2005 fire 
seasons (bottom right panel). Dashed lines indicate the 95% confidence limits of the regressed curve.

R1 R2 R3 R4

tR (months) 49 [52] 45 [43] 35 [30] 48 [42]

I95(tR) (months) 46–51 [45–59] 42–48 [38–49] 33–37 [28–32] 45–50 [40–45]

Results from [16] in the case of R1 and R2 and from [20] in the case of R3 and R4 are also shown in brackets for comparison.

Table 2. Estimates (tR) and 95% confidence intervals (I95(tR)) of recovery time respecting to the fit by linear regression 
of the mono-parametric model of vegetation recover on y dataset from NDVI-MODIS for R1 and R2 for 2003 and R3 and 
R4 for 2005 fire seasons.
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to compute NDVI, which contribute to slight differences of NDVI between the two products, 
the recovery rates estimated when using NDVI retrieved from MODIS dataset with NDVI 
obtained from SPOT [16, 20, 21] reveal very similar recovery patterns, highlighting the robust-
ness of the methodology used and their applicability to other indices and sensors.

Figure 5. Spatial distribution of recovery times, in months, over R1 and R2 from 2003 (bottom-left panel) and R3 and R4 
from 2005 fire seasons (bottom-right panel).

Figure 6. Corine Land Cover 2000 (left panel) and 2006 (right panel) map for burned areas R5 (top panel) and R6 (bottom 
panel) for 2012 fire season.
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3.2. Vegetation recovery after 2012 fire season

The two largest burnt scars obtained by the clustering technique applied to NDVI anomalies 
of the 2012 hydrological year are presented in Figure 1. These two regions are named R5 
and R6 (Figure 2). Choice of the scars was also motivated by the associated land-cover types, 
as they are mainly occupied by transitional woodland-shrub type in the case of R5 (around 
70%) and by Sclerophyllous vegetation in the case of R6 (around 40%) (Table 3). In the region 
located in the South of Portugal, a considerable number of pixels corresponding to broad-
leaved forest (21%), transitional woodland-shrub (21%) and agricultural practices (16%) are 
also found (Table 3). It is the first time that the mono-parametric model is used to study the 
recovery process in burnt scars mainly occupied by this type of Mediterranean vegetation 
(Sclerophyllous vegetation).

The mono-parametric model was accordingly adjusted to the NDVI-MODIS time series spa-
tially averaged over the two considered regions (Figure 7, top panel). The vegetative cycle 
that characterises the dominant vegetation type within R6 presents a higher inter-annual 
variability than for R5, although showing smaller values of NDVI. This feature is in agree-
ment with the dominant types of vegetation that show a very marked vegetative cycle (broad-
leaved, grassland and agriculture), but also present less greenness and density typical of the 
Mediterranean vegetation. The decrease of NDVI values during 2005 in R6 is also worth not-
ing, being consistent with the impact of the 2004/2005 drought event on the vegetation.

Figure 7. Time series of NDVI (grey curves) spatially averaged over the two considered burned scars: R5 and R6 for 
2012 (top panel) fire season. Black curves represent the Gorgeous Years (GY) of vegetation, given by the annual cycles of 
maximum NDVI for each month over the considered period. Time series of monthly lack of greenness, y (black line with 
asterisks) and modelled curve (solid line) of vegetation recovery, spatially averaged over R5 and R5 for 2012 (bottom 
panel). Dashed lines indicate the 95% confidence limits of the regressed curve.
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The sharp decay in NDVI time series during the fire season of 2012 (Figure 7, top panel) corre-
sponds to the loss of vegetation over the considered scar that resulted from the fire. However, 
in the case of R5 a second decrease moment of NDVI is obvious. This feature is a clear indicator 
that the pixels (or at least some pixels) inside the burnt scar of 2012 have also burned in 2005.

