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Abstract

Along with the development of novel chemotherapeutic agents, radiation therapy has 
revolutionized the prognosis of patients with various cancers. However, with a longer 
life expectancy, radiation treatment-related comorbidity, like cardiovascular diseases 
(CVDs), becomes an issue for cancer survivors. In addition, exposure to X-rays for medi-
cal diagnostics is dramatically increasing at the present times. A pressing question is 
whether or not exposure to these very low doses can cause health damage. Below 0.5 
gray (Gy), an increased risk cannot be evidenced by epidemiology alone, and in vitro and 
in vivo mechanistic studies focused on the elucidation of molecular signaling pathways 
are needed. Given the critical role of the endothelium in normal vascular functions, a 
complete understanding of radiation-induced endothelial dysfunction is crucial. In this 
way, the current radiation protection system could be refined if needed, making it pos-
sible to more accurately assess the cardiovascular risk in the low-dose region. Finally, 
radiation-induced CVD, like CVD in general, is a progressive disorder that may take 
years to decades to manifest. Therefore, experimental studies are warranted to fulfill the 
urgent need to identify noninvasive biomarkers for an early detection and potential inter-
ventions—together with a healthy lifestyle—that may prevent or mitigate these adverse 
effects.

Keywords: ionizing radiation, radiation therapy, X-ray diagnostics, cardiovascular 
disease, atherosclerosis, endothelial dysfunction, inflammation, DNA damage, apoptosis, 
cell cycle, oxidative stress, mitochondrial dysfunction and metabolic changes, premature 
senescence, intercellular communication
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1. Introduction

Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in the Western 

world. It accounts for nearly one-third of all deaths worldwide. There are multiple contribu-

tory risk factors for heart disease. Some are of a controllable nature, such as lifestyle, dietary 

factors, and metabolic disorders, such as high cholesterol levels and hypertension. Others 

are noncontrollable risk factors, such as gender, age, and genetic predisposition [1, 2].  

In addition, there are environmental factors affecting the risk of CVD, ionizing radiation 
being one such factor.

It has been known for a long time that high doses of radiation, such as those delivered dur-

ing radiotherapy, cause damage to the heart and vasculature and thus increase the risk 

of CVD. Data from animal experiments have strongly supported this observation [3–6]. 

However, for doses <0.5 gray (Gy), epidemiological data are suggestive rather than persua-

sive. Therefore, the magnitude of CVD risk in the low-dose region where issues of radiation 

protection usually operate is not clear [3–6].

Various issues, such as occupational radiation exposure, future of nuclear power, manned 

space flights, and threat of radiological terrorism, call for a thorough understanding of low-
dose health risks [7]. The main concern is, however, an increasing use of ionizing radiation for 

diagnostic medical purposes (Figure 1) [8]. For instance, since 1993, the number of computed 

tomography (CT) scans has increased four times in the United States, and a similar trend 

is observed in Europe [9]. Medical radiation is the largest source of radiation exposure in 

Western countries, accounting for a mean effective dose of 3.0 millisievert (mSv) on average 
per capita per year from diagnostic procedures only, corresponding to a radiological risk of 

30 chest X-rays [10]. Of note, doses from therapeutic procedures are not taken into account in 

this number. Although the health benefits of these improved diagnostic procedures are huge, 
concerns are raised regarding “overuse” and potential associated health risks [11].

Figure 1. Average annual effective dose per person received in 1980 (left panel) and in 2006 (right panel) in the United 
States. The large increase in the use of ionizing radiation for medical purposes, in the period 1980–2006, contributed to a 

total increase from 3.0 mSv in 1980 to 6.2 mSv in 2006. Similar trends are observed in other industrialized countries [1].
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1.1. What is ionizing radiation?

From natural to manufactured sources, life on earth is exposed on a daily basis to ionizing 

radiation. Defined as a type of energy released by atoms that travel in the form of electro-

magnetic or particles, this energy can eject tightly bound electrons from the orbit of an atom, 

causing the atom to become ionized [12]. In nature, one can distinguish three main types of 

ionizing radiation: alpha (α), beta (β) particles, and gamma (γ) rays. They are all produced 
by naturally occurring substances with unstable nuclei (e.g., cobalt-60 and cesium-137)  

that spontaneously undergo radioactive decay. During the decay process, energy is lost via 

emission of ionizing radiation in the form of electromagnetic γ-rays and/or charged particles 
(e.g., α- and β-particles) [13]. One of the most common manufactured forms of ionizing radiation 

is X-ray radiation. X-rays are in most aspects similar to γ-rays but differ in origin. While γ-rays 
are derived from the natural decay of radioactive elements, X-rays are artificially produced 
in X-ray generators by directing a stream of high-speed electrons at a target material, such as 

gold or tungsten [14]. When electrons interact with atomic particles of the target, X-radiation is 

produced [12]. In addition to the most common forms listed above, there are many other forms 

of ionizing radiation of human or natural origin. Examples are neutrons, accelerated ions and 

fission fragments [15, 16]. These less common forms can have different biological effects, which 
can be exploited, for example, in hadron therapy for cancer treatment [17].

