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Abstract

Stimulation of discrete sites throughout the hypothalamus elicits autonomic and somatic 
responses. This chapter will stand out the cardiorespiratory changes evoked from stimu-
lation of specific areas within the caudal hypothalamus: the perifornical area and the 
dorsomedial nucleus. The stimulation of these regions, known as the hypothalamic 
defense area (HDA), produces a pattern of visceral and somatic changes characteristic 
of the defense reaction, which includes tachypnea, tachycardia and a pressor response. 
A close review of the literature demonstrates that the changes observed during this 
defensive behavioral response are partially mediated by the interactions with pontine 
regions. These include the parabrachial complex, located in the dorsolateral pons, and 
the A5 region, located in the ventrolateral pons. Specific glutamatergic stimulation of 
cell bodies located within the parabrachial complex and A5 region evokes cardiorespira-
tory responses similar to those observed during stimulation of the HDA. This functional 
interaction suggests a possible role of glutamate pontine receptors in the modulation of 
the HDA response. This chapter describes the most important evidences confirming the 
implication of the dorso- and ventrolateral pons in the control of cardiorespiratory auto-
nomic responses evoked from the perifornical and dorsomedial hypothalamus and the 
role of glutamate in this interaction.

Keywords: caudal hypothalamus, parabrachial complex, A5 region, cardiorespiratory 
responses, glutamate receptors, defense response

1. Introduction

Brief alerting stimuli such as an unexpected noise or light will evoke in animals immediate 

cardiovascular and respiratory responses, including strong cutaneous vasoconstriction and 
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respiratory activation [1–5]. Consistent with this, alerting stimuli in humans reliably increase 

cutaneous sympathetic activity [6]. Brief alerting stimuli also evoke variable changes in heart 

rate due to the fact that there is an activation of cardiac sympathetic and vagal parasympa-

thetic activity [5, 7–10].

The initial response to alerting stimuli is a reflex termed “defense reaction” or “visceral alert-
ing reaction” [11]. It is known that alarming stimuli evoke a characteristic autonomic response 

that includes tachypnea, accompanied by an increase in heart rate and blood pressure. A 

vasoconstriction in renal and mesenteric vascular beds with vasodilatation of skeletal muscle 

vessels is also observed in humans [12–22] and animals [23–27]. These cardiovascular changes 

are accompanied by a marked increase in total norepinephrine spillover in humans, indica-

tive of an overall increase in sympathetic activity [28]. Research carried out in both, humans 

and animals, shows that stress elicits a typical pattern of catecholaminergic responses, with 
significant increases in sympathetic activity to the heart, kidney, skin, adrenal medulla and 
mesenteric beds and with a variable effect to the skeletal muscle.

Previous studies, using c-Fos expression, have identified several brain regions that are acti-
vated during stress. These morphological studies show that most of these regions also play a 

crucial role in respiratory and cardiovascular sympathetic regulation. These regions include, 

among others, the dorsomedial hypothalamus (DMH), the perifornical area (PeF), the para-

ventricular nucleus (PVN), the parabrachial complex (PBc), the periaqueductal gray (PAG), 

the nucleus tractus solitarius (NTS) and the ventrolateral medulla (VLM) [29–37].

The stimulation of specific areas within the caudal hypothalamus in rat, such as the PeF and 
DMH, classically known as hypothalamic defense area (HDA) (Figure 1), produces a pattern 
of visceral and somatic changes characteristic of the defense reaction [23]. The cardiorespira-

tory changes observed during the defense response are partially mediated by a facilitation of 

the chemoreceptor reflex and an attenuation of baroreceptor [38, 39] and laryngeal reflexes 
[40, 41] involving a GABAergic mechanism in the NTS [42]. The cardiovascular response is 

also mediated by direct descending projections from the PVN to sympathetic preganglionic 

Figure 1. Semischematic line drawing of the parasagittal section through the rat brain showing the location of the 
hypothalamic defense area (HDA) and periaqueductal gray matter (PAG). The dorso- and ventrolateral pons shows the 
parabrachial complex (PB), Kölliker-Fuse (KF) and A5 region (A5). In the brainstem, nucleus of the solitary tract (NTS), 

rostroventrolateral medulla (RVLM), rostroventromedial medulla (RVMM) and caudalventrolateral medulla (CVLM) 

are shown.
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neurons of the intermediate lateral cell column in the thoracic spinal cord (IML) [43], the ros-

tral ventrolateral medulla (RVLM) [44] and the A5 catecholaminergic region of the pons [45].

