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Abstract

The brain is one of the most energy-requiring organs in the human body. Mitochondria 
not only generate this energy, but are centrally involved critical cellular functions includ-
ing maintenance of calcium homeostasis, synthesis of biomolecules, and cell signaling. 
Even though neurons and astrocytes preferentially use different energy substrates and 
metabolic pathways, these two cell types are intricately linked in their energy metabo-
lism. Recently it has become clear that astrocytes have a key role in the regulation and 
support of the neuronal mitochondrial quality control, yet several questions remain 
unanswered to fully understand the mechanisms of mitochondrial function, transport, 
turnover and degradation in astrocytes. Alzheimer’s disease is the most common neuro-
degenerative disorder, the exact mechanisms of which remain incompletely understood. 
The fact that astrocytic mitochondrial dysfunction is an early event in the pathogenesis of 
Alzheimer’s disease suggests that more research on mitochondrial function and impair-
ment is required in the hopes of disease alleviation in the future.

Keywords: mitophagy, energy metabolism, brain, neurodegeneration, mitochondrial 
quality control

1. Introduction

This chapter summarizes the importance of proper mitochondrial functioning in the central 

nervous system, with a special focus on astrocytic mitochondria and their quality control. 

Mitochondrial function is next discussed in the context of Alzheimer’s disease (AD), before 

finally casting a look at potential future therapeutic approaches to modulate these events in 
astrocytes.

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



2. Energy metabolism in the brain

The brain is one of the most energy-requiring organs in the human body, yet it contains rela-

tively few energy reserves. The daily energy consumption of the brain is 20 times higher than 

that of skeletal muscle [1]. Related to its mass, the brain utilizes a large proportion of all the 

oxygen and glucose available in the body. Despite the fact that the mass of the human brain 

corresponds only to 2% of the total body weight, the brain utilizes around 20% of the all 

energy received from glucose [2]. In mammals, glucose is considered to be the main energy 

source for the brain and especially for the neuronal cells with a high-energy demand, it is con-

verted to adenosine triphosphate (ATP) in the cell’s mitochondria [2]. In neurons, the require-

ment for energy is highest in the synaptic regions where the signal transmission between two 

neurons takes place [3].

The brain is fuelled mainly by blood-derived glucose, but during some conditions, such as 

starvation or physical activity, ketone and lactate from blood flow are also used for energy 
[4, 5]. Glucose and lactate enter the brain through specific glucose transporters (GLUTs) and 
monocarboxylate transporter (MCTs) for further metabolic processing. There are three main 

glucose metabolic pathways: aerobic and anaerobic glycolysis (generates pyruvate and lac-

tate, respectively), pentose phosphate pathway (generates NADPH and pentose), and glyco-

genesis (generates glycogen) [6, 7].

Neurons are highly energy demanding in comparison to other brain cell types [8]. Even 

though neurons and astrocytes preferentially use different energy substrates and metabolic 
pathways, these two cell types are intricately linked in their energy metabolism. Astrocytes 

are responsible for energy production, storage and delivery in the brain, and are considered 

as the main energy supplier for neurons [7]. For example, astrocyte-derived lactate has been 

shown to play a crucial role in long-term memory formation and neuronal activity control [6, 

9]. Astrocytes are critical for brain energy cooperation and in addition to carrying out meta-

bolic pathways such as aerobic glycolysis and glycogenesis, they release lactate and regulate 

glutamate homeostasis [7, 8].

Astrocytes uptake glucose from capillaries through GLUT1 transporters. Through glycolysis 
glucose is converted to pyruvate and then to lactate, which is released into the extracellular 

space [10]. Astrocytes are the main cellular reservoir of lactate, which is mainly produced 

from glycogen [9, 11, 12]. Through the so-called astrocyte–neuron lactate shuttle, lactate 
enters neuronal cells from the extracellular space through MCTs to be used in the tricarbox-

ylic acid (TCA) cycle for generation of ATP – the major player in intracellular energy transfer 

[10]. Despite the fact that astrocytes and neurons both consume glucose and lactate, these two 

types of cells have very different metabolic profiles. Under normal physiological conditions 
astrocytes take up more than 80% of glucose, whereas neurons utilize limited amounts of 

glucose [7]. Astrocytes also have a higher glycolysis rate than neurons [6]. The specific activ-

ity of 6-phosphofructo-1-kinase (PFK1), a master regulator of glycolysis, is fourfold higher in 

astrocytes than in neurons [13].
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Glutamate, most well known for being the main excitatory neurotransmitter in the brain, is 
also a key player in energy metabolism. Astrocytes take up glutamate from the synaptic cleft 

via glutamate transporters, and either transform it into glutamine, or utilize it in the TCA 

cycle [10]. Interestingly, glutamate uptake also increases glucose utilization and promotes 

astrocytic lactate production to provide energy sources for neurons [5, 14, 15].

