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Abstract

The focus of this chapter is on how the symbiotic relationship existing in nature can eas-
ily be translated to the nanoscale systems, particularly in plasmonic nanoparticles. Here, 
we discuss the synthesis and properties of bimetallic nanoparticles, consisting of plas-
monic silver (Ag) with ferromagnetic cobalt (Co). The symbiotic properties in the Co-Ag 
bimetallic plasmonic nanoparticles are discussed in the chapter where Ag and Co are the 
beneficiary elements due to the presence of each other. These bimetallic plasmonic nano-
materials demonstrate multi-functionalities which are not just limited to well-known 
bio-sensing or magneto-optical effects but also expand to highly unexpected and exotic 
properties such as extreme oxidation resistance, ferroplasmons, improved quality factor, 
and tunable radiative quantum efficiency.

Keywords: plasmonics, ferromagnetic, bimetallic nanoparticles, symbiosis, 
ferroplasmon, quantum efficiency, quality factor, EELS, galvanic coupling, nanosphere 
lithography, dewetting

1. Introduction

Symbiosis is a natural phenomenon where the co-existence of two entities mutually benefits 
their survival. Symbiosis is the key ingredient for the existence of life on this planet whether 
on the surface or under the water. Some of the most common and sought out symbiotic pairs 
on land are honey bee and flower, birds/mammals and fruit of plants, and in the oceans are 
corals and algae or clown fish and sea anemones [1]. Even the plants coexist with the natural 
environment in which the ecosystem and its evolution are symbiotic [2].

This behavior, when observed at the nanoscale, is expected to lead to many interesting phe-

nomena in the field of nanomaterials. For symbiosis to occur at the nanoscale, multi-metal-
lic nanoparticle systems are required where individual components can mutually benefit 
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and introduce multi-functionalities. In the field of nanomaterials, there is a deliberate drive 
towards synthesizing materials with multiple functionalities in a single nanostructure and 

the most simplistic system is bimetallic nanoparticles. The studies on bimetallic nanoparticle 

systems have shown improved magneto-plasmonic response, enhanced catalytic activities, 

efficient energy conversion, tunable plasmonic properties, leading to phenomenon like plas-

mon hybridization and Fano resonances (the interference between narrow bandwidth plas-

mons and the broader plasmons/continuum) to name a few [3–7]. These properties exhibited 

by multi-metallic nanomaterial system and has led to the seminal research on the symbiosis 

in bimetallic particles at the nanoscale. The focus of this book chapter is on the symbiotic 

properties of bimetallic nanoparticles, particularly those of silver (Ag), an excellent plasmonic 

material, and cobalt (Co), a ferromagnetic material. These material systems find applications 
in sensing of biological and chemical agents, catalysis, energy harvesting, data storage, and 

nanoelectronics.

The contents of the book chapter are organized as follows: Section 2 covers the synthesis tech-

niques involved in the fabrication of bimetallic Co-Ag nanoparticle arrays; Section 3 focuses 
on the basic characterization techniques that were involved in various studies discussed in 

Section 4. In Section 4, a detailed discussion on the various symbiotic properties is presented 
followed by a discussion on other existing symbiotic systems in Section 5 and concluding 
remarks in Section 6.

2. Synthesis of bimetallic nanoparticles

The synthesis of bimetallic nanoparticles has been reported by both physical and chemi-

cal routes using the top-down as well as bottom-up approaches. In the view of this focused 
chapter, the techniques using physical vapor deposition of metal thin films are specifically 
emphasized. The two discussed techniques viz. (i) pulsed laser induced dewetting (PLiD) and 
(ii) colloidal lithography, are adopted due to their merits of being robust, time efficient and 
comparatively cost efficient as compared to other methods incorporating vapor deposition 
systems.

2.1. Pulsed laser induced dewetting (PLiD)

The nanoparticles synthesized by PLiD fall in the category of self-organization. Self-
organization is a phenomenon in which the intrinsic force plays a prominent role in arrang-

ing the patterns with definite length scale and shape, thus stabilizing the system. Some of the 
common examples of self-organization are skin pigmentation in animals and solar system. 

At the nanoscale, examples of self-organization can be seen in protein folding self-assembly, 

the formation of micelles and droplet formation from the breakage of thin polymer and metal 

films. The phenomenon of breaking of thin metal or polymer films into droplets is called 
spinodal dewetting which leads to characteristic size and spacing [8–10]. Spinodal dewetting 
works on the principle of thermodynamic instabilities occurring due to the mismatch in the 

surface energy of a thin liquid metal film on the non-wetting substrate surface, which leads 
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to the breakage of the film to more stable state in the form of droplets. Some of the most com-

mon examples of spinodal dewetting are the hydrophobic leaf surfaces, oil droplet formation 
on the water surface, the windshield of vehicles after rain etc. This technique has been used to 

synthesize a wide variety of nanoparticles of different sizes, shapes, and materials.