1.2. Radiation metrics

Biological effects of ionizing radiation are related to energy deposition in matter. To assess the 
impact of ionizing radiation on human health and to set guidelines in radioprotection, units 

to measure a dose and its biological effects are required.

The absorbed dose is defined as the amount of energy, originating from any type of ionizing 
radiation and any irradiation geometry that is absorbed per unit mass of material. The inter-

national SI unit for absorbed dose is gray (Gy). One Gy represents the absorption of 1 joule of 

energy in 1 kilogram of mass (1 J/kg). This definition is pure physical, as it does not consider 
the quality of the ionizing radiation type and the extent of biological damage it inflicts to 
certain tissues and/or organs. As a result, the terms equivalent dose and effective dose have 
been introduced [18].

The equivalent dose takes into account the ability of a particular kind of ionizing radiation 

to cause damage. It is obtained by multiplying the absorbed dose (Gy) with a radiation-

weighting factor (wR) attributed to each different radiation type (e.g., the wR of photons and 
electrons is 1, the wR of protons and charged ions is 2, and the wR of α particles and fission 
fragments is 20). The international SI unit for equivalent dose is the sievert (Sv) [18].

The effective dose is defined as the weighted sum of all tissue and organ equivalent doses 
multiplied by their respective tissue-weighting factor (wT). It expresses the biological effect 
that a certain type of ionizing radiation has on the human body. wT values have been defined 
to represent the contributions of individual organs and tissues to overall radiation effects on 
the human body. Similar to the equivalent dose, the effective dose has sievert (Sv) as inter-

national SI unit. Care should be taken with wT values because they constitute an average 
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over both genders and adult ages to reflect the radiation burden to an average human adult 
[18, 19]. Examples of effective doses associated with different sources of ionizing radiation 
are presented in Table 1.

1.3. Protection against radiation exposure

Short after the discovery of ionizing radiation by Röntgen in 1895, its detrimental effects 
became apparent, and people tried to protect themselves [24]. Nowadays, the International 
Committee on Radiological Protection (ICRP) and the US National Council on Radiation 
Protection and Measurements (NCRP) aim to protect people by advising means for achieving 
this, e.g., regulatory and guidance limits [18, 25].

The major question that keeps radiation protection bodies busy and that became the founda-

tion of radiation protection guidelines worldwide is “How much is harmful?” This question is 

particularly relevant for low-dose exposures for which health impact is not yet fully elucidated. 

Although a large number of epidemiological and radiobiological studies have been performed 

to date in order to investigate the effects of low doses of ionizing radiation [26–47], accurate 

risk assessment is not yet available [18]. Current guidelines for protection against low-dose 

radiation are based on cancer risk estimates from epidemiological studies. As discussed fur-

ther, cohorts include atomic bomb survivors, occupationally exposed people, patients (diag-

nostics or therapeutics), and environmentally exposed people [48]. In general, an excess cancer  

Source Effective dose (mSv)*

Dental X-ray 0.005

Radiography of the chest 0.1

One return flight (New York-London) 0.1

Radiography of the abdomen 1.2

CT of the head 2

Natural background (per year) 2.4

Mammography 3

CT of the chest 7

CT of the abdomen 6–10

CT of the pelvis 8–10

Coronary CT angiography 12

Myocardial perfusion study 10–29

Myocardial viability study 14–41

Annual occupational dose limit 20

Radiotherapy (delivered in fractions) 40,000–70,000

*Doses are whole-body doses, except those of medical exposure, which are delivered to a specific organ. CT, computed 
tomography; Sv sievert [7, 19–23]

Table 1. Representative effective doses associated with different sources of ionizing radiation.
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risk can be statistically evidenced for doses above 100 mGy. Nevertheless, doses below 
100 mGy are inconclusive due to two practical limits of epidemiological studies: low statisti-

cal power that generates random errors and demography that gives rise to systematic errors. 