Several observations clearly demonstrate the critical importance of the DMH in mediating 

stress-evoked cardiovascular and respiratory responses. The inhibition of neurons within the 

DMH greatly reduces the pressor response and tachycardia evoked by air jet stress [46, 47]. 

In addition, activation of somata of the DMH evokes a pattern of autonomic and respiratory 
effects, including a resetting of the baroreceptor reflex, which are similar to naturally evoked 
stress responses [48–55].

Interestingly, there are also evidences showing that the cardiovascular effects elicited by the 
activation of the pontine parabrachial nucleus are partially generated by a similar control of 

the function of the baroreceptor reflex at the level of the NTS [56–58].

The PBc lies at the junction between the rostral dorsolateral pons and the mesencephalon 

(Figure 1). The PBc contains three main subdivisions: the medial parabrachial nucleus (mPB), 
the lateral parabrachial nucleus (lPB) and Kölliker-Fuse area (KF) [59]. This region has been 

considered the site of the “pneumotaxic center” controlling inspiratory duration and is now 
often referred to as the pontine respiratory group [60]. The PBc modulates respiration in two 

different ways. Neurons located in the mPB and KF are implicated in the increase of expira-

tory time observed during bradypnea. On the contrary, somata located within the lPB elicit 

the classical tachypnea, characterized by a decrease of expiratory duration with an inspiratory 

facilitation [61–63]. The PBc is also related to a topographical organized regulation of bul-

bar laryngeal motoneurons regulating subglottic pressure [63]. Moreover, activation of these 

regions, typically considered as “respiratory areas,” also produces cardiovascular changes 
including an increase of heart rate and arterial blood pressure [63, 64].

Electrical stimulation or microinjections of excitatory amino acids within the PBc [63, 65, 

66] show different modulatory respiratory responses depending on the location of PBc-
stimulated neurons. At all locations where respiratory responses are elicited by stimulation 

of PBc somata, a cardiovascular response is also observed. Similar cardiorespiratory effects 
are observed when glutamate is microinjected within these sites. The response comprises an 

increase in blood pressure with a small increase in heart rate. The cardiovascular response 

evoked by the stimulation of cell bodies located within the PBc resembles the response evoked 

on HDA stimulation [63].

The dorsolateral pontine modulation of the arterial baroreflex primarily originates from ven-

trolateral regions of the lPB and involves descending projections to both the NTS [56, 67] and 

the VRLM [67–69]. In the early 1980s, it was established that electrical stimulation of the PBc 

attenuates baroreflex responses [69]. The functional importance of PBc modulation of barore-

flex function has been linked to the simultaneous pressor response and tachycardia evoked 
during the defense response, which indicates a resetting of the barorreceptor reflex. Chemical 
lesions of the PBc eliminate the descending modulation of the baroreflex control of heart 
rate and mean arterial pressure evoked from at least one “brain defense region,” the dorsal 
PAG [70]. Blockade of neurons located in lPB, using bilateral microinjections of muscimol, 

a GABA
A
 receptor agonist, or kynurenic acid, an unspecific glutamate receptor antagonist, 

decreases but not abolishes the attenuation of the cardiac baroreflex response evoked from the 

Role of the Dorso- and Ventrolateral Pons in Cardiorespiratory Hypothalamic Defense Responses
http://dx.doi.org/10.5772/intechopen.72625

49



dorsal PAG [71]. These data support the hypothesis that lPB is also a crucial pontine region 

implicated in the descending modulation of cardiac brainstem baroreflex function during the 
stress reaction evoked from hypothalamic stimulation.

In addition, the PBc is an important pontine secondary relay from the NTS, because it is 

involved in the modulation of this arising cardiorespiratory information [72]. The PBc, mainly 

its lateral part, is reciprocally connected with forebrain structures involved in cardiorespi-

ratory regulation [59]. The activation of neuronal somata of the lPB with glutamate elicits 

a cardiorespiratory response that includes hypertension, tachycardia and tachypnea, while 

activation of cell bodies located within the mPB and KF produces a similar cardiovascular 

response, increase in blood pressure and heart rate, but on the contrary, accompanied with 

bradypnea [63]. Thus, the integrity of PBc neuronal circuits seems to be essential for the mod-

ulation of baroreflex function and appears to represent an important relay between midbrain 
and medulla for the coordination of autonomic defense responses.