Figure 7 (bottom panel) shows the time series of deviation of NDVI from the GY (y) and the 
respective modelled curves. The time of recovery is lower in R6 (tR = 20 months, I95[tR] = [17, 25]) 
than in R5 (tR = 24 months, I95[tR] = [22, 26]). Recovery rates in these two regions are lower than 
the ones obtained in 2003 and 2005 for regions dominated by forests. However, they are higher 
than the regeneration rates obtained for burnt areas of 2004 in South of Portugal, also dominated 
by agricultural and grassland practices [20]. The 95% confidence interval is higher in the case of 
R6, due to the high variability observed in the time series of y that could be associated to the dif-
ferent vegetative cycles of the several land-cover types that are found in the large area defined as 
R6. Additionally, as mentioned in Section 2, the definition of vegetation recovery obtained by the 
adjustment of the mono-parametric model does not assume the regeneration of the same type of 
vegetation. In the case of R6, the vegetation that recovers from the 2012 fire seasons seems to have 
different phenological characteristics than in the pre-fire vegetation, which could be associated 
with the potential enlargement of the transitional woodland-shrub or the replacement of crops 
by grassland, a typical feature observed after large fires in semi-arid regions [10].

Figure 8 shows the spatial distribution of recovery times over R5 (left panel) and R6 (right panel) 
of the 2012 fire season. As expected, the recovery time obtained for the majority of the pixels over 
both regions is about 20 months. However, small spots of recovery rates of about 40 months are 
observed in both regions and a very few number of values of about 60 months are also present 
in the R6 region. By visual inspection, pixels presenting high recovery rates were found to be 
associated with forest (Figure 6), where it is common to find such regeneration rates.

Forest fires are recurrent in Portugal due to the accumulation of flammable material and water 
stress, usually associated with either climate extremes or land-use change [4]. Although well 
adapted to fire, the vegetation density and composition should be affected by severe fire episodes 
[8, 13, 18]. The vegetation cycle observed in Figure 7 over R5, where the occurrence of two fire 
episodes is conspicuous, one in 2005 and another in 2012, turns this region into a very interesting 
case study in the framework of recurrent-fires analysis. Therefore, the burnt area classification 
obtained through cluster analysis for 2005 and 2012 was overlapped and R5 region was analysed 
in detail. Figure 9 (top panel) presents the burned areas over the R5 region for 2005 in light grey, 
for 2012 in dark grey and the overlapped region in black. In Figure 9 ( bottom, left panel), the 

All 

agricultural

Broadleaved 
forest

Coniferous 
forest

Mixed 

forest
Sclerophyllous 
vegetation

Transitional 
woodland-shrub

R5 2000 8.49 10.90 22.29 31.61 1.93 24.43

2006 8.49 0.21 6.35 14.15 1.38 69.01

R6 2000 15.49 24.17 0.00 3.60 43.07 13.68

2006 15.14 21.06 1.21 3.25 37.89 21.45

Table 3. Main land-cover types, as obtained using CLC2000 and CLC2006 classifications, that are present in the burned 
scars selected: R5 and R6 for 2012 fire season.
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NDVI (grey curve) represents the spatially averaged values over the area in black (i.e. the area that 
burned in both 2005 and 2012). The Gorgeous Year, as obtained considering the period until the 
fire season of 2012, and the time series of the monthly lack of greenness, spatially averaged over 
the area in black of R5, are also presented. The modelled curves (solid line) of vegetation recovery 
for the fire season of 2005 and 2012 are represented in red in Figure 9 (bottom, right panel).

Regeneration rates were also computed for both fire seasons, being longer in the case of the 
fire season of 2005 (tR = 34 months, I95[tR] = [32, 35]) than in the case of 2012 (tR = 29 months, 

Figure 8. Recovery time in months for the regions R5 and R6.

Figure 9. Top: Burned areas obtained through cluster analysis for 2005 (in light grey) and 2012 (in dark grey) over R5 
region and overlapped region (in black); bottom: As in Figure 7 but for the pixels simultaneously burned in 2005 and 2012.
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I95[tR] = [27, 32]). As already mentioned, vegetation recovering from the 2005 fire season 
seems to have different phenological characteristics when compared to the pre-fire vegeta-
tion, which are related with the replacement of the existing forest before the fire season of 2005 
which occupied around two-thirds of the burnt scar (Broadleaved—11%, Coniferous—22% 
and Mixed Forest—32%, Table 3 and Figure 6) by transitional woodland-shrub, occupying an 
area that went from 24% in CLC2000 up to 69% in CLC2006 (Table 3 and Figure 6). This new 
predominant vegetation type is prone to become dry, namely in the case of the severe drought 
that occurred in 2012 [4, 21], becoming flammable fuel [22] and contributing to increase the 
severity of fires and to larger burned areas [39].