Due to a high natural incidence of cancer, a lifetime follow-up of larger cohorts would be 

needed to quantify excess cancer risks due to a low dose of ionizing radiation. This is prac-

tically infeasible. Furthermore, confounding factors, such as lifestyle risk factors for CVD, 

can hamper accuracy to confidently detect a small increase in cancer mortality (discussed in 
Section 2.4). Any inadequacy in matching between control and study groups may give rise 

to a bias that cannot be merely reduced by expanding the size of the groups [49]. As a conse-

quence, risk assessment in the low-dose region (<100 mGy) is based on extrapolations made 

from high-dose risk estimates [50]. For cancer, it is widely accepted that the tumorigenic risk 

increases with radiation dose without the presence of a threshold (the stochastic linear non-

threshold [LNT] model). This assumption implies that no dose is absolutely safe, resulting in 
implementation of the “as low as reasonably achievable” principle [51, 52].

In contrast to cancer, non-cancer diseases have for long not been considered as health risks fol-

lowing exposure to low doses of ionizing radiation. Consequently, they were believed to have 

a threshold dose below which no significant adverse risks are induced (deterministic linear 
threshold model) [18, 53]. This idea has been challenged by epidemiological findings show-

ing an excess risk of non-cancer diseases following exposure to doses lower than previously 

thought [34, 54]. Epidemiological evidence suggests an excess risk of CVD mortality above 

0.5 Gy [34, 54]. For doses below 0.5 Gy, the dose-risk relationship is still unclear. However, if 

the relationship proves to be without a threshold, this may have a considerable impact on the 

current radiation protection system, since the overall excess mortality risk following low-dose 

exposure could double [55].

2. Radiation-induced cardiovascular disease

2.1. Epidemiology of radiation-induced CVD

Current predictions indicate that in Western countries almost one of three people will develop 

cancer during their lifetime [56]. About 50–60% of all cancer patients will undergo radiotherapy 

with radiation doses averaging 1.8–2 Gy per fraction [57]. During the radiotherapeutic treatment 

of tumors located in the mediastinal region of the human body (breast, lung, and esophageal 

cancers), the heart and its blood vessels incidentally receive a part of the radiation dose [46].  

Exposure of the cardiovascular system to these therapeutic doses is known to be associated 

with CVDs. The first epidemiological evidence of this association came from radiation-treated 
Hodgkin’s lymphoma survivors in the 1960s. In a study of 258 Hodgkin’s disease patients fol-

lowed for a median of 14.2 years (range 0.7–26.2) after radiotherapy, cumulative risk for isch-

emic event increased from 6.4% (95% confidence interval (CI), 3.8 ± 10.7) at 10 years to 21.2% 
(95% CI, 15 ± 30) at 20–25 years after radiotherapy treatment. Risk for myocardial infarction 
was 3.4% (95% CI, 1.6 ± 7.0) at 10 years and 14.2% (95% CI, 9 ± 22) at 20–25 years, and risk for 
ischemic cardiac mortality was 2.6% (95% CI, 1.1 ± 6.1) at 10 years and 10.2% (95% CI, 5.3 ± 19) at 
25 years (Figure 2A) [58]. Cardiac fibrosis, which causes cardiac dysfunction, arrhythmias, and 
heart failure, is also seen in Hodgkin’s lymphoma survivors but is rather the result of the use of 
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anthracyclines [59]. Radiation-induced cardiovascular disorders are based rather on the damage 

to the blood vessels. Later, in the study of Darby et al., 2168 breast cancer patients were followed 
between 5 and more than 20 years after radiotherapy. It was found that women irradiated for left 

breast cancer (estimated mean heart dose 6.6 Gy) had higher rates of major coronary events than 

women irradiated for right breast cancer (estimated mean heart dose 2.9 Gy; P = 0.002). Excess 
relative risk (ERR), a measure that quantifies how much the level of risk among persons with a 
given level of exposure exceeds the risk of nonexposed persons [60] for major coronary events 

was 7.4% per Gy (95% CI, 2.9–14.5) when all follow-up times and all breast cancer patients were 

included (Figure 2B) [54].

Additional proofs of increased risk of CVDs after high-dose exposure were provided during the 

follow-up of Japanese atomic bomb survivors. During a 53-year follow-up of 86,611 members 

of the Life Span Study cohort, excess relative risk of death from heart disease per Gy was 0.14 
(95% CI 0.06–0.23) (Figure 2C) [34]. Although there is a large number of epidemiological studies  

showing a clear excess of CVD risk above 0.5 Gy, they are of limited use for quantitative risk 

assessment, because individual dosimetry has yet to be performed [35]. In addition, even if an 

adverse effect can be evidenced at relatively high doses of ionizing radiation, mechanisms by 
which therapeutic doses affect the cardiovascular system are still not completely understood [28].