On the other hand, the PBc is connected with another crucial area in cardiovascular control, 

the A5 region [73]. Electrical stimulation of the mPB or lPB produces an increase of c-Fos-like 

protein immunoreactivity within the A5 pontine catecholaminergic region [74].

The A5 group of catecholamine-containing neurons is located in the ventrolateral pons, between 

the root of the facial nerve and the superior caudal olivary nucleus (Figure 1). Classically, the 

A5 has been defined as a catecholaminergic region. It is known to provide the major component 
of the noradrenergic input to the sympathetic preganglionic neurons of IML [75–77], whereby 

it is implicated in cardiovascular control [41, 65, 78–82]. It also contains noncatecholaminergic 

neurons, which are mainly located at the level of the most caudal part of the A5 region [83]. 

These neurons seem to have properties similar to the respiratory chemoreceptors identified in 
the rostral medulla oblongata [84]. The A5 region has connections with the NTS, RVLM, cau-

dal ventrolateral medulla (CVLM), caudal pressor area and the retrotrapezoid nucleus in the 

medulla oblongata; with the mPB, lPB and KF in the pons; and with the PeF, the PVN and the 

amygdala in the hypothalamus [85–90]. These connections with regions of the central nervous 

system involved in cardiorespiratory regulation are indicative for a role of the A5 region in the 

control of both sympathetic activity and cardiorespiratory function [81, 91, 92]. Moreover, A5 

neurons are activated during baroreceptor unloading [81] and stimulation of carotid chemo-

receptors [93, 94]. Thus, it has been proposed that A5 neurons may play an important role in 

the carotid sympathetic chemoreflex triggered by hypoxia [95–97]. Furthermore, the A5 region 

plays an important role in respiratory control, modulating the activity of respiratory neurons 

[98]. These cells are synaptically connected to phrenic motoneurons [99] and contribute to 

the respiratory responses evoked by hypoxia and hypercapnia [96, 97, 100–102]. A5 cells also 

modulate the cardiorespiratory response evoked by activation of the PBc [65], which is a criti-

cal component of the brainstem respiratory network required for eupnea [103].

Stimulation of A5 neurons with glutamate produces cardiorespiratory and laryngeal 

responses similar to those observed with mPB stimulation. That is, an expiratory facilitatory 

response associated with an increase in blood pressure, heart rate [104] and subglottic pres-

sure [41]. In the same way as with PBc stimulation, the cardiovascular response is similar to 

that obtained during electrical stimulation of the HDA.
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The similarity of the responses to stimulation of the mPB and the A5 region suggests a pos-

sible interaction between these two pontine regions. In fact, studies from the literature dem-

onstrate a role for the A5 region in the cardiorespiratory responses evoked on PBc electrical 

Figure 2. Neurophysiological interactions between PBc and A5. Extracellular recording (superimposed sweeps) of three 

A5 putative cells activated from the PBc. Effect of clonidine i.v. injection (10 μg/kg) on the discharge rate of a putative 
A5 neuron. Arrow shows drug injection. Firing rate histogram of a parabrachial-activated A5 putative neuron (bin size 

5 s). Authors´ figure modified from Ref. [65].
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and chemical stimulation [65]. The microinjection of muscimol or lidocaine within the A5 

region modifies the pattern of the cardiorespiratory responses evoked from PBc stimulation 
[65]. The expiratory facilitatory response elicited from mPB-KF activation is reversed to an 

inspiratory facilitatory response. Nevertheless, when the lPB is activated, no changes are 

observed in the inspiratory facilitatory response. The magnitude of the increase of the pres-

sor response and the tachycardia observed during PBc stimulation decreases significantly 
after A5 blocking microinjections. Moreover, a high number of extracellularly recorded neu-

rons in the A5 region are activated on electrical stimulation within the mPB-KF nuclei [65] 

(Figure 2).

These functional connections suggest a possible interaction between PBc and A5 pontine 

regions in mediating the defense response evoked from the HDA. This statement will be dis-

cussed deeply in the following sections.