3. Mitochondrial function in the brain

In the human body the fatty acids and carbohydrates acquired from the diet form a base 
material for a chain of oxidative reactions where the energy is stored in small energy rich 

molecules such as ATP. Mitochondria are called the small powerhouses of the cell, which 

in oxidative conditions take the major responsibility for ATP production. Based on an endo-

symbiosis theory, the mitochondria originate from an aerobic proteobacteria engulfed by a 

prokaryotic cell. Nowadays they are important organelles of the eukaryotic cell, with various 

tasks critical for cellular health and well-being [16].

In addition to being the key organelles for energy production, mitochondria also take care 

of other critical cellular functions including maintenance of calcium homeostasis, syn-

thesis of biomolecules, and cell signaling [17]. Related to calcium homeostasis, the mito-

chondria function as Ca2+ storage reservoirs in cells. Calcium is an important signaling 

molecule, the release of which from the mitochondria to the cytosol is tightly controlled [18]. 

Depolarization of the mitochondrial membrane potential releases Ca2+ to the cytosol, which 

can induce cell apoptosis [19]. Induction of apoptosis leads to cytochrome c release, which 

activates pro-apoptotic caspases when released to cell cytoplasm from the inner membrane 

of the mitochondria.

In comparison to astrocytes, neurons express or have less active enzymes for protection 

against oxidative stress [20]. Because of this, neurons are dependent on the nearby astro-

cytes in their strategies to cope with reactive oxygen species (ROS). The ROS have in tightly 

controlled amounts an important function as signaling molecules in the cell. However, in 

situations of uncontrolled high concentrations of ROS, the cell may face a harmful cascade 

leading to disruption of cell structures, apoptosis and senescence. In the brain the ROS can 

originate from either exogenous or endogenous sources. Exogenous sources for ROS include 

for example ultraviolet (UV) radiation and toxins, chemicals or drugs that produce ROS as 
their by-products in the body [21]. Importantly, mitochondria are considered as a significant 
endogenous source for ROS [22, 23]. It has also been reported that exogenous ROS may also 

induce the release of endogenous ROS from the mitochondria [24]. In summary, mitochon-

drial ROS are important signaling molecules, controlling the balance of which is important to 

limit the harmful effects of ROS overload in the brain.

In addition to their various important roles, mitochondria have also been reported to affect 
cognitive function and memory in the brain. Recently it was observed that the amount and 
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morphology of the presynaptic mitochondria in specific brain regions affects memory and 
synaptic health in non-human primates [25]. The study shows that estrogen treatment, which 

has been considered to enhance working memory, prevents working memory impairment in 

aged ovariectomized monkeys. The monkeys treated with cyclic estradiol had a higher num-

ber in total and less morphologically malformed donut-shaped mitochondria in their presyn-

aptic regions compared to controls. This observation sets as of yet unanswered questions of 

even wider functions of mitochondria in the mammalian brain.

4. Mitochondrial function in astrocytes

According to recent calculations, the human brain is estimated to contain glial cells and neu-

rons in a ratio of 1:1 [26]. The major glial cells are classified as oligodendrocytes, microglia 
and astrocytes. The astrocytes play a central role in maintaining of CNS homeostasis, expres-

sion of neurotransmitters and neuroprotection [27]. The astrocytes co-operate closely with 

the neurons, being critical components of important processes such as synapse formation, 

maintenance of synaptic plasticity, maintenance of blood brain barrier integrity and removal 

of excessive neurotransmitters from the synaptic cleft [28]. The morphology of astrocytes is 

ideal for their various functions. Each astrocyte has its own territory in the brain, with mini-

mal overlapping with other cells [29]. The astrocytes can communicate with neurons and 

reach the synaptic regions with their fine shaped processes, and reach the brain vasculature 
with larger protrusions (endfeet). Notably, the astrocytic endfeet is potent at regulating the 

cerebral blood flow [30].

Mitochondrial dynamics of astrocytes is less studied than that of neurons. Enzymes metabo-

lizing glycogen are highly expressed in astrocytes and thus astrocytes in the human brain 

are usually considered more glycolytic in their energy metabolism compared to highly oxy-

gen dependent neurons. However, besides glycolytic metabolism, there is also evidence of 

a strong aerobic metabolism in astrocytes [31]. Glycolysis in astrocytes is directly linked to 

the energy metabolism in neurons via the astrocyte–neuron lactate shuttle. There the lactate, 
produced in astrocytes, can be transferred to neurons as a supplement for their TCA cycle in 

mitochondria [32]. Therefore, neurons and astrocytes are intricately linked in their energy 

metabolism, and in mitochondrial function.