4. Conclusions

A mono-parametric model of vegetation recovery in areas affected by large wild fires was 
assessed in terms of consistency and robustness. For this purpose, vegetation recovery is here 
modelled based on time series of NDVI from the MODIS instrument (MODIS Terra V6) and 
results compared against previously obtained ones using data from the VEGETATION sensor 
[16]. The pre-fire period covered by NDVI-MODIS is 2 years shorter than the one by NDVI-
VEGETATION, but a long period of data after the fires of 2003 and 2005 is available, allowing 
to compare the results obtained with both datasets. In addition, the 250-m spatial resolution 
of NDVI-MODIS is substantially higher than the 1-km resolution of NDVI-VEGETATION, 
which may allow to better model the vegetation dynamics and its recovery after a fire episode.

Burnt scars were identified by means of cluster analysis performed on monthly anomalies 
of NDVI and four previously studied regions, two from the 2003 [16] and two from the 2005 
fire seasons [20], were selected to be studied. The fit of the mono-parametric model allowed 
estimating the time required for vegetation recovery (tR). Despite differences in terms of used 
datasets, obtained recovery rates when using the NDVI-MODIS dataset presents very similar 
patterns to the ones obtained with the NDVI-VEGETATION dataset [16, 20, 21] highlighting 

the robustness of the methodology used and its applicability to other indices and sensors.

The important role of drought on pre- and post-fire behaviour of vegetation has motivated the 
application of the developed methodology to monitor burnt scars and vegetation regeneration 
rates to two large burned areas of the 2012 fire season. The regeneration rates obtained through 
the application of the vegetation recovery model to both burnt scars are lower (around 20 months) 
than the ones obtained in previous works for regions dominated by forest, but are higher than 
the recovery rates obtained in regions dominated by agricultural and grassland practices [16, 
20]. A detailed analysis of the spatial patterns of recovery times over both regions reveals a large 
majority of pixels presenting recovery times around 20 months, with some hotspots of pixels 
presenting 40 and 60 months that are found in regions dominated by forest [20].

One of the studied areas was successively affected by two large fires, one in 2005 and the other 
in 2012. The regeneration model when applied to the subset of pixels that burned in both 2005 
and 2012 pointed to a higher-recovery time for the pixels burned during the 2005 fire than 
in 2012, although both being around 30 months. The definition of vegetation recovery used 
in the present work (and proposed in [16]) is based on NVDI and therefore does not assume 
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the regeneration of the same type of vegetation. It was found that the pre-fire forest, which 
occupied around 65% of the burnt scar, was indeed replaced by transitional woodland-shrub, 
which in post-fire has increased from 24% in CLC2000 to 69% in CLC2006. The predominance 
of a more flammable vegetation type [22], as well as more sensitive to extreme drought events, 
will increase the risk of more severe and large fires [39].

The development of reliable techniques to assess post-fire vegetation recovery features in con-
ditions of recurrent fires is crucial for a better understanding of vegetation behaviour and spe-
cies succession in the Mediterranean region, namely in Portugal, which is recurrently affected 
by severe fire seasons. The recent SENTINEL program, developed by ESA on behalf of the 
joint ESA/European Commission initiative GMES (Global Monitoring for Environment and 
Security), will allow the development of new vegetation products at high spatial resolution 
(Sentinel-2) that will offer an excellent opportunity for better understanding, monitoring and 
consequently developing new strategies when dealing with pre- and post-fire events.

The application of the proposed procedure based on a simple mono-parametric model of veg-
etation recovery in regions prone to extreme climate events such as droughts and where land-
use practices have changed significantly will allow the development and implementation of 
better strategies for fire prevention, management and mitigation before and after recurrent 
fires, namely fuel hazard assessment, prescribed burning, choice of plant species for reforesta-
tion, among others [31, 40].
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