Figure 2. Epidemiological evidence for an increased risk of CVDs after exposure to ionizing radiation. (A) Cumulative 

risk curves for the occurrence of cardiac events in Hodgkin’s lymphoma survivors [58]. (B) Rate of major coronary events 

according to mean radiation dose to the heart given during breast cancer radiotherapy, as compared with the estimated 

rate with no radiation exposure to the heart [54]. (C) Excess relative risk for death from heart disease in Japanese atomic 

bomb survivors. Shaded area is the 95% confidence region for the fitted lines [34].
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When the heart receives a radiation dose lower than 0.5 Gy, epidemiological evidence is less 

strong than that for higher doses. The most informative cohort in this respect is composed of 

Japanese atomic bomb survivors. It is of high value for low-dose epidemiology as a source for 

risk estimation due to its large size, the presence of both sexes and all ages, and because irradi-

ated people have well-characterized individual dose estimates [36]. Studies in occupationally 

exposed individuals are also of interest as they generally involve relatively low doses received 

during repeated exposures. Examples of such cohorts are nuclear industry workers from 15 

countries (the 15-country study) [37], the UK National Registry for Radiation Workers [38], the 

National Dose Registry of Canada [39], the Chernobyl liquidator cohort [40], and the Mayak 

cohort [41–43]. The last cohort is composed of workers from Mayak PA, the first and largest 
Russian nuclear factory for plutonium production where the majority of workers were exposed 

to ionizing radiation during the first period of operation [61]. In addition, data can also be 

acquired from environmentally exposed groups, such as settlements located at the vicinity of 
the Techa River [44] and the Semipalatinsk nuclear test area [45].

When taking into account all epidemiological data on CVD effects of ionizing radiation, a small but 
highly statistically significant ERR of 0.09 per Gy (95% CI, 0.07–0.12) was observed at doses higher 
than 0.5 Gy [35]. In addition, ERR of CVD mortality was estimated at 0.08 (95% CI, 0.04–0.12).  

In other words, receiving 1 Gy of ionizing radiation to the heart and its blood vessels increases 

the risk of CVD mortality with 8% in comparison to nonexposed people. This assumed risk is 

rather large and may therefore have serious implications for public health. Indeed, considering 

the high background rate of CVD, the absolute number of excess cases could be substantial [62]. 

In order to find an association between low-level radiation exposure and CVD risk in a general 
unselected population, this meta-analysis was extended by Little et al. [55]. When taking into 

account 717,660 individuals from the Japanese atomic bomb survivor and occupational and envi-

ronmental exposure studies listed above, a statistically significant ERR coefficient of 0.10 (95% 
CI, 0.05–0.15) for coronary artery disease was observed as a result of exposure to low-level radia-

tion more than 5 years prior to death [55]. A linear association between ERR and radiation dose 

was assumed even in the low-dose range, because there was little evidence of nonlinearity in the 
dose-response curves for CVD in Japanese atomic bomb survivors [34, 63] and in Mayak workers 

[41]. Authors further argued that the consistency of ERR/Gy between Japanese atomic bomb sur-

vivors with moderate radiation doses [34, 63] and occupational cohorts with low doses could be 

used to support the notion of a linear relationship between ERR of CVD mortality and low doses 

of ionizing radiation [55]. In a recent third analysis of the Life Span Study cohort of atomic bomb 
survivors with 105,444 subjects, the shape of the dose-response curve for solid cancer incidence 

was found significantly different among males and females (P = 0.02). For females, dose-response 
was consistent with linearity, but for males dose-response best fitted a linear-quadratic model 
[64]. If this were to be confirmed, the overall excess risk of CVD-associated mortality after expo-

sure to low doses of radiation would be about twice that associated to radiation-induced cancers, 

which ranges from 4.2% to 5.6% per Sv for the cohort populations discussed above [55, 65] and 

would even be different between both sexes.

2.2. Pathophysiology of radiation-induced CVD

Following radiotherapy of the thoracic part of the human body for mediastinal lymphoma, breast, 

lung, and esophageal cancers, the heart incidentally receives a part of the therapeutic dose [46].  
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As indicated in the epidemiology section, high-dose radiation exposure of the heart and its 

vessels is associated with a risk of radiation-induced CVD [34, 54, 55]. In this context, coronary 

artery disease is considered to be the major cardiovascular complication [28, 30, 54]. Two studies 

provide molecular and cellular mechanisms accounting for increased morbidity and mortality 

of coronary artery disease following radiation exposure. First, radiation can influence the patho-

genesis of age-related atherosclerosis, thereby accelerating the development of atherosclerosis 

in coronary arteries [28]. Growing atherosclerotic plaques narrow the blood vessel and hamper 

the blood stream (Figure 3). Second, damage to the heart microvasculature can reduce blood 

flow to the myocardium, causing myocardial ischemia, which promotes acute infarction [30]. 