Following signal transmission between two neurons, astrocytes surrounding the synapse 

clear the neurotransmitter glutamate from the synaptic cleft via specific glutamate transport-
ers expressed in their cell membrane. The glutamate taken up by astrocytes is then converted 

either to glutamine and released back to neurons, or used as fuel in the TCA cycle in the mito-

chondria in the form of α-ketoglutarate. The enzymes required for this glutamate metabolism 
are expressed in astrocytes at high levels [31]. The neuronal activity and following glutamate 

uptake by astrocytes has also been reported to affect mitochondrial movement inside the 
astrocytes. The astrocytes are endowed with the ability to pause or move mitochondria in cell 

compartments with highest activity [33, 34].
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5. Mitochondrial quality control

Due to the significance of mitochondria to the well-being of cells, the mitochondrial qual-
ity is hierarchically regulated and controlled, aiming to maintain a healthy population of 

mitochondria. The quality control system regulates mitochondrial biogenesis, dynamics, and 

degradation, and through influencing mitochondrial health, has major potential to improve 
health and lifespan [17]. In order to maintain this population of fully functional and mor-

phologically optimally shaped mitochondria, the mitochondria constantly take part in a 

cycle of fusion and fission events [35]. However, the cell also requires another strategy to 

degrade severely damaged or surplus mitochondria. Due to the fact that compromised mito-

chondria release potentially harmful substances such as cytochrome c and calcium [36], it is 

very important that defective mitochondria are eliminated quickly and efficiently. Efficient 
degradation of damaged mitochondria is particularly important for neurons because their 

survival and activity depends on mitochondrial homeostasis [37, 38]. In general, macroau-

tophagy is a process through which organelles and cytosolic components are engulfed in 

membrane-bound vesicles and degraded upon fusion with lysosomes. It serves housekeep-

ing function essential for homeostasis and survival of the cells. The specific process through 
which severely damaged or surplus mitochondria are degraded through an autophagic pro-

cess is called mitophagy [39, 40]. Mitophagy is a crucial mechanism for mitochondrial quality 

control [41]. The fact that the majority of mature lysosomes are concentrated close to the cell 

soma [42] brings yet another challenge for neuronal mitophagy: axonal transport of damaged 

mitochondria to the soma takes time although rapid degradation is required to prevent the 

release of toxic substances.

Until very recently, it was presumed that each cell in the central nervous system degrades 
its own cell organelles. This notion was revoked by a study showing that the majority of 

neuronal mitochondria in axons are internalized and degraded by adjacent astrocytes with 

high phagocytic activity under normal physiological conditions in vivo [43]. This process 

of transcellular mitochondrial degradation is known as transmitophagy (TM). Using a tan-

dem fluorophore protein reporter of acidified mitochondria, the study showed that acidified 
axonal mitochondria are associated with astrocytic lysosomes in the optic nerve head. After 

this phenomenon was found there have emerged also other studies stating that the transfer 

of mitochondria between neurons and astrocytes occurs the other way around as well. For 

example, astrocytic mitochondria transferred in extracellular particles have been shown to 

be functional in neurons. The transfer of mitochondria is suggested to be mediated via CD38 

signaling, an important enzyme for calcium signaling in the cell [44]. However, it should be 

noted that the results presented by Hayakawa et al. [44] have also received commentaries 

about proof of the actual internalization and functionality of the astrocytic mitochondria in 

neurons [45].

Previous studies show that the fine astrocytic processes contacting the synaptic regions con-

tain plenty of mitochondria [31]. In addition, the mitochondria in astrocytic fine processes are 
smaller in size and less elongated than those located in the major branches around the cell 

Mitochondrial Function in Alzheimer’s Disease: Focus on Astrocytes
http://dx.doi.org/10.5772/intechopen.71825

143



soma [46]. These results awake further interest of whether TM or the transfer of mitochondria 

between brain cells are universal phenomena critical for the proper functioning of mitochon-

dria in the healthy and diseased brain.

6. Astrocytes in Alzheimer’s disease

AD causes an enormous socio-economic burden on societies as it impacts millions of people. 

It is the most common chronic neurodegenerative disorder that is associated with cogni-

tive decline and progressive memory loss [47]. AD pathology is characterized by accumula-

tion of misfolded amyloid beta (Aβ) proteins in extracellular amyloid plaques, deposition 
of modified tau proteins in intraneural neurofibrillary tangles, and sustained neuroinflam-

mation and oxidative stress [48]. There are two types of AD: familial (FAD) and sporadic. 