2. Dorsolateral pons in cardiorespiratory hypothalamic defense 

responses: role of the Parabrachial complex

Recent data show that neurons located within the PBc play a role in the cardiorespiratory 

response evoked from HDA. As previously mentioned, the stimulation of cell bodies located 

within the PBc resembles the cardiovascular response elicited by HDA stimulation, thus 

evoking tachycardia and hypertension [63].

Neuropharmacological studies show that the inhibition with muscimol of somata located 

within the main subdivisions of the PBc, lPB and mPB-KF produces two different patterns of 
cardiorespiratory responses evoked to HDA stimulation [105].

The inhibition with muscimol of neurons located within the mPB-KF reduces the tachycardia 

and the pressure response evoked by HDA stimulation [105] (Figure 3A). It is known that 

neuronal activity of the parabrachial nuclei can modify the effectiveness of the baroreflex in 
rat, rabbit and cat [56, 106] and that the PBc is essential for a full expression of the bradycardia 

that typically accompanies the initial hypotensive response to blood loss and for the normal 

rate of blood pressure recovery [107, 108].

The decrease in the cardiovascular response to HDA stimulation seems to be an indication 

of a resetting of the baroreceptor reflex. The normal cardiovascular response to hypotha-

lamic stimulation, tachycardia and pressor response is due to direct activation of neurons 

from the RVLM, which send direct projections to sympathetic preganglionic neurons of the 

IML. The inhibition or the resetting of the baroreceptor reflex is the origin of the tachycardia 
observed during the activation of the HDA. This inhibition seems to be partially mediated 

by GABA
A
 receptors located within the NTS, which produces a hyperpolarization of baro-

receptor cells [42, 58].

The reset of the baroreceptor response partially explains the decrease of the tachycardia 

observed during the stress reaction evoked from the activation of the HDA. It could also 

explain, through an indirect modulatory pathway, the decrease of the magnitude of the 
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hypertensive response, although, and probably, the most important factor is the inhibi-

tion of the excitatory projections from the PBc to the IML. The most relevant conclusion 

from this data is the suggestion that the reset of the barorreceptor reflex elicited by HDA 
activation could be also mediated though a secondary indirect pathway using the PBc of 

the pons [105].

Therefore, the activity of mPB-KF makes an important contribution to the modulation of the 

intensity of the cardiovascular response evoked on HDA stimulation through an indirect 

pathway to both the IML and the NTS.

On the other hand, the inhibition of neurons located within the lPB with muscimol abolishes 

the respiratory response evoked to HDA stimulation [105]. Similar to mPB-KF inhibition, the 

increase of blood pressure evoked to HDA stimulation decreases after the microinjection of 

muscimol within the lPB; however, no significant changes of the heart rate response were 
observed (Figure 3B).

Figure 3. Neuropharmacological interactions between HDA and PBc. From top to bottom, instantaneous respiratory rate 
(rpm), respiratory flow (ml/s), pleural pressure (cm H

2
O), instantaneous heart rate (bpm) and blood pressure (mmHg). 

Cardiorespiratory response evoked to HDA stimulation before (left) and after (right) muscimol microinjection within 

the mPB-KF (A) and lPB (B). The arrows show the onset of the HDA electrical stimulation. Authors´ figure modified 
from Ref. [105].
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Similar results are observed with PAG stimulation, thus indicating that the PBc is also a criti-

cal relay in mediating dorsal PAG-evoked sympathoexcitation and baroreflex modulation 
[109]. In addition, neurons localized in the lPB are involved in mediating the defense-like 

behavior response during the stimulation of the dorsal PAG, modulating the arterial barore-

flex [71]. This inhibitory effect is more evident from the mPB-KF than from lPB.

Therefore, the pressor response evoked during the stimulation of the HDA and PAG may 

involve the recruitment of neurons of both the lPB and mPB-KF subdivisions, which, using an 

indirect pathway, activate the IML.

Morphological studies have confirmed the presence of reciprocal connections between the 
PBc and different hypothalamic regions [110]. It has been also described that the PBc projects 

widely to areas of the forebrain involved in cardiovascular regulation and defense reactions 

[111]. It also projects, via descending fibers, to brainstem nuclei including the A5 region, the 
NTS and the IML of the spinal cord [112].