Because endothelial activation and dysfunction are major causes of atherosclerosis, much of the 

current radiobiological research is exploring the molecular and phenotypic effects of ionizing 
radiation in endothelial cells in the context of radiation-induced CVD [66, 67]. It should be noted, 

however, that there are also other clinical manifestations of radiation-related CVD, such as peri-

carditis, congestive heart failure, and heart fibrosis [30, 68, 69]. Radiation-induced pericarditis is 

caused by damage to the cardiac microvascular network in combination with fibrosis of cardiac 
venous and lymphatic channels. This ultimately leads to accumulation of a fibrin-rich exudate in 
the pericardium, causing pericardial tamponade. Congestive heart failure is attributed to radi-
ation-induced fibrosis of the myocardium, which ultimately leads to decreased elasticity and 
extensibility of cardiac walls, thereby reducing the ejection fraction [70]. To learn more about 

putative mechanisms, the interested reader is referred to some excellent recent reviews [69, 71].

2.3. Gaps in the current knowledge of radiation-induced CVD

Available epidemiological studies have limited statistical power to detect a possible excess 

risk of CVD following exposure to radiation doses lower than 0.5 Gy. Limited power is due 
both to the high background level of CVD in studied populations and to the existence of many 

Figure 3. Longitudinal cut of a normal, healthy blood vessel (left) and of a blood vessel with an atherosclerotic plaque 
hampering the blood stream (right). Damage to the endothelium is an important trigger of atherosclerosis, itself a main 

cause of CVD.
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 potentially confounding risk factors. For example, occupational studies have to deal with the 

“healthy worker” effect, and the study of A-bomb survivors has to deal with the “healthy survi-
vor” effect. Both selection effects occur when healthy individuals with lower mortality and mor-

bidity rates are selectively retained at a specific site (work and living area, respectively) where 
they accumulate higher doses and therefore confound the dose-risk relationship [37]. Other 

potential confounders in epidemiological studies are lifestyle risk factors for CVD (e.g., smok-

ing, alcohol consumption, obesity, diabetes, hypertension) [35, 55] prognosis of cancer treatment 

regimens [30], distribution of the dose range, accuracy of dosimetry, duration of follow-up after 

exposure, and correct assignment of the cause of mortality [62]. For these reasons, the number of 

people needed to quantify the excess risk of a dose <0.5 Gy is unfeasibly high. In the context of 

radiation-related cancer, for example, a cohort of 5 million people would be needed to quantify 

the excess risk of a 10 mGy dose, assuming that the excess risk is in proportion to the dose [7]. 

Moreover, CVD may occur a long time after exposure to doses below 30 Gy (approx. 10–30 year 

lag) [30, 72, 73]. As a result, a long follow-up period of time is needed to determine the nature 

and magnitude of risks following individual exposure to lower doses.

Despite the fact that epidemiological studies have led to significant insights in radiation-
related CVD risk, there are still many uncertainties that need to be addressed. Does CVD risk 

occur only above a specific radiation dose? Is the latency of CVD development dependent on 
the dose? Which are the sensitive targets in the heart and vasculature (e.g., fibroblasts, vascular 
smooth muscle cells, and endothelial cells)? Does radiation exposure affect CVD incidence or 
progression or both? Is there a difference between single dose and fractionated and chronic 
exposure? How does the time interval between two consecutive dose fractionations play a role 

in the induction of damage? These questions need to be answered to provide a more accurate 

dose risk assessment in order to improve the current radiation protection system.

Classical epidemiological studies are not adapted to provide answers to these questions. There is, 

therefore, a clear need for more detailed epidemiological studies that would be capable of addressing 

potential confounding factors and selection biases that could influence results. Furthermore, there 
is a particular need for a better understanding of the biological and molecular mechanisms respon-

sible for the association between ionizing radiation and CVD [6]. Hence, a more directed approach 

is required, such as molecular epidemiology that integrates epidemiology and biology [55].  

Radiobiological research is thus essential for understanding the radiation-related CVD risks, 

both at high and low doses. In other words, accurate risk estimation will be possible only based 

on comprehensive biological and molecular understanding of what ionizing radiation does to the 

cardiovascular system. To date, the induction of radiation-related CVD risks is believed to be the 

result of endothelial dysfunction, which will be discussed in the next section [30].