Familial AD affects a small minority of patients and is associated with mutations in genes 
encoding amyloid precursor protein (APP) or the presenilins (PSEN1 and PSEN2) [49, 50]. 

Approximately 95% cases of AD are sporadic and are associated with age-related increase 

in free-radical production, oxidative stress, impaired mitochondrial energy metabolism and 

mitochondrial dysfunction [51]. There is a great deal of research that has contributed to our 

understanding of the etiological and pathological features of AD, but the cause and underly-

ing mechanisms of this disease remains incompletely understood. Because of this, there is no 

effective cure for AD.

To study AD mechanisms and test new therapeutic approaches preclinically, a large num-

ber of animal models have been developed. For example, in the non-transgenic AD model, 

Aβ or tau proteins are injected into the rodent brain. In transgenic AD animals, single or 
multiple mutations in genes associated with AD (such as APP, PSEN1/2, tau) are intro-

duced to model familial AD. Transgenic AD models can be divided into two different 
groups depending on plaque deposition – early plaque AD models such as APPswePS1dE9, 

3xTG-AD, 5xFAD, and late plaque AD models such as TG2576, PDAPP-J20 [52]. In addi-

tion to rodent models, recent advances in stem cell technologies have promoted the use of 

human-based cell models for AD research. For example, it is now possible to model AD 

in vitro by using induced pluripotent stem cells (iPSCs) and cells derived from these by 

differentiation [53–55].

A full understanding of the importance of astrocytes in AD has become evident only 

recently. For a long time it has been known that astrocytes have numerous functions that 

act at maintaining of CNS homeostasis and the blood brain barrier, expression of neu-

rotransmitters and neuroprotection, supplying neurons with energy and antioxidants [27, 

28]. Even though Alois Alzheimer first observed pathological astrocyte modifications in 
the AD brain over a century ago [56], it is only now becoming clear that the dysfunction of 

astrocytes is an essential and even early component of many neurodegenerative diseases, 

including AD [27, 57].

Researchers have utilized several AD animal models for studying astrocyte alterations asso-

ciated with AD. For example, in the 5xFAD mouse model, expressing five FAD mutations 
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in genes encoding APP and PSEN1 [58], impairment in energy metabolism and activation 

status in neonatal astrocytes of transgenic mice was very recently discovered [59]. In addi-

tion, an impairment in Aβ uptake and neuronal support was demonstrated in old 5xFAD 
astrocytes [60]. In another mouse model of AD, the 3xTG-AD mice (with three FAD mutations 

in genes encoding APP, PSEN1 and tau) atrophy of astrocytes was described to start early, 

at the age of 3 months [61, 62]. The double transgenic APPswePS1dE9 AD mouse model has 

revealed a decline in normal functioning of old astrocytes leading to diminution of neuronal 

support [63]. At the same time, astrocytic pathology associated with AD is also found in late 

plaque AD models. In [64] authors shown the involvement of astrocytes in the degradation 

of amyloid plaques and autophagic processes in PDAPP-J20 mouse model of AD. In contrast, 

results in the TG2576 mouse model demonstrated that reactive astrocytes become Aβ produc-

ers through expression of BACE1, which catalyzes the first step in the formation of the Aβ 
peptide from APP [65].

It is important to note that rodent astrocytes are different from human astrocytes. For exam-

ple, human astrocytes are larger and more complex in morphology and they have faster cal-

cium responses and more robust responses to glutamate [66]. Very recently, AD-associated 
astrocyte dysfunction has also been described in human iPSC-derived cell models. Using this 
model, atrophy of astrocytes and abnormal expression of astrocytic markers were demon-

strated in iPSC-derived astrocytes from patients with familial and sporadic forms of AD [54]. 

We have also shown that iPSC-derived AD astrocytes are compromised in neuronal support-

ive function, and display increased β-amyloid production and oxidative stress, altered cyto-

kine release, and dysregulated Ca2+ homeostasis [67]. In addition to cellular models, human 

post-mortem brain from AD patients also can be used for the study astrocytic pathology at 

the disease end stage. In recent studies, astrocytic atrophy also was found in FAD human 

post-mortem brain [57].

Recently it has become realized that there are two types of reactive astrocytes: A1 astrocytes, 

which are harmful and induced by neuroinflammation, and A2 astrocytes, which are help-

ful and induced by acute brain injury [68, 69]. The A2 astrocytes have a protective role and 

promoting neuronal survival, whereas A1 astrocytes are destructive for neurons and have 

neurotoxic properties [70]. In human AD, harmful A1 astrocytes constitute the majority of all 

astrocytes in CNS and can play a crucial role in induction and progression of AD [70].