The SEM in Figure 1(a) shows the typical Co-Ag nanoparticle arrays of dewetted metal film. 
The inset of the figure depicts the mono-modal size distribution. The average nanoparticle size 
and spacing of the dewetted nanoparticles depends on the initial film thickness. This gives the 
control to precisely synthesize the desired size of the nanoparticles. The nanoparticle spacing 

and size cannot be varied independently and are dependent on each other because of material 

volume conservation [11, 12]. This suggests that by independently controlling the film thick-

ness of individual metals in a bilayer system, a wide size range can be achieved. Using the 

theoretical relation between the film thickness and the nanoparticle size, a parameter space of 
nanoparticle size as a function of Ag volume percentage is plotted for total thickness varying 
in the range 2–20 nm for Co/Ag/SiO

2
 and Ag/Co/SiO

2
 regions as shown in Figure 1(b). It is 

interesting to note here that a wide array of nanoparticles of different sizes and composition 
can be synthesized using this technique. This technique also gives the flexibility to vary the 
nanoparticle size by keeping the Ag volume fixed or varying the Ag volume amount by keep-

ing the size fixed.

The drawback of dewetting is the lack of independent control of either of the nanoparticle size 
or spacing which restricts its use for synthesizing nanoparticles within the interacting regime 

(interparticle spacing ≤ nanoparticle size). If this barrier could be broken, this technique 
would be highly useful for making large 2D nanoparticles arrays beneficial for plasmonic 

Figure 1. (a) SEM image of Co-Ag nanoparticle with a monomodal size distribution of 113 ± 30 nm. The inset shows 
the size distribution of the nanoparticles. (b) Theoretically generated nanoparticle size parameter space as a function 

of Ag amount for the configurations Co/Ag/SiO
2
 and Ag/Co/SiO

2
 with the total film thickness of the system varied 

between 2 and 20 nm. (a) from [13] is used in accordance with the Creative Commons Attribution (CC BY) license 
(https://creativecommons.org/licenses/by/4.0/). (b) is reproduced from Ref. [12]. © IOP Publishing. Reproduced with 
permission. All rights reserved.
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related research requiring energy hotspots. Recently, Yadavali and Kalyanaraman reported 
that the particle spacing of the nanoparticles can be independent of the initial film thickness 
which is not the case in classical spinodal dewetting by creating Rayleigh-Taylor instabili-
ties at the metal film surface in contact with liquid creating large pressure gradients due to 
evaporation [14].

2.2. Colloidal lithography

Lithographic techniques are well suited towards making large area 2D periodic ordered 
structures. The formation of these periodic structures involves the three basic steps, i.e. mask 

formation, material deposition, and mask etching. It gives the flexibility to print complex 
geometries of ordered 2D arrays of nanostructures on large areas. The drawback to most 
of the lithographic techniques are the cumbersome steps to achieve the final product which 
is time and resource consuming, and also requiring the use of expensive instruments. Van 

Duyne and co-workers came out with a fast and inexpensive technique to pattern large area 
2D periodic nanostructures by forming masks of self-assembled colloidal nanoparticles called 
the nanospheres lithography (NSL) [15]. The self-assembly of a monolayer of hexagonally 

packed colloidal nanoparticles can be either done on hydrophilic substrates or at the air-water 

interface [15, 16]. Once the mask is ready, the metal is deposited through the gaps between the 
colloidal beads arrangement. The template is then etched, leaving the hexagonally arranged 

patterns of metal nano-triangles on the substrate. The in-plane dimensions of the features 
formed by NSL depend solely on the size of the colloidal nanoparticles [15].

The biggest challenge using this technique is to avoid the formation of a large number of 

vacancy and dislocation defects [17]. To tackle the control of defect formation is to control the 

evaporation rate of the fluid containing the beads [18, 19]. The evaporating fluid forces the 
beads to move towards the crystallized area due to the internal flow of the fluid. Other ways 
are to confine the solution and apply mechanical or physical force by gas flow to form ordered 
arrangement [16, 20, 21].

NSL requires the direction of metal flux being deposited to be perpendicular to the substrate 
plane. This restricts the control to vary the nanoparticle geometry and is limited to nano-

triangles, which are truncated pyramids and can be further tuned to semi-spherical shape 

[22, 23]. Many variations of colloidal lithography in the form of angle-resolved NSL, shadow-
sphere lithography, hole mask colloidal lithography, and shrinkable hole mask lithography 

exists which can create complex geometries like crescents, dimers, pillars, chiral structures 

etc. [24–27].

3. Characterization

The as-prepared samples were characterized for their morphology by SEM and optical prop-

erties by UV-vis spectroscopy. The statistical information on the average nanoparticle size 

and distribution were calculated by analyzing the SEM images using image analysis software 
(ImageJ by NIH) [28]. EDX mapping study on bimetallic Co-Ag nanoparticles revealed the 
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volume ratio of the two metals remained intact after the nanoparticle synthesis. EDX analysis 
revealed the average Co:Ag X-ray count of the synthesized nanoparticles followed a linear 
relationship with the Co:Ag film thickness ratio [12].

In the present case of characterizing symbiotic bimetallic nanoscale systems, core-loss EELS 
(electron energy loss spectroscopy) is employed to understand the elemental distribution, 

inter-mixing or alloying, chemical reactivity and electronic structure in a single nanoparticle. 