3. Endothelial cell responses after ionizing radiation exposure

The endothelium could be a critical target in ionizing radiation-related CVD [74]. The 

 endothelium is a single layer of cells that lines the interior of the vascular system and of 

the heart and has thus a strategic position between the blood and the surrounding tissues. 

It is a highly active organ system that is constantly sensing and responding to changes of 

the  extracellular environment to maintain a normal function of the vascular system [75]. 
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Endothelial cells are involved in a wide range of physiological processes, such as regulation of 

vascular tone, vascular permeability, blood coagulation/fibrinolysis, and inflammation, which 
are needed to maintain proper vascular functioning (Figure 4) [76]. Endothelial dysfunction 

has been observed in patients with atherosclerosis and in patients that exhibit CVD risk factors 

such as smoking, dyslipidemia, obesity, and diabetes mellitus [77] and is considered to be one 

of the first predictive indicators of cardiovascular morbidity and mortality [78].

A dysfunctional endothelium is characterized by inflammation, DNA damage, oxidative stress, 
alterations of coagulation and platelet pathways, senescence, and cell death, all of which are 

observed after radiation doses above 1–2 Gy, as shown in many in vitro and in vivo studies [6, 28, 

79–81]. Comparatively, both protective and detrimental effects have been reported for low-dose 
exposure, suggesting that multiple mechanisms may influence radiation-induced atherosclerosis 
[6, 62]. Increasing evidence also suggests a role of intercellular communication in the endothelial cell 

response to ionizing radiation [82]. All of these endpoints are briefly discussed in the following 
paragraphs. In addition, other pathological effects of ionizing radiation on the endothelium are 
observed like impaired endothelial regulation of vascular tone [83−87], loss of the endothelial 

monolayer integrity [88–92], and procoagulant and prothrombic conditions [28, 93−108].

3.1. Inflammation

Endothelial expression of adhesion molecules plays an important role in recruiting inflammatory 
cells from the bloodstream into the vessel intima where they transform into foam cells, elements 

Figure 4. Overview of the major physiological functions of the arterial endothelium. (A) The endothelium (ECs, endothelial 

cells) forms a selective barrier regulating solute flux and fluid permeability between the blood and surrounding tissues 
[78]. (B) Formation of a thrombus or blood clot is referred to as intravascular coagulation, and the breakdown of 

a thrombus is referred to as fibrinolysis. Normal endothelium has antithrombotic and profibrinolytic properties and 
actively represses platelet adhesion and aggregation. Vessel damage or exposure to pro-inflammatory molecules shifts the 
balance toward more prothrombic/antifibrinolytic activities [75, 109]. (C) To regulate the vascular tone, the endothelium 

releases various vasodilatory agents, such as nitric oxide (NO) and endothelial-derived hyperpolarizing factor (EDHF), 
or vasoconstrictive agents, such as endothelin-1 (ET-1), which modify vascular smooth muscle cell (VSMC) contractility 

[110]. (D) In the case of inflammation, endothelial permeability is increased. Endothelial cells recruit immune cells via the 
expression of adhesion molecules and mediate their transmigration toward the inner vascular wall [75, 76] .
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of the atherosclerotic plaque. Radiation has been shown to upregulate several of such adhe-

sion molecules. For instance, exposure of endothelial cells to 5 Gy increases the expression of 

intercellular adhesion molecule-1 (ICAM-1) and E-selectin 6 h after irradiation [111]. Platelet 
endothelial cell adhesion molecule-1 (PECAM-1), ICAM-1 and ICAM-2, and vascular cellular 
adhesion molecule-1 (VCAM-1) were also observed to increase in mouse heart cells 10 weeks 

after local thorax irradiation with 8 Gy [112]. Interestingly, ICAM-1 and VCAM-1 remained 

upregulated 20 weeks after irradiation. Besides induction of adhesion molecules, the expres-

sion of cytokines, such as interleukin (IL)-6 and IL-8, and other inflammatory molecules such 
as transforming growth factor-β (TGF-β) was shown to increase after high and moderate irra-

diation doses in human endothelial cell cultures [113, 114]. In this context, the Japanese atomic 

bomb survivors’ cohort also showed signs of a generally increased inflammation state, with 
increased levels of IL-6 and C-reactive protein (CRP) [115].

3.2. DNA damage and apoptosis

Ionizing radiation is known to induce a wide range of DNA lesions, of which double-strand 
breaks (DSBs) are most severe in a direct manner but also indirectly through the formation of 

reactive oxygen species (ROS) [116, 117]. Upon DNA damage, a response is initiated, and cells 
activate cell cycle checkpoints that slow down or stop cell cycle progression [118]. This gives 

them time to repair damaged DNA or to prevent division when chromosomes are damaged 
or incompletely replicated. If cells fail to repair their DNA, they undergo programmed cell 
death, apoptosis, or premature senescence (described below) [119]. Consequently, DSB leads 

to a high lethality of the affected cells.