Astrocyte dysfunction, so called “reactive astrogliosis,” is associated with all neurode-

generative diseases including AD, and characterized with various complex molecular and 

functional changes in the cells [71]. Both in the human and in rodent AD brain, reactive 

astrocytes are characterized by hypertrophy and overexpression of intermediate filaments 
like glial fibrillary acidic protein (GFAP) [69, 72]. Alterations in astrocytes lead to changes in 

synaptic activity and neuronal survival [73]. It is interesting to note that in the CA1 subfields 
of the hippocampus, reactive astrocytes, proximal to Aβ plaques, have significantly higher 
GFAP expression than astrocytes distal to amyloid plaques [62, 71]. Moreover, these distal 

astrocytes display atrophy [62], which is thought to occur before plaque formation, suggest-

ing that astrocytes may be associated with early changes occurring during the development 

of AD [32].
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AD astrocytes are also characterized by a number of molecular alterations. Dysregulation in 

the release of chemical neurotransmitters including glutamate, D-serine, GABA, as well as 
calcium in astrocytes leads to a disturbance in the normal communication between neurons 

and astrocytes and eventually impairs synaptic plasticity [32, 71]. Moreover, the majority of 

hippocampal astrocytes (86%) in the AD brain express heme oxygenase (HO-1), while nor-

mal astrocytes almost do not express HO-1 at all (6–7%). This is indicative of oxidative stress 

occurring in the astrocytes during AD [74].

In the AD brain, reactive astrogliosis is associated with a reduction of normal astrocyte gly-

colytic activity in response to Aβ [75]. As mentioned above, astrocytic glycolysis has a central 

role in supplying neurons with lactate, which is crucial for long-term memory formation [6, 

9, 76]. Reduction of lactate released from astrocytes has been demonstrated in arctic Aβ mice 
[77]. Moreover, correlation of memory impairment with reduced level of hippocampal lactate 

has been reported to occur in response to Aβ in rats [78].

7. Impaired mitochondrial function in Alzheimer’s disease: focus on 

astrocytes

In the last years, research on neurodegenerative diseases has begun to change its focus from 

neurons to the neighboring supportive cells. For example, it is now known that astrocytes 

have a key role in the regulation and support of the neuronal mitochondrial quality control 

[79, 80]. Furthermore, recent studies in the AD field have shifted attention from the “amyloid 
hypothesis” to the “neuroenergetic hypothesis” [81], thereby focusing on the importance of 

the cellular bioenergetic interplay in disease conditions. In this part of the chapter we sum-

marize what is thus far known about the impairment of astrocytic mitochondria in AD.

Impairments in mitochondria of brain cells lead to cerebral hypometabolism - specifically 
neurons are very sensitive to alterations in basal energy levels since they need a fine ener-

getic homeostasis to employee their function (Figure 1). As the mitochondria are the princi-

pal source of ATP as well as of ROS, they retain a critical role at the centre of a complex web 

of processes leading to cellular and organismal aging and neurodegeneration [82]. Studies 

on mitochondrial function specifically in astrocytes have shed some light on the pathologi-
cal features of AD. Already almoust 10 years ago Kaminsky and Kosenko [83] investigated 

the effects of Aβ peptides on mitochondrial and non-mitochondrial sources of ROS and 
antioxidant enzymes in rat brain in vivo: the authors demonstrated that the continuous 

infusion of  Aβ for up to 14 days stimulated the generation of hydrogen peroxide in iso-

lated neocortical mitochondria through an alteration of the antioxidant enzymes activity. 

Abramov et al. [84] demonstrated that Aβ peptides induce a loss of mitochondrial potential 
(Δψm) in astrocytes but not in neurons, with a remarkable augmentation of intracellular 
calcium concentrations [85]. Calcium overload is considered the main biochemical feature 

of Aβ excitotoxic stress and it causes free radical accumulation in neurons and the forma-

tion of the mitochondrial permeability transition pore (mPTP) [86]. The formation of the 
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mPTP leads to a phenomenon known as mitochondrial swelling, which occurs along with 

several  mitochondrial  perturbations described in “the mitochondrial cascade hypothesis in 

AD” [87]. Mitochondrial impairment precedes AD-associated synaptic damage, neuronal 

cell death and deficits in learning and memory [88]. Importantly, mitochondrial dysfunction 

is a key cellular feature of both sporadic and genetic AD and observed also in apolipoprotein 

E-4 (ApoE4) carriers [89]. This suggests that mitochondrial dysfunction is a key pathological 

feature of AD [90].