It is important to stand out the complete abolishment of the respiratory response to HDA 

stimulation after the inhibition of lPB somata with muscimol. The lPB is part of the neuro-

nal pathways involved in the sympathoexcitatory component of the chemoreflex [113]. Fos 

protein expression studies show that the tachypnea evoked on HDA stimulation is produced 

by activation of carotid chemoreceptors within neurons of the lPB [94]. Moreover, neuro-

nal recordings show that during chemoreflex stimulation, neurons of the lPB are activated 
and that this increase in firing precedes the classical hypertensive response to chemoreceptor 
stimulation, thus showing the relevance of lPB neuronal circuits on the central modulation of 

chemoreceptor inputs and reflex [114].

There are also indications that HDA stimulation may facilitate the chemoreceptor reflex by means 
of a group of intrinsic excitatory neurons localized within the NTS [115]. These cells are activated 

or facilitated by HDA-NTS direct excitatory connections. These neurons are also the main targets 

of excitatory inputs from the lPB [56]. The inhibition of these lPB excitatory projections with 

muscimol leads to the abolishment of the tachypneustic response evoked on HDA stimulation.

Electrophysiological studies using neuronal recordings support the above. A significant num-

ber of mPB-KF and lPB neurons are affected from HDA stimulation, confirming the impor-

tance of the functional correlation between the HDA and these pontine regions. The presence 

of anti-/orthodromic activations, short and long latency excitations, and inhibitions and 
excitatory/inhibitory activities gives electrophysiological evidence of reciprocal connections 
between these regions. It is also an index of the complexity of the different types of synaptic 
interactions between both areas (Figure 4) [105].

Studies related to glutamate receptors suggest that this neurotransmitter plays a crucial role 
in mediating the functional relation between the PBc and the HDA [116]. Glutamate activates 

metabotropic and ionotropic (NMDA and non-NMDA) receptors [117]. By employing immu-

nocytochemical and in situ hybridization techniques, studies have demonstrated the presence 

of both metabotropic and ionotropic receptors in different nuclei of the PBc and KF [118–120]. 

Activation of vagal afferent fibers releases glutamate within the PBc [121]. An ascending 

 excitatory pathway involving glutamate from the NTS to the PBc has been described [122]. In 
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Figure 4. HDA and PBc neurophysiological interactions. (A) Shows a rate histogram (bin size 2 s) representing the firing 
of an lPB cell not excited nor inhibited during HDA stimulation that increased the activity during HDA stimulation. 

(B) Shows a rate histogram (bin size 2 s) of an mPB-KF cell not excited nor inhibited during HDA stimulation showing 

a decrease of activity during HDA stimulation (0.1 ms given at 1 Hz). (C) The poststimulus time histogram shows 

spontaneous activity of an lPB neuron and double excitation after HDA stimulation. (D) The poststimulus time histogram 

shows an inhibition of an mPB neuron after HDA stimulation (100 stimuli, 1 Hz). Authors´ figure modified from Ref. [105].
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vitro studies also show that glutamate agonists depolarize neurons of the PBc [123], and lPB 

stimulation causes local glutamate release, which depolarizes lPB neurons through NMDA 

and non-NMDA receptors [124].

Moreover, the blockade of glutamate receptors and the microinjections of glutamate into 

the PBc and KF elicit a variety of cardiovascular and respiratory responses indicating that 

this amino acid is an important neurotransmitter for mediating autonomic functions in these 
regions [61, 63, 64, 122–127].

The pattern of the cardiorespiratory response evoked from HDA is modified by the microinjec-

tion of different glutamate antagonists into the PBc [116]. Kynurenic acid, a nonspecific ionotropic 
glutamate receptor antagonist, microinjected into the lPB and mPB abolishes the tachycardia and 

decreased the pressor response to HDA electrical stimulation (Figure 5A and B). The respira-

tory response is only abolished when kynurenic acid is microinjected into the lPB (Figure 5A) 

[116]. These results suggest that ionotropic glutamate receptors located within the lPB region 

are involved in both the respiratory- and the cardiovascular-evoked responses from the HDA, 

whereas ionotropic glutamate receptors located in mPB seem to be only involved in the modula-

tion of the cardiovascular response.