An example is shown in Figure 2 where the elemental distribution of Ag and Co is mapped 

using Ag-M45 and Co-L
23

 edges in bimetallic nanoparticles. A high-angle annular dark field 
(HAADF) image of Ag-Co bimetallic nanoparticle is shown in Figure 2(a), along with the Ag 

(Figure 2(b)) and Co (Figure 2(c)) elemental maps. The representative core-loss EELS edges of 
Ag and Co obtained from the region (i), (ii) and (iii) regions are shown in Figure 2(d) [12]. This 

method is also used to quantify the surface oxidation in the Ag-Co nanoparticles and to study 

the oxidation state of formed metal oxides [29]. The information about the optical behavior is 

also obtained using low-loss EELS and will be discussed in Section 4.3.

4. Symbiotic properties

In this section, we discuss the tuning and improvement or enhancement in four different 
properties caused by the mutual sharing or transfer of free electrons between Ag and Co, 

leading to symbiosis at the nanoscale.

4.1. Tuning the plasmon resonance and its sensitivity

The materials displaying optical properties at the nanoscale are termed as plasmonic materi-

als. Plasmonics can be defined as when the metal nanoparticles interact with light of sizes less 
than or equivalent to the wavelength, the free electrons start to resonate at a certain frequency 

called the plasmon resonance frequency. The plasmon resonance is a material property and 

depends on the shape, size, composition, and environment of the nanoparticle. The other via-

ble option to vary the plasmon resonance is by synthesizing multi-metallic nanoparticle com-

posites. Multi-metallic nanoparticles open the door to incorporate multiple functionalities 
in a single nanoparticle. Depending on the synthesis approach and the reaction conditions,  

Figure 2. (a) Cross-sectional HAADF image of Ag-Co hemispherical nanoparticle synthesized by PLiD. Core-loss EELS 
mapping of (b) Ag and (c) Co for the hemispherical nanoparticle. (d) The EELS spectra measured for the nanoparticle 
measured at three different regions marked in (a). Reproduced from Ref. [12]. © IOP Publishing. Reproduced with 
permission. All rights reserved.
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amount of mixing of metals within a nanoparticle can vary from being immiscible like core-

shell, to partially miscible, or to completely miscible and also gives advantage on tuning the 

nanoparticle morphology from spheres to rods and from discs to crescents [30, 31].

Kalyanaraman and co-workers extensively studied the Ag-Co bimetallic system synthe-

sized by PLiD [11, 12, 29, 32–35]. Two separate studies were conducted on these bimetallic 

nanoparticles, one in which the bimetal composition was fixed while the nanoparticle size 
was varied. In the other case, the Ag amount was fixed and the Co amount was varied. In the 
first study, three different compositions of Ag (71.5%, 83.3%, and 100%) in the nanoparticles 
were studied which were achieved by keeping the starting volume ratio of the metals fixed. It 
was observed that for fixed composition and increasing nanoparticle size, the plasmon reso-

nance red shifted as shown in Figure 3(a). This observation is explained by using Maxwell-
Garnett (MG) approach. The MG approach calculates the effective complex dielectric of a 
system in which small grains of metal 1 are embedded in metal 2, and is only dependent 

on the volume fraction and complex dielectric functions of the metals, suggesting for fixed 
composition, the effective complex dielectric should be the same [36]. Hence an increase in 

size shifts the plasmon to higher wavelength, consistent with the plasmonic theory. For the 

Figure 3. (a) Comparison of the localized surface plasmon resonance (LSPR) wavelength for different composition of 
Ag in a single nanoparticle as a function of three different nanoparticle sizes. (b) and (c) Comparison of the plasmon 
resonance energy and bandwidth of pure Ag and Co-Ag nanoparticles as a function of total nanoparticle volume, 

respectively. (d) LSPR positions of three different compositions of Ag measured at three different refractive index 
liquids. The slopes of the straight-line fits give the refractive index sensitivity of the nanoparticles denoted by S. (e) 

Refractive index sensitivity comparison of Co-Ag and Ag nanoparticles synthesized from 1 nm Co on 5 nm Ag and 
5 nm Ag as a function of annealing temperature (modified color scheme). (f) Experimentally measured quality factor 
comparison of different compositions of Co-Ag nanoparticles and different sizes of Ag nanoparticles as a function of 
their plasmon resonance energy. (a) and (d) from Ref. [12]. © IOP Publishing. Reproduced with permission. All rights 
reserved. (b), (c) and (f) from Ref. [13], used in accordance with the Creative Commons Attribution (CC BY) license 
(https://creativecommons.org/licenses/by/4.0/). (e) reproduced with permission from Ref. [29].
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second study, nanoparticles were synthesized by dewetting of stacked Co/Ag/SiO
2
 system. 

The optical properties of different sized nanoparticles were studied by varying the thickness 
of Co film from 1 to 5 nm while keeping the thickness of Ag film fixed at 5 nm. Similarly, 
pure Ag nanoparticles were synthesized by varying the initial film thickness from 1 to 10 nm. 
The plasmon resonance energy and plasmon bandwidth for Ag and Co-Ag nanoparticles as 

a function of nanoparticle volume are plotted in Figure 3(b) and (c), respectively. Similarly, 
on increasing the nanoparticle volume, the plasmon resonance energy decreases or red-shifts 

and the nanoparticle bandwidth increases.