The central nervous system presents a high rate of production of oxidative molecules and 

relative low levels of antioxidant agents. It is particularly sensitive to oxidative damage 

because of the high consumption of oxygen, the presence of membrane polyunsaturated 

fatty acids susceptible to free radical attack, and the low ratio between ROS and antioxidant 
enzymes [91]. Astrocytes support neurons in the fight against oxidative damage by produc-

tion of glutathione (GSH), the main antioxidant of the brain. Already some 25 years ago 

Figure 1. Alzheimer’s disease pathology alters astrocytic neurosupportive functions.
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it was reported that impairment of astrocytic antioxidant systems causes neuronal death: 

Sagara et al. [92] demonstrated that there is a relationship between the GSH decline in 

neurons exposed to Aβ1-42 neurotoxic peptide and the concomitant decrease of GSH levels 
and the increase of intracellular calcium influx in astrocytes. The reduction of GSH and 
the increase of oxidation of proteins related to energy metabolism could be a consequence 

of the altered regulation of the transcription factors controlling nuclear and mitochon-

drial oxidative phosphorylation (OXPHOS) genes in brain cells. Reduced levels of nuclear 

respiratory factor 2 (NRF2), peroxisome proliferator-activated receptor γ coactivator-1α 
(PGC-1α) and mitochondrial transcription factor A (TFAM) are reported in hippocampal 
tissues from AD brain [93]. These transcription factors regulate the mitochondrial quality 

control system through mitochondrial biogenesis, the fission-fusion cycle of mitochondria 
and mitophagy.

A defective mitochondrial dynamic induces a structural change of the organelles. Baloyannis 

[94] described morphological alterations of the mitochondrial cristae, accumulation of osmio-

philic material, and decrease of mitochondrial size to be associated with AD. The quantifica-

tion of mitochondrial DNA (mtDNA) revealed low levels in AD subjects in the cortical and 

hippocampal areas [95, 96], which may reflect a diminished number and mass of mitochondria 
in AD. However, a complex picture was presented by [97], where the authors demonstrated 

that by measuring the mtDNA present in phagosomes together with the mtDNA in healthy 

mitochondria the quantification resulted in higher levels in AD subjects than in controls. The 
observation of an augmented number of unhealthy mitochondria in AD is corroborated by a 

study showing an increased number of fragmented mitochondria in Aβ stimulated astrocytes 
[98]. In addition to having effects on mitochondrial fragmentation, Aβ results in increased 
glycolysis, augmented ATP levels and the maintenance of the mitochondrial potential (Δψm) 
in exposed astrocytes [99].

Mitochondrial trafficking through the astrocytes and the localization of these organelles 
along the fine processes (<600 nm of diameter) of reactive astrocytes may be disrupted due 
to loss of genes implicated in neurodegenerative diseases. For example, PARK-2 muta-

tions may alter the Parkin-mediated turnover of Mitochondrial Rho GTPase 1 (Miro1), 

a key regulator of mitochondrial trafficking. Miro1 is required to tether kinesin motor 
protein complexes to the outer mitochondrial membrane (OMM) and modulate the fis-

sion-fusion ratio, mitophagy and mitochondria-endoplasmic reticulum interaction [100]. 

Alterations to the trafficking of astrocyte mitochondria could disrupt the supportive func-

tions of astrocytes. For example, it is well-known that astrocytes deplete the glutamate 

present in the synaptic left through glutamate transporters, and this is fundamental for 

the functionality of neurotransmission [101]. Loss of astrocyte mitochondrial function 
is related to the inability of astrocytes to convert glutamate to glutamine and is known 

to precede neuronal glutamate excitotoxicity [102]. Genda et al. [103] demonstrated the 

co-localization of the glutamate transporter GLT-1 with the sites of high neuronal trans-

mission activity in hippocampal sections: furthermore, the authors observed the co-

compartmentalization of mitochondria in the areas of higher concentration of glutamate 

transporter GLT-1. Mitochondria are not-uniformly distributed along the astrocytes but 
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they are an  important source of energy in the contact areas with neurons to contribute 

to neuroprotective function against toxic insults. The mitochondria of astrocytes thereby 

play a direct role in glutamate-mediated synapsis homeostasis and in the hippocampal 

neuronal transmission: the organelles provide the ATP for the glutamate-glutamine shut-

tle to supply the energy demand in situ.