The effectiveness of the modulation is depending on the distribution of these receptors within 
the PBc and these findings suggest that lPB appears to exert a more efficient modulation on the 
cardiovascular response to HDA stimulation compared with mPB. This cardiovascular response 

seems to be mediated by a direct activation of neurons located within the RVLM, which send 

direct efferences to sympathetic preganglionic neurons of the IML [128–130]. The activity of the 

RVLM can be also modulated via indirect projections. The changes in heart rate and blood pres-

sure evoked from “defense” regions of the brain may use separate efferent pathways [51]. The 

blockade of the PBc attenuates the dorsal PAG-evoked changes in blood pressure [109], thus 

indicating that the cardiovascular changes observed during the stimulation of the HDA could 

be partially modulated by “direct” efferences to the RVLM but also by indirect projections, 
which involve the activation of ionotropic glutamate receptors located in the PBc [116].

It is known that the PBc is crucial mediating the changes of heart rate appearing during baro-

receptor reflex activation [105]. The fall in the magnitude of the cardiovascular changes to 

HDA stimulation observed after the microinjection of kynurenic acid could indicate that neu-

rons of the lPB and mPB exert an inhibition of tonic excitatory inputs, at the level of the NTS, 

on inhibitory mechanism of the baroreceptor reflex [40]. This hypothesis is also supported by 

the observation that the blood pressure response also tends to disappear with the decrease 

and/or the abolishment of tachycardia.

Another fact that could explain the more efficient modulation exerted from lPB on the cardio-

vascular response elicited by HDA stimulation is the specific expression of glutamate subtype 
receptors located within this region. A very different profile is observed when compared with 
the mPB or with other subnuclei of the PBc. GluR4 non-NMDA receptor subunits predomi-

nate in the internal lPB [118]. These subunits are characterized by a high sensitivity for glu-

tamate. There is also evidence that the external and internal lPB express specific subunits of 
NMDA receptors, which are different to that of the mPB [119]. NMDA receptors can be quite 

different with respect to their physiological and pharmacological channel properties, such 
as differences in glutamate affinity and glycine sensitivity, crucial coagonist for glutamate 
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efficacy [131], in calcium currents and deactivation kinetics as well as other single channel 

characteristics [132]. NMDA receptors of lPB are composed of NR2A and NR2B subunits, 

which are characterized by high affinity for glutamate and long mean open time. NMDA 
receptors located within the mPB are composed of NR2D subunits, which exhibit low affinity 
for glutamate [119, 132].

In summary, the arterial blood pressor response observed during HDA stimulation could be 

mediated by the activation of neuronal glutamate ionotropic receptors located in both lPB and 

mPB somata, which exert an indirect excitation to sympathetic preganglionic neurons at the 

level of the IML. The inhibitory mechanism of the baroreceptor reflex seems to depend more 
on the activation of lPB glutamate ionotropic receptors than mPB receptors, because tachy-

cardia associated to the pressor response is only suppressed after lPB microinjections [116].

With respect to the changes of respiratory rate observed during the stimulation of the HDA, we 

have to highlight that are only abolished when the microinjection of kynurenic acid is delivered 

within the lPB (Figure 5A). Nevertheless, the respiratory response remains unchanged when 

Figure 5. Neuropharmacological interactions between HDA and PBc, role of glutamate. From top to bottom, 
instantaneous respiratory rate (rpm), respiratory flow (ml/s), pleural pressure (cm H

2
O), instantaneous heart rate (bpm) 

and blood pressure (mmHg). The cardiorespiratory responses evoked on HDA stimulation before (left) and after (right) 

kynurenic acid microinjection within the lPB (A) and mPB-KF (B) are shown. The arrows show the onset of the HDA 

electrical stimulation. Authors´ figure modified from Ref. [116].
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kynurenic acid is microinjected into the mPB (Figure 5B) [116]. The result suggests that only 

glutamate receptors of the lPB modulate the respiratory response to HDA stimulation.

It has been shown that the lPB is an important part of the neuronal pathways for the mod-

ulation of the respiratory response evoked on HDA stimulation. Muscimol microinjections 

within the lPB have similar effects to kynurenic microinjections [105]; tachypnea observed 

during HDA stimulation is abolished. This observation gives a role for the described lPB 

afferent connections from several hypothalamic nuclei involved in the defense reaction [110].