After tuning the plasmon resonance energy, the sensitivity and stability of these nanoparticles 

are tested. On conducting the refractive index (RI) sensing of the bimetallic nanoparticles, it is 
observed that for some composition and sizes of Co-Ag nanoparticles, they showed improved 

RI sensitivity over pure Ag nanoparticles, shown in Figure 3(d). In another study, bimet-

als of Co-Ag nanoparticles (83.3% Ag) heated to 150      °  C , showed stable RI sensitivity while 
Ag nanoparticles for the same starting film thickness are highly unstable as evident from 
Figure 3(e). The reason for this ultra-stability is discussed in Section 4.2. A general idea about 
the sensor’s performance can also be acquired by calculating its quality factor. The quality 

factor is a direct measure of the sensitivity of a system to detect, higher the quality factor 

means more sensitive the system. For a plasmonic sensor, the experimental quality factor can 
be calculated as  Q =  E  

res
   / Г ,   E  

res
    being the plasmon resonance energy and  Г  the bandwidth of the 

plasmon resonance. The quality factor comparison of the samples discussed in second study 

is plotted as a function of resonance energy in Figure 3(f). The crossover of the quality fac-

tor in Figure 3(f) is explained by comparing the bandwidths (Figure 3(b) and (c)) of the two 

systems for plasmon resonance energies greater than 2.5 eV. At the same plasmon resonance 
energy, the nanoparticle with higher quality factor means that it has a narrow bandwidth. 

This leads to the question: what are the different factors contributing to the broadening of 
plasmon bandwidth?

To explain the broadening of the bandwidth, we use the two-level model to explain the results, 

which is analogous to molecular spectroscopy in which the plasmon decays by dephasing of 

coherent oscillations (remember the definition of plasmon, which is a coherent oscillation 
of electrons) [37]. The dephasing occurs as a result of many interactions occurring due to 

electron-electron, electron-phonon, electron-defect and electron-surface interactions [37, 38]. 

These events follow Matthiessen’s rule as these scattering events are statistically independent 
channels and thus can be added up [37, 38]. So, the total bandwidth of Co-Ag bimetallic 
nanoparticles should be the sum of the contributions from individual metals, which clearly is 

not the case as seen in Figure 3(f). This leads to the possibility of some sort of electronic inter-

action taking place at the nanoscale between Ag and Co. It also suggests that the sensitivity is 

highly dependent on nanoparticle size and composition, as evident from Figure 3(d).

4.2. Oxidation stability

Metal structures at the nanoscale have high reactivity and so are susceptible to oxidation. 
Because of this reason, Ag which has the best optical properties is not favored over Au [39]. 

The inertness of Au makes it a more plausible material than Ag which scums to its chemical 
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and structural instabilities [40, 41]. Shortage of stable plasmonic materials creates the demand 
for research on alternate or new stable plasmonic materials required for various applications 

at the nanoscale [42, 43]. A lot of different solutions or alternative routes have been presented 
to stabilize metal nanoparticles but they either are short-term solutions or undermine the 

pure metal properties. The brighter side of these solutions has resulted in finding new and 
improved properties in some cases. By synthesizing core-shell of Au-Ag, the Ag could be 
stabilized via electron transfer from Au core, but the nanoparticle properties degrade over 

time due to the alloying between Au and Ag at the interface [44]. These synthesized core-shell 

structures at a critical thickness of Ag shell are resilient to harsh chloride ion environment 

without any visible degradation under transmission electron microscope.

In another study, the Ag nanostructures were stabilized by processing them with low-temper-

ature single hydrogen atoms. The idea was to stabilize nanostructures by filling the interstitial 
sites with a hydrogen atom to prevent Ag atom diffusion [41]. Covering Ag nanostructures 

with a monolayer of graphene could protect them from oxidation for almost a period of a 

month [45]. The other possibility is by surface passivation of Ag nanostructures with organic 

molecules. The choice of an organic molecule can preferentially control the optical or the 

electrical properties [46].

Sachan et al. stabilized the Ag nanoparticles by synthesizing bimetals of Ag and Co hav-

ing segregated regions within a single nanoparticle using PLiD. The oxidation behavior was 
studied using optical spectroscopy and core-loss EELS mapping and showed prolong optical 
stability of Ag nanoparticles [12, 29, 34]. This ultra-stability was due to the galvanic coupling 

between Co and Ag at the nanoscale where Co was acting as a sacrificial anode, thus pro-

tecting Ag surface by providing electrons as shown in Figure 4(a). The study was further 

extended by Malasi et al. to understand the role of Co composition in these bimetals and how 
the Co-Ag nanoparticle life could be extended [34]. On studying the extended optical band-

width decay of these nanoparticles, two observations were made. Firstly, the decay behavior 
of Co and Ag of the bimetals followed two different trends displaying a sharp boundary 
demarcating the change in trends from inverse logarithmic to exponential decay shown in 

Figure 4(b). Second observation suggested that the decay trends observed in pure metal oxi-
dation were consistent with the decay of the individual metals of the bimetallic nanoparticle 

and overlapped perfectly. The change in decay behavior suggested that the two metals have 

segregated regions, the results of which are consistent with the EELS observation. The only 
question that remained here to answer was whether the Co oxidized completely or not before 

the change in the optical bandwidth decay trends. To answer this, a theoretical model is used 

to quantify the oxidation of Co in the bimetallic nanoparticle system, details of which are 

available in Ref. [34]. Co-Ag bimetals showed almost 12 times better shelf life than pure Ag 
nanoparticles for 50% degradation in the optical bandwidth and depending on Co amount, 
the Ag could be oxide free for almost a year. The lifetimes were established using effective 
medium theory, which is a versatile way to study nanoparticles in embedded media [47, 48].