Very recently it was shown that human AD astrocytes have an altered display of mitochon-

drial encoding genes when compared to healthy controls [104]. The authors performed total 

RNA sequencing of the astrocytes to shed light on the molecular differences caused by the 
disease. PITRM1/PREP/MP1, localized in mitochondrial matrix and encoding an enzyme 

that degrades the Aβ peptide, was shown to be downregulated in AD. NDUFA4L2, encod-

ing a protein that inhibits Complex I activity, was upregulated in AD astrocytes. In addition, 

MTND1P22, most likely a long non-coding RNA involved in the regulation of NADH dehy-

drogenase 1, was also altered in the AD astrocytes. This evidence pointing to the importance 

of mitochondria specifically in AD astrocytes is supported by further studies on the effect of 
Aβ on the functions of astrocyte mitochondria. Aβ induces ATP synthase uncoupling in astro-

cytes [105], increased β-amyloid/APP lead to reduced expression of superoxide dismutase 
and results in increased age-related oxidative stress in astrocytes [106], and Aβ/APP localizes 
on the mitochondrial inner membrane of astrocytes and disrupts Complex IV (COX) activity 
and APP processing by β-secretase [107]. Taken together, these studies support the evidence 

that exogenous Aβ treatment is sufficient to induce mitochondria-mediated apoptosis and 
that a dysfunction in astrocytic mitochondrial quality control is a key part of the pathophysi-

ology associated with AD.

Astrocytes are an essential source of energy for neurons by providing the neurons lac-

tate. Astrocytes also participate in the clearance of glutamate from the synaptic cleft, take 

up neuronal mitochondria and are an important source of antioxidant enzymes, such as 

GSH. In AD, these normal astrocytic functions are altered leading to increases in astro-

cytic intracellular calcium, reductions in the levels of GSH and mitochondrial dysfunction. 

The normal intracellular degradation pathway for non-functional mitochondria, mitoph-

agy, is impaired, leading to accumulation of non-functional mitochondria. In summary, 

these events lead to impaired astrocytic bioenergetics and impaired glutamate uptake from 

the synaptic cleft, greatly influencing neuronal health and contributing to the pathology 
progression.

8. Therapeutic approaches targeted to modulation of mitochondrial 

function in Alzheimer’s disease

There are a huge number of therapeutic approaches that have been trialed in AD, yet the 

only approved treatments only delay the inevitable and no cure for this devastating disor-

der exists. A critical difficulty in neurodegenerative disorders such as AD is the relative late 
onset of the symptoms united to a progressive degeneration, and late disease  diagnosis. 
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At the time of diagnosis, neuronal impairment is often too far for effective intervention. 
Furthermore, the anatomical site affected in these disorders is often difficult to access by 
potential therapies.

Pharmaceutical companies have invested heavily in a variety of potential therapies to modu-

late AD: the well-known memantine, reducing the glutamate excitotoxicity, is considered 

one of the best available therapeutics for AD but still the possible long-term side effects are 
unknown [108]. In order for new approaches for a future therapeutic to be effective it is 
believed that early and better diagnosis methods are needed in order to prevent AD pro-

gression [109]. Mitochondria-targeting therapies are a novel approach that have potential 

to be used in the early onset of cognitive impairment. Mitochondrial oxidative damage is 

considered an early event of the disease process, which becomes more pronounced as AD 

progresses [110]. Mitochondrial dysfunction precedes Aβ plaque deposition [111] and is 

accompanied by a progressive reduction of the cerebral metabolic rates of glucose. Thus, 

several new therapeutic approaches have tested the efficacy of mitochondria-targeted mol-
ecules in delaying AD progression. For example, around ten clinical trials demonstrate that 

modulation of mitochondrial function rescue neuronal death and synaptic toxicity caused by 

Aβ exposure [112].

Mitochondrial medicine includes both life style intervention and pharmacological approaches. 

The Mediterranean diet [113], exercise [114] and caloric restriction [115, 116] have been 

shown to modulate AD risk factors including the mitochondrial healthy homeostasis. In 

combination with these, several preventive approaches have been studied in AD patients, 

for example the antioxidant N-acetyl cysteine (NAC) [117], α-lipoic acid (LA) [118] and cur-

cumin [119] have been tested. Some clinical studies in particular demonstrate that NAC 

reduces brain oxidative stress through increasing GSH-mediated protective activity against 