Hayward et al. obtained similar results with the blockade of glutamate receptors with the 

microinjection of kynurenic acid into the lPB during the dorsal PAG stimulation, one of the 

so-called secondary brain defense regions, confirming the importance of lPB in the integration 
of tachypneic responses from supraencephalic regions [133].

There are indications that HDA stimulation may facilitate the chemoreceptor reflex at specific 
cells located within the NTS [115]. These neurons are activated by HDA-NTS direct excitatory 

connections and are also the main targets of excitatory inputs from the lPB [56]. Glutamate 

seems to activate these excitatory inputs. The inhibition of the activation of these lPB projections 

with kynurenic acid leads to the abolishment of tachypnea evoked on HDA stimulation [116].

According to these observations, the cardiovascular component of the response to HDA stimu-

lation seems to be modulated by glutamatergic neurons located in both the lPB and the mPB, 

whereas the respiratory component seems to be only mediated by glutamate receptors of the 

mPB. Moreover, different subnuclei within the lPB are involved in this cardiorespiratory mod-

ulation, which includes the crescent, ventral, central and external subnuclei. It is interesting to 

note that microinjections into the internal subnucleus of the lPB have no effects on this cardio-

respiratory response. This result is an indication of the specificity and complexity of this region. 
Nearby areas, separated only by microns, such as the external and internal subnuclei of the lPB, 

show very different effects in the cardiorespiratory response to HDA stimulation. In contrast, 
all mPB microinjections, including external mPB, have an effect. These results give us clear evi-
dence that glutamatergic neurons of the PBc are essential intermediaries for the modulation of 

the descending pathways for cardiovascular sympathetic and respiratory control mechanisms 

[116]. The impact of these projections on overall cardiorespiratory function is highly dependent 

on convergent inputs from specific subnuclei of the lPB region and from alternate pathways 
outside the PBc. Direct projections to the RVLM are also involved in HDA-evoked changes in 

arterial pressure [128–130], thus supporting those changes in heart rate and blood pressure 

evoked from “defense” regions of the brain that may travel via separate pathways [51].

3. Ventrolateral pons in cardiorespiratory hypothalamic defense 

responses: role of the A5 region

As previously mentioned, there are data suggesting the functional connections between the 

HDA and the A5 region. Fos protein expression studies, neuronal recording and neurophar-

macological experiments confirm this hypothesis [23, 65, 104].
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Some studies in rats have used HDA electrical stimulation to map methodically populations 

of neurons within the brainstem and other areas, which are excitated by changes in arterial 

blood pressure [134, 135]. In the A5 region, blood pressure changes cause a specific and con-

sistent pattern of c-Fos expression.

A c-Fos-ir expression is induced during HDA stimulation in both A5 noncatecholaminergic 

(TH-negative) and A5 catecholaminergic (TH-positive) cells of the pons [136]. This increase in 

c-Fos expression is higher in noncatecholaminergic than in catecholaminergic neurons [136]. 

In addition, in both populations of neurons of the A5 region, this activation seems probably to 

be due to a direct activation from the HDA and not due to a secondary activation to the pres-

sure response elicited during stimulation of the HDA.

This result is further confirmed with neuronal recordings. It is described as the possible 
role of A5 neurons in respiratory modulation [65, 93]. Moreover, there are electrophysi-

ological evidences of interactions between HDA and A5 catecholaminergic neurons. The 

importance of the connections between both regions is confirmed with the observation that 
a significant number of these A5 neurons are activated from HDA stimulation [136]. In the 

same way as with PBc, antidromic and orthodromic activation are observed in A5 neurons. 

Cells that are antidromically activated are spontaneously active, while cells orthodromi-

cally activated are silent, indicating the origin of the somata (Figure 6). After clonidine, A5 

cells are active and decrease their frequency of discharge while, in all cases, hypothalamic 

fibers are silent [136]. The presence of activations or facilitations indicates the existence of 

polysynaptic pathways acting on the A5 region. The complexity of the different types of 
synaptic connections is illustrated by the association of these activations with inhibitions 

or disfacilitations.