To explore the other possibilities of stability studies in Co-Ag bimetal system, Kalyanaraman 
and co-workers studied the extraordinary optical transmission (EOT) of perforated holes of 
triangular shapes in Ag and Ag/Co films [49]. The findings suggested that Ag films deposited 
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on top of Co films showed much improved EOT stability in ambient air as can be visualized 
from the SEM images shown in Figure 4(c)–(f). The study was carried out for 100 days which 

showed 1.9 times better plasmon peak stability and 1.7 times better bandwidth stability over 
pure Ag EOT. The contour maps in Figure 4(g) and (h) shows the plasmon resonance decay 

as a function of days. The map shows the change in the behavior of Ag EOT, initially the plas-

mon significantly red-shifts leading up to day 40 after that the plasmon resonance intensity 
starts decaying very rapidly in comparison to Ag/Co EOT showing slower red-shift and stable 
plasmon resonance intensity. The stabilization of bimetal EOT is attributed to the underlying 
Co layer, which prevents Ag to dewet on the glass substrate. This is evident from the SEM 
images where material build-up is present for pure Ag EOTs due to dewetting on glass sub-

strate but absent in Ag/Co EOTs.

4.3. Ferro-plasmons

As discussed in the preceding sections, due to the scarcity of plasmonic materials or rather 

stable plasmonic materials at room temperature, a lot of attention has been diverted on the 
study of bimetallic nanoparticle systems. The interaction between the bimetallic nanoparticles 

Figure 4. (a) Schematic showing the galvanic coupling in a single bimetallic Co-Ag nanoparticle. (b) Optical bandwidth 
decay of two different concentrations of Co (solid triangles and hollow squares) in the bimetallic Co-Ag nanoparticles 
plotted as a function of days. Each curve follows two different trends, inverse logarithmic and exponential decay 
corresponding to that of pure Co and pure Ag, respectively. The inset shows the overlap of Co oxidation in Co-Ag 

nanoparticles, where the dashed line is an inverse logarithmic function as a guide to the eye. SEM images depicting 
the morphology of triangular shaped EOTs of pure Ag captured on (c) 0 days and (d) after 100 days. Similarly, SEM 
images for the morphology of Ag/Co EOT captured on (e) day 0 and (f) after 100 days. (g) and (h) are the contour maps 
for the resonance decay of Ag and Ag/Co EOT devices, respectively. (a) reproduced with permission from Ref. [29]. (b) 

reproduced from Ref. [34]. © IOP Publishing. Reproduced with permission. All rights reserved. (c)–(h) from Ref. [49], used 

in accordance with the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
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has led to interesting optical phenomena such as plasmon hybridization and Fano interfer-

ence resonance. These optical phenomena occur due to the interactions between various plas-

mon modes, dark and bright modes, or sub-radiant and super-radiant modes. Hybridization 

of two plasmonic resonances leads to a lower energy resonance, i.e. the sub-radiant mode 

with narrow bandwidth and the higher energy resonance acting as a continuum, i.e. the 

super-radiant mode, in asymmetric nanoparticle systems [50, 51]. The above mentioned opti-

cal phenomena are observed in a wide variety of plasmonic nanostructures such as multi-

shells, cavities, and heterodimers [52–54].

One such optical phenomenon observed in the bimetallic Ag-CoFe and Ag-Co nanoparticles 
is the ferroplasmon (FP), intense LSPR (localized surface plasmon resonance) excited in the 
visible spectrum of light on the surface of ferromagnetic CoFe and Co when in contact with 
plasmonic Ag [32]. FP is an intense LSPR with long plasmon decay length scales in the vis-

ible spectrum of light. As mentioned earlier, the exhibition of a strong LSPR in the visible 
spectrum is the characteristic property of the noble metals (Ag, Au, and Cu). Other metals, 
including the ferromagnetic metals (e.g. Co, Ni, Fe) have non-existent or highly damped 
visible plasmons. Recent studies of Ni nanostructures have demonstrated the sustenance of 
surface plasmon in the visible spectrum of light [55]. The discovery of FP is possible due to 
the advances in transmission electron microscopy equipped with a monochromated elec-

tron probe in STEM with energy resolutions of ~150 meV, enabling the quantitative study 
of well-resolved plasmon peaks at the nanoscale using low-loss EELS with high energy 
and spatial resolution. Figure 5 shows the comparative study of plasmon excitations on the 