Whereas high doses are known to induce apoptosis in endothelial cells [120], less is known 

about the effect of low radiation doses. A subtle but significant increase in DSBs was observed 
in human umbilical vein endothelial cells (HUVEC) and EA.hy926 endothelial cells 30 min after 

exposure to 0.05 Gy. In addition, irradiation with 0.05 Gy and 0.1 Gy induced relatively more 

DSB/Gy in comparison to 0.5 Gy and 2 Gy [121]. This observation could be caused either by an 

underestimation due to DNA damage spot merging [122] or by the induction of a global chro-

matin reorganization at low doses of ionizing radiation [123]. Furthermore, a dose-dependent 

increase in the number of apoptotic cells was observed, down to 0.5 Gy in HUVEC and 0.1 Gy in 

EA.hy926 cells [121]. Another study showed no increase in the number of apoptotic endothelial 

cells after exposure to 0.2 Gy, whereas apoptosis was observed after exposure to 5 Gy [124].

3.3. Oxidative stress, mitochondrial dysfunction, and metabolic changes

Mitochondria are often regarded as the powerhouse of the cell by generating the ultimate 

energy transfer molecule, adenosine triphosphate or ATP. Mitochondrial dysfunction is 
part of both normal and premature agings, but it can also contribute to inflammation, cell 
senescence, oxidative stress, and apoptosis. Increasing evidence indicates that mitochondrial 

damage and dysfunction occur in atherosclerosis and may contribute to the multiple patho-

logical processes underlying the disease [125].

An increased accumulation of mitochondrial DNA damage was observed in several human fibro-

blast cell lines after exposure to doses as low as 0.1 Gy [126]. Furthermore, functional impairment 

of mitochondria (reduced mitochondrial respiration and electron transport chain activity) and 
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alterations of the mitochondrial proteome were observed in isolated cardiac mouse mitochondria 

4 and 40 weeks after a 2 Gy local heart irradiation. Only a few alterations of the mitochondrial 

proteome and no effect on mitochondrial function were observed with 0.2 Gy [127, 128]. Finally, 

alterations of energy and lipid metabolism and perturbations of the insulin/insulin growth 
factor—phosphatidylinositol-4,5-bisphosphate 3-kinase—RAC-alpha serine/threonine-protein 
kinase (IGP-PI3K-Akt) signaling pathway were suggested in proteomic studies using cell lines 
or cells isolated from mice after irradiation with doses ranging from 3 to 16 Gy [129−131].

Water radiolysis instantly causes the formation of ROS (e.g., •OH−, •O
2
−, H

2
O

2
). However, 

cellular oxidative stress can also be observed long after irradiation, due to an increase in endog-

enous cellular ROS production [132]. Mitochondria are believed to be the major source of radi-

ation-induced secondary ROS. For instance, Leach et al. have demonstrated that between 1 
and 10 Gy, the amount of ROS-producing cells increased with the dose, which they suggested 

was dependent on radiation-induced propagation of mitochondrial permeability transition 

via a Ca2+-dependent mechanism [133, 134]. It has further been suggested that ROS can be 

transferred from cell to cell by gap junctions and paracrine communication pathways in order 

to propagate radiation-induced biological effects at the intercellular level. This phenomenon 
is commonly referred to as the radiation-induced “bystander effect” [135]. Multiple molecular 

signaling mechanisms involving oxidative stress, various kinases, inflammatory molecules, 
and Ca2+ are postulated to contribute to this effect [136].

3.4. Premature senescence

The culprit of radiation-induced premature senescence is most likely severe irreparable DSB 

[137], even if accelerated telomere shortening has also been suggested [138]. Furthermore, 

oxidative stress is seen as a major player in radiation-induced senescence and is involved in 

both radiation-induced DNA damage and accelerated telomere attrition [138−140].