Aβ deposits and lipid peroxidation, and decreasing acetylcholine levels and choline acetyl-
transferase (ChAT) activity [120]. In addition, several clinical trials used well-known mole-

cules to limit oxidative damage: vitamin E (α-tocopherol) rescues cognitive impairment and 
oxidative stress in early phase of AD in pre-clinical studies [121] even though there are con-

troversial results in clinical trials in human AD subjects [122]; Donepezil enhances the mito-

chondrial resistance by inhibiting the mitochondrial permeability transition pore (mPTP) in 

a mouse model of AD [123]. Other pre-clinical studies demonstrating potent mitochondrial 

effects have not yet been assessed in clinical trials but show great promise. For example, 
conjugated Coenzyme Q with a lipophilic triphenylphosphonium (TPP+) form MitoQ that 

protect primary cortical neurons from Aβ toxicity, loss of mitochondrial membrane potential 
and ROS production [124]; Szeto-Shiller antioxidant peptides allow the localization of anti-

oxidant molecules in the mitochondrial matrix, the major source of ROS, and in particular 

SS31 shows a neuroprotective effect [125, 126]. Furthermore, endogenous compounds such 

as peroxiredoxine (Prdx) [127] and the natural molecules such as alkaloid caffeine [128], 

polyphenol resveratrol [129] and gypenoside XVII (GP-17) [130] have been used to modu-

late the bioenergetic homeostasis at different levels in AD mouse models. The antioxidant 
approach may have wide applications; however, it could also present some controversial 

effects on mitochondrial adaptation. For example, mitohormesis, an adaptive response that 

Astrocyte - Physiology and Pathology150



improves overall oxidative stress resistance induced by caloric restriction and exercise, may 

be inhibited by antioxidants [131].

The hypothesis that impaired mitophagy in both neurons and astrocytes may lead to AD 

neurodegeneration and the potential of the mitophagy process as a therapeutic target needs 

further clarification. Pre-clinical studies introduce novel therapeutic molecules such as 
p62-mediated mitophagy inducer (PMI) and Mitochondrial division inhibitor 1 (Midvi-1) for 

this purpose. PMI is a recently described compound developed to upregulate p62 via stabi-

lization of the transcription factor Nrf2 and to promote mitophagy [132]. This molecule has 

not yet been tested against neurodegeneration. Midvi-1 is a small molecule non-competitive 

inhibitor of dynamin-related protein 1 (Drp1) GTPase activity, which attenuates Drp1 medi-
ated mitochondrial-fission and enhances the mitochondrial rescue through inactivation of 
PINK1 [133]. Recently, Manczak et al. [134] proposed a Drp1 based therapy in the context 

of AD: the authors demonstrated that the interaction of Drp1 with Aβ increases as AD pro-

gresses and that a partial reduction of Drp1 reduces Aβ deposition, reduces mitochondrial 
dysfunction and enhances mitochondrial biogenesis.

It is noteworthy that most of the therapies for AD applied target neurons as the main cell 

type involved in neurodegeneration. Given that several therapeutic approaches have been 

attempted that do not completely rescue AD progression suggests that we should once more 
consider the cellular target against which we focus. A step towards the right direction has 

been taken by the scientific community in beginning to consider microglia as a therapeutic 
target for neurodegeneration because of their involvement in neuroinflammation. For exam-

ple, the synthetic compound Midvi-1 attenuates mitochondrial-induced apoptosis in primary 
microglial cells in an Aβ-induced model of AD, thereby counteracting the neuroinflamma-

tion [135], and the endogenous compound melatonin has a protective role against cognitive 

decline and restores mitochondrial respiratory rate in microglial cells of the APPsw mouse 

model of AD [136].

The increasingly evident key role of astrocytes in supporting neurons against neurodegenera-

tion suggests that probing the unexplored field of mitochondrial-targeted therapies in astro-

cytes is needed. Currently, there is no relevant literature about astrocyte-targeted therapies, 

possibly because they are thought to be more involved in the late phases of AD progression. 

However, modulating early changes in these cells might prove to be more beneficial than 
targeting downstream pathways.

9. Future aspects

Several questions remain unanswered to fully understand the mechanisms of mitochon-

drial function, transport, turnover and degradation in astrocytes. Given the complexity 

of astrocyte sub-populations and region-specific phenotypes [137] several experimental 

approaches and models are needed to study mitochondrial function and possible impair-

ment in these cells.
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It is important to note that very little literature exists about AD-associated mitochondrial dys-

function specifically in astrocytes, although recent reports have highlighted the importance 
of this cell type in neurodegeneration. In the future, it will be critically important to carry out 

more studies that focus on alterations of astrocytic mitochondria in AD because of the aris-

ing role of these cells in the early onset of this disease. Furthermore, the utilization of human 

models in AD research is expected to provide valuable tools and detailed mechanistic insight 

into the role of astrocytes that is central in understanding the features of this devastating 

human disease.

As research steers towards an in depth understanding of the molecular basis of mitochondria 

and the mitochondrial quality control system it is possible that this might in the future pro-

vide both a diagnostic and a therapeutic tool for neurodegeneration.
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