surface of bimetal Ag-CoFe, pure Ag and pure CoFe nanoparticles, resolved by low-loss 
EELS. The EELS spectra are shown in Figure 5(a) from Ag region of Ag-CoFe nanoparticle 
and the isolated Ag nanoparticle, taken from the square area marked in the HAADF images 
in Figure 5(b) and (c). Both the spectra exhibit peaks in the visible range corresponding to 
the well-known surface plasmon in Ag. In contrast, the EELS spectrum shown in Figure 5(e) 
obtained from CoFe in Ag-CoFe show a strong and distinct plasmon peak, referred to as 
FP, at 2.7 eV, unlike the featureless spectrum for the isolated CoFe nanoparticle. The EELS 
spectra for CoFe corresponds to the red square marked on the CoFe side of the bimetal 
nanoparticle and the isolated nanoparticle marked on the HAADF images in Figure 5(b) 
and (d), respectively. The evolution of FP in the Ag-CoFe bimetallic system is thoroughly 
studied as a function of nanoparticle size and found to be consistently present [32]. The 

presence of FP is an intricate play between the nanoparticle morphology and the interface 
shared between them, which was demonstrated by the absence of FP in dimers of Ag-Co 
nano-triangles placed in close proximity [56].

The physical origin of FP is explained by qualitative theoretical models such as dipole-dipole 
interaction, hybridization model, and Fano interference as these all arise due to the coupling 
between different plasmon modes [50, 51, 57]. A simple dipole-dipole interaction approach 

considers the coupling between same (dipole-dipole) or different (dipole-quadrupole) modes 
and successfully describes the electromagnetic energy transfer between two nanoparticles. 

However, it lacks the complete explanation due to inherently neglecting the interaction of 

other modes of plasmon oscillation. Alternatively, another model based on the plasmon 

hybridization effectively explain the existence of FP peak evolved at 2.7 eV, but also predict 
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additional high-order peak, which is not observed experimentally in EELS. In the hybridiza-

tion model, the coupling can be assumed as an instantaneous Coulomb interaction between 

the surface charge density of various components. In another approach, electrodynamic 

simulations were performed showing the interaction between spherical Ag and Co nanopar-

ticles with their surfaces separated by a nanometer gap [58]. This gives rise to new plasmon 

mode at higher energy due to the interaction between Ag and Co nanospheres, as shown in 

Figure 5(f) where the optical spectrum of pure Co and pure Ag nanospheres are plotted in 
blue and orange, respectively. The green color corresponds to the spectrum obtained from the 

interaction between the Ag-Co nanospheres shown in the schematic. This analytical approach 

depends on the interaction of two spherical nanoparticles and the use of non-contacting 

geometry, assuming the contact between Ag and Co will not influence the interaction process. 
FP nanoparticle system still lacks a detailed theoretical study which is only possible by finite 
difference time domain or discrete dipole approximation simulations by taking account the 
hemispherical shaped nanoparticle.

4.4. Radiative quantum efficiency

Plasmonic nanoparticles are an efficient medium for transferring the coupled electromagnetic 
waves in and out of the system. How well the nanoparticles will couple to the electromagnetic 

waves depends on their shape, size, material, and ambient dielectric environment and is mea-

sured by the radiative quantum efficiency. The dependence of radiative quantum efficiency on 
the Au nanoparticle shape and size was first demonstrated by Sonnichsen et al. [59]. As the 

volume of nanostructure increased, the radiative contributions in the bandwidth increased, 

leading to increased quantum efficiencies. The other interesting observation regarding Co-Ag 
bimetal system is the tuning of radiative quantum efficiency in a much wider energy range 
by controlling the Co amount and keeping the Ag volume fixed [13]. This is achieved by  

Figure 5. (a) EELS spectra from the surface of Ag side of Ag-CoFe (solid line) and isolated Ag nanoparticle. (b), (c) and 
(d) are the HAADF images of bimetallic Ag-CoFe, isolated Ag, and isolated CoFe nanoparticles, respectively. (e) EELS 
spectra from the surface of CoFe side of Ag-CoFe (solid line) and isolated CoFe nanoparticle. The EELS spectra are 
measured from the small red boxes marked on the HAADF images. (f) Comparison of extinction spectra simulated for 
pure Ag (orange line), pure Co (blue line) and dimer of Ag-Co (green line) nano-spheres. The schematic represents the 

Ag-Co dimer system separated by 1 nm. Reprinted (adapted) with permission from [32, 58]. Copyright (2014) American 
Chemical Society.
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experimentally calculating the radiative and non-radiative contributions in the bandwidth, 

which are then used to calculate the radiative quantum efficiency calculated as:  η =   
 Г  

1,R
  

 
_______

 
 Г  

1,R
   +  Г  

1,NR
  
   , where 

Г is the bandwidth and subscripts R and NR stand for radiative and non-radiative respectively.

Continuing the discussion in Section 4.1 on bandwidth broadening, another assumption to 
consider is to neglect the contributions from electron scattering on the broadening of the 
bandwidth as discussed in Ref. [13]. The only contributions worth mentioning are the radia-

tive losses and non-radiative absorption. As mentioned earlier, the bandwidth depends on 

the nanoparticle volume and dielectric function, hence the simplified expression can be writ-
ten as,   Г  

2
  exp  ( E  

res
  , V)  =   

1
 

__
 

2
    Г  

1,R
   ( E  
res

  , V)  +   
1
 

__
 

2
    Г  

1,NR
   ( E  
res

  , V)  , here   E  
res

    is the plasmon resonance energy and V is the 

nanoparticle volume. Since,   Г  
2
  exp   is experimentally measured, and if either one of the radiative 

or non-radiative contributions could be measured independently, this will lead to calculating 

the radiative quantum efficiency.