In several in vitro studies, it has been demonstrated that ionizing radiation induces endothelial 

cell senescence, mainly with exposure to higher radiation doses [141–144]. An interesting study 

was carried out to examine the effect of chronic low-dose rate irradiation (1.4, 2.4, and 4.1 mGy/h) 
during 10 weeks [145, 146]. Exposure to 1.4 mGy/h did not accelerate the onset of senescence, 
whereas exposure to 2.4 mGy/h and 4.1 mGy/h did. Remarkably, a senescent profile was observed 
when the accumulated doses received by the cells reached 4 Gy. Proteomic analysis revealed a 
role for radiation-induced oxidative stress and DNA damage, resulting in induction of the p53/
p21 pathway. Also, a role for the PI3K/Akt/mechanistic target of rapamycin (mTOR) pathway 
was suggested. In a related transcriptomic study, authors suggested that premature senescence 

resulted from an early stress response with p53 signaling, cell cycle changes, DNA repair, and 
apoptosis observed after 1 week of exposure and an inflammation-related profile observed after 
3 weeks. In addition, a possible role of insulin-like growth factor-binding protein 5 (IGFBP-5) 
signaling, known to be involved in the regulation of cellular senescence, was suggested for the 

induction of premature senescence after chronic low-dose rate irradiation [147].

Oxidative stress, inflammation, and cellular senescence are all consequences of a normal 
aging process but are observed early in irradiated tissues, including the heart, suggesting an 

intensification and acceleration of these molecular processes [71].
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3.5. Intercellular communication

Traditionally, it was accepted that exposure to ionizing radiation only directly affects 
irradiated cells. However, in 1992, it was found that irradiation of 1% cells with α-particles 
leads to genetic damage in more than 30% of cells [148]. Exposure of cells to ionizing radiation 

results in significant biological effects occurring in both irradiated and non-irradiated cells 
through the radiation-induced bystander effect [149, 150]. Although the mechanisms of this 

effect are not fully elucidated yet, oxidative stress, different cytokines (e.g., TNF-α, IL-1, and 
IL-6), Ca2+, and kinases play a role in the damage to non-irradiated cells.

Intercellular communication through gap junctions and paracrine signaling through hemichannels  

have been suggested to mediate bystander responses. Gap junctions and hemichannels are com-

posed of multimeric transmembrane structures made of connexin (Cx) [150, 151]. In human, 21 Cx  

proteins have been identified, which are present in most organs, and display a tissue/cel-
lular specificity [152, 153]. There are three different Cx isotypes expressed in endothelial cells 
of major arteries, namely, Cx37, Cx40, and Cx43 [154−156]. Cxs have important physiological 

roles (e.g., they support longitudinal and radial cell-cell communication in the vascular wall), 

and changes of their expression patterns have been observed during atherosclerosis. Although 
healthy endothelial cells mainly express Cx37 and Cx40, both Cxs are lost in the endothelium 

covering advanced atherosclerotic plaques. On the contrary, Cx43 is detectable at specific regions 
of advanced atherosclerotic plaques [157]. The mechanisms responsible for modification of the 
Cx expression pattern in atherosclerosis are not fully understood. However, it has been recently 
demonstrated that Cx37 is a regulator of endothelial NO synthase (eNOS) [158]. The altered Cx37 

expression level could be responsible for decreased eNOS activity and decreased NO bioavailabil-
ity, which may cause endothelial cell dysfunction and increased susceptibility to  atherosclerosis. 

Therefore, Cx37 may play a protective role against atherosclerosis. In addition, Cx40 may play a 

similar role, as endothelial-specific deletion of Cx40 was reported to promote atherosclerosis by 
increasing CD73-dependent leukocyte adhesion to the endothelium [155]. In contrast to the athe-

roprotective effects of Cx37 and Cx40, Cx43 has been suggested to be pro-atherosclerotic. Indeed, 
downregulation of Cx43 expression inhibited monocyte-endothelial adhesion by decreasing the 

expression levels of cell adhesion proteins, whereas its upregulation enhanced the adhesion of 

monocytes to endothelial cells [159]. Besides their roles in atherosclerosis, Cxs were reported to 

be highly sensitive to ionizing radiation [156]. Indeed, it was observed that a low-dose irradiation 

exposure induced activation of Cx43 in a time- and dose-dependent manner in human neonatal 

foreskin fibroblasts [160]. Moreover, upregulation of Cx43 was noticed after 5 Gy of X-ray expo-

sure in mouse primary endothelial cells [161].

4. Conclusion

Research regarding CVD risk related to ionizing radiation is an important way forward to 

complement epidemiological data with the underlying biological and molecular mechanisms. 

This is especially important for doses <0.5 Gy, for which epidemiological data are suggestive 

rather than persuasive. Indeed, due to limited statistical power, the dose-risk relationship 

is undetermined below 0.5 Gy, but if this relationship proves to be without a threshold, it 
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may have a considerable impact on current low-dose health risk estimates. In this regard, a 

complete understanding of the pathological effects of ionizing radiation regarding endothelial 
dysfunction is needed. In addition, it will help in the identification of protective strategies as 
well as a set of predictive biomarkers for radiation-induced cardiovascular disorders.
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