On the other hand, as previously mentioned, the stimulation of cell bodies located within the 

A5 region resembles the cardiovascular response elicited by HDA electrical stimulation, thus 

eliciting an increase in heart rate and blood pressure [104] and suggesting the possible inter-

action between both cardiorespiratory regions. In order to evaluate this possible modulation, 

microinjection of muscimol also has been made into the A5 region [136].

Muscimol microinjection within the A5 region does not produce changes in the respira-

tory response to HDA electrical stimulation; however, a clear decrease is observed in the 

cardiovascular response (Figure 7). The increase in heart rate and the hypertension evoked 

to HDA activation involve a direct excitation of neurons located in the RVLM, which send 

direct projections to the preganglionic neurons of the IML that are responsible for the acute 

pressor response [137]. Also, the release of adrenaline by a direct activation of the adrenal 

medulla provides a secondary increase of blood pressure contributing to the hypertensive 

response.

Indirect forebrain projections can also modulate the activity of the RVLM. Furthermore, 

HDA stimulation activates the chemoreceptor reflex by means of the excitation or facilita-

tion of chemoreceptor neurons located in the NTS, in a parallel circuit to the activation of 

the RVLM and the preganglionic neurons in the IML [38]. An inhibition of the baroreceptor 
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response is also produced, in another parallel pathway, by the inhibition or disfacilitation of 

baroreceptor neurons located within the NTS [42, 58], inhibition that seems to be mediated 

through GABAergic interneurons in the NTS [42].

In conscious rats, stress produces tachycardia and hypertension together with a resetting, 
rather than an inhibition, of the baroreceptor reflex. Thus, heart rate control is reset to higher 
levels of blood pressure without decrease in the gain of the reflex [54, 138].

The activation of A5 somata with glutamate also produces tachycardia and hypertension 

[104]. The increase in heart rate, blood pressure and sympathetic vasomotor activity at the 

same time indicates a baroreceptor reflex reset but without reduction in sensitivity of the 
reflex.

Figure 6. HDA and A5 neurophysiological interactions. Extracellular recordings (superimposed sweeps) of four putative 

cells recorded form the A5 region. (A) Silent neuron (upper trace) with constant latency responses to the HDA (lower 

trace). The cell was demonstrated to be orthodromically activated from the HDA. (B) Spontaneously active cell (upper 

trace) excitated with short and long latency responses from HDA stimulation (lower trace). (C) Spontaneously active 

cell (upper trace) inhibited from HDA stimulation (lower trace). (D) Recording of respiratory flow, pleural pressure, 
neuronal activity and blood pressure of a putative respiratory-modulated A5 cell with respiratory flow (ml/s, inspiration 
downwards) and HDA-triggered histograms (lower trace). This respiratory putative A5 neuron shows no modulation 

from the HDA. Authors´ figure from Ref. [136].
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The inhibition of A5 neurons with muscimol microinjections attenuates the cardiovascular 
response elicited by the stimulation of the HDA (Figure 7) [136]. This attenuation can be an 
 indication of an incomplete resetting of the baroreceptor reflex. This effect can explain the 
decrease in the magnitude of the tachycardia and the hypertension, through an indirect path-

way. But the most relevant aspect of this response is probably the inhibition of the excitatory 

projections from the A5 region to the IML. These findings suggest that an indirect pathway 
through the A5 region could also mediate the resetting of the baroreceptor reflex evoked by 
HDA stimulation. The activity of neurons of the A5 region modulates the intensity of the 

cardiovascular response evoked on HDA stimulation through an indirect pathway to both 

the IML and the NTS.

In summary, the A5 region seems to be an important component of those brainstem pathways 

known to be involved in mediating autonomic changes associated with the defense response 

elicited from the PeF and the DMH. This response involves also the integrity of the circuits 

located within the PBc. It is not possible to separate the activity of the PBc and the A5 region; 

thus, dorso- and ventrolateral pons act together to mediate the cardiorespiratory response 

evoked on HDA stimulation.
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Figure 7. Neuropharmacological interactions between HDA and A5 region. Instantaneous respiratory rate (upper trace, 

rpm), respiratory flow (ml/s), pleural pressure (cm H
2
O), instantaneous heart rate (bpm) and blood pressure (mmHg) 

showing the cardiorespiratory response evoked on HDA stimulation before (left) and after (right) the microinjection of 

muscimol in the A5 region. Authors´ figure from Ref. [136].
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