Working under the limit of dipolar approximation, the radiative losses at the plasmon reso-

nance energy are only dependent on the nanoparticle volume and thus can be written as   Г  
1,R

   

( E  
res

  , V)  ∝ V  [60]. The proportionality constant K is a material parameter of metal understudy 

and is independent of the nanoparticle volume, shape, size and the dielectric environment. 

To work under the dipolar approximation, the nanoparticle should follow  V /  λ   3  ≪ 1 , where λ 

is the wavelength of light. Under this condition, the nanoparticle polarizability is dominated 

by the dipolar components and higher order multipoles can be ignored. The samples under 

study followed this approximation and for the size and resonance energy range followed 

the above condition ( V /  λ   3  ≤  10   −2  ). Once it is established that we are working under the dipolar 
approximation, the proportionality constant K is calculated by taking two different geom-

etries having the same plasmon resonance energy as described in Ref. [59]. For our study, 
we synthesized Ag nano-triangles by NSL technique and used the data of Ag hemispherical 
nanoparticles to calculate K. As, we are working on Ag and at the same plasmon resonance 

energy, the non-radiative losses (radiative contributions are due to the dielectric of the mate-

rial) of the two shapes will cancel out. Hence, K is calculated,  K =   
∆  Г  

1,R
  

 
_____

 
∆ V   = 2   

∆  Г  
2
  exp 
 

_____
 

∆ V   . Figure 6(a) 
compares the bandwidth of Ag nano-triangles and hemispheres as a function of plasmon 

resonance energy. Inset of Figure 6(a) shows K as a function of plasmon resonance energy 

with the average K = 8.1 ± 2.3 × 10−7 eV/nm3 plotted as a dashed line. The value of K is further 

used to calculate the contributions of radiative and non-radiative components and finally the 
radiative quantum efficiency.

After establishing the contributions of the radiative and non-radiative components to the 

broadening of Ag nanoparticle (Figure 6(b)), a similar analysis was done for Co-Ag nanopar-

ticles. Consider the two previously established facts: (i) Ag and Co have segregated regions 

within a single nanoparticle and the average nanoparticle spacing is much greater than the 

average diameter, hence near-field coupling is non-existent for this case; and (ii) the bimetallic 
nanoparticle does not follow the Matthiessen’s rule as evident from the quality factor calcula-

tions discussed previously. So, we proposed the possibility of the modification of the radiative 
bandwidth of Ag due to the presence of Co. This assumption is made based on the ferroplas-

mon discovery, since the segregated Ag and Co had plasmons at almost the same resonance 
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energy, further encouraging to assume Co-Ag nanoparticle equivalent to one big Ag nanopar-

ticle of similar volume. Keeping this assumption, we calculated the bandwidth contributions 
for the bimetallic nanoparticle as previously discussed. The radiative, non-radiative and total 

experimental bandwidth values for different Co-Ag nanoparticles is plotted as a function of 
plasmon resonance energy in Figure 6(c).

To support the above assumption, we used an analytical model describing the interaction 

between two non-bianisotropic systems placed adjacent to each other and within the interac-

tion regime [61]. This metamaterial system of a good (Ag in our case) and poor (Co in our 

case) conductor is analogous to RLC circuit. The active power of the individual components 
and the RLC system is calculated to explain the results. It is demonstrated that by increasing 
the surface to volume ratio, the active power changes sign from negative to positive for Co. 

An opposite change is observed in the active power for Ag, in the same frequency interval. 

The cross-over from positive to negative is also observed for the total active power of the 

system [13]. When surface to volume ratio is small (weak coupling), the total active power 

remains positive, but as the surface to volume ratio increases, the power switches sign in the 

frequency interval of study. For the total active power to be zero at a certain frequency, if the 
active power of Co is zero, then the active power of Ag will also be zero. This suggests that 

Figure 6. (a) Compares the bandwidth of hemispherical Ag nanoparticles with Ag nano-triangles plotted against plasmon 
resonance energy. The inset depicts the K values calculated at different plasmon resonance energy with the dashed 
horizontal line depicting the average K value. (b) and (c) Plots the total bandwidth with its radiative and non-radiative 
components against plasmon resonance energy for Ag and Co-Ag nanoparticles, respectively. (d) Radiative quantum 
efficiency comparison for Ag and Co-Ag nanoparticles as a function of plasmon resonance energy. Ref. [13] is used 

in accordance with the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
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the presence of Co modifies the power of Ag, which is also our experimental observation. 
Similar observations can be deduced from the quality factor results depicted in Figure 3(f), 
as the Co amount is increased the quality factor decrease, suggesting weak coupling due to 

the decrease in surface to volume ratio.

Hence, we can seamlessly assume that the presence of Co is modifying the radiative band-

width of Co-Ag nanoparticles and working under the assumptions highlighted above, it is 

safe to calculate the radiative bandwidth of Co-Ag by considering the whole nanoparticle 

equivalent to a single Ag nanoparticle of the same volume. This way the radiative quantum 

efficiency for the Ag and Co-Ag nanoparticles is calculated and plotted in Figure 6(d) as a 

function of plasmon resonance energy. So, by controlling the Co amount, the radiative quan-

tum efficiency of Ag is tuned in a much wider energy range.

5. Other symbiotic systems

The above examples suggest that the synthesis of bimetallic or multi-metallic nanoparticles 

offers a wide variety of possibilities to tune/enhance or even discover new phenomenon occur-

ring at the nanoscale. Symbiosis is not just limited to metals but is possible in other material 
systems as well. Few examples of widely studied combination of materials showing symbio-

sis are Au with Ag/Pd/Co or ZnO/SnO
2
 systems. By synthesizing core-shell nanoparticles of 

Au-Ag, the optical properties of Au could be tuned below its inter-band transition [6]. The 

other interesting feature of core-shell nanoparticle is that by tuning the thickness of Ag shell, 

the bimetallic nanoparticle can sustain Fano resonance and Ag outer shell can provide chemi-
cal stability in harsh chloride ion environment due to the electron transfer from the Au core 

to the Ag shell [6, 44]. Au nanostructures also show a symbiotic relationship with Pd, by dem-

onstrating better plasmonic refractive index sensing in Au-Pd core-shell nanoparticles over 
pure Au nanostructures [62]. On the other hand, the presence of plasmonic property of Au 
enhances the H

2
 detection limit of Au-Pd bimetal system over pure Pd nanostructures [63]. 

In addition to looking at individual metal pairs, magneto-plasmonic (MP) field itself shows 
symbiosis at the nanoscale. The study of magneto-optics or active plasmonics is a mix of plas-

monic and magnetic properties. Enhancement in magneto-optical (MO) activity occurs due to 
the presence of plasmonic resonance excitation causing electromagnetic field enhancement in 
the MO material. On the other hand, in active plasmonics, the plasmonic properties are tuned 
by the application of the external magnetic field. Co-Au system best describes the MP system, 
in which thin films of Co/Au tends to show active plasmonic while Au/Co/Au disks tend to 
show enhanced MO activity [4, 64]. Metal oxide system of ZnO/SnO

2
 which forms a hetero-

junction also tends to show symbiosis at the nanoscale. Synthesizing core-shell nanowires of 
SnO

2
-ZnO tends to demonstrate better NO

2
 gas sensing under UV radiation over pure ZnO or 

SnO
2
 nanowires [65]. The enhancement is due to the increased resistance caused by the photo-

generation of electron-hole pairs under UV light. On the other hand, SnO
2
 nanostructures 

stabilize ZnO in an aqueous environment, improves its biocompatibility and help tailor the 
excitonic luminescence properties [66].
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6. Conclusions

In this chapter, we have provided a glimpse of the endless possible symbiotic properties 

observed at the nanoscale due to the interaction between nanomaterials demonstrating dif-

ferent properties. By selecting the right combination of materials, we demonstrated that their 
properties can be uniquely tailored as well as new characteristics can evolve. We highlight 

that there are a number of possible ways for material selection to synthesize multi-functional 

nanomaterials. The choice can be made per their position in the periodic table, their position 

in the chemical potential series, according to their properties or by their metallurgical inter-

actions. The properties are not limited to the choice of material but can be tuned by control-

ling the shape, size and the dielectric environment of the nanomaterial. The research at the 

nanoscale has opened up a number of possibilities, which were not feasible a few decades 

ago. By controlling the nanoparticle morphology, Ni nanopillars have shown plasmon reso-

nance in the visible spectrum of light while Au being diamagnetic has shown MO activity in 
pure Au nanodisks [55, 67]. These few discoveries point to the fact that nanotechnology is a 

vast pool of unknowns.

This book chapter focused on the symbiosis observed in bimetallic Co-Ag nanoparticles syn-

thesized by PLiD. This was achieved by the synthesis route followed and the parameters 
considered while selecting the materials. Synthesis of bimetallic Co-Ag nanoparticles by 
PLiD helped in achieving segregated regions of Co and Ag within a single nanoparticle. This 
was confirmed by core-loss EELS mapping of the bimetallic nanoparticle. These nanopar-

ticles were characterized for their optical properties by UV-vis spectroscopy and low-loss 

EELS. These bimetals showed improved or wider tuning of properties of their individual 
metal components which could be explained by the mutual sharing of free electrons between 

them, which had an uncanny resemblance to the symbiosis, observed in nature. The symbi-

otic properties can be broken down into two sections: (1) Co being the beneficiary and (2) 
Ag being the beneficiary. The examples for the former case can be summarized as the exis-

tence of a new surface plasmon resonance on Co surface, which was called as Ferroplasmon, 
whose discovery was facilitated by low-loss EELS study, and the enhancement in MO activity 
observed in these bimetallic Co-Ag nanoparticles (not discussed here) [22]. Similar observa-

tions for the latter case are the galvanic coupling, plasmon resonance tuning, enhancement in 
the plasmon quality factor and tuning of radiative quantum efficiencies. These few examples 
suggest the choice of materials and their properties can open new research fields which are 
not just limited to plasmonic and magnetic materials.
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