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Abstract

Multi-core fibers (MCFs) have sparked a new paradigm in optical communications, as
they can significantly increase the Shannon capacity of optical networks based on single-
core fibers. In addition, MCFs constitute a useful platform for testing different physical
phenomena, such as quantum or relativistic effects, as well as to develop interesting
applications in various fields, such as biological and medical imaging. Motivated by the
potential applications of these new fibers, we will perform a detailed review of the MCF
technology including a theoretical analysis of the main physical impairments and new
dispersive effects of these fibers, and we will discuss their emerging applications and
opportunities in different branches of science.

Keywords: multi-core fiber, inter-core crosstalk, birefringent effects, intermodal
dispersion, microwave photonics, optical sensors, medical imaging

1. Introduction

Data traffic demand in access and backbone networks has been increased exponentially in the

last three decades [1, 2]. Remarkably, in the last decade, the development of streaming trans-

missions and cloud computing has accelerated this growth [3]. Nowadays, in spite of the fact

that this data traffic demand is easily covered by wavelength-division multiplexed (WDM)

systems based on single-mode single-core fibers (SM-SCFs),1 recent works show that the WDM

systems are rapidly approaching their Shannon capacity limit [4].

Aimed to overcome the Shannon capacity limit of WDM networks using SM-SCFs, space-

division multiplexing (SDM) has been extensively investigated in recent years [5–7].

1

SM-SCFs are also termed in the literature as single-mode fibers (SMFs).
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Remarkably, the SDM concept within the context of optical communications was proposed for

the first time in the decade of 1980 [8–10]. Unfortunately, the technology underneath SDM was

immature and extremely expensive. Nevertheless, the fabrication methods of the SDM fibers

and optical devices have been extensively developed in the last decade reducing their

manufacturing cost [11]. In this scenario, new types of optical fibers based on the SDM concept

have been proposed [5–12]: fiber bundle based on SM-SCFs, multi-mode single-core fibers

(MM-SCFs),2 single/multi-mode multi-core fibers (SM/MM-MCFs) and photonic crystal fibers.

In contrast with the other aforementioned SDM fibers, MCFs allow us to increase the channel

capacity limit of SM-SCFs by exploiting the six signal dimensions (time, wavelength, ampli-

tude, phase, polarization and space) through spatial multi-dimensional modulation formats

and digital signal processing at the receiver [13–15]. Interestingly, SCFs have also been used as

an experimental platform for testing different phenomena related to diverse branches of

physics, such as fluid dynamics, quantum mechanics, general relativity and condensed matter

physics, as well as to develop applications in other fields [16–23]. Along this line, MCFs are

potential laboratories that could extend the possibilities offered by SCFs. As an example,

disordered MCFs exhibiting transverse Anderson localization have been proposed with poten-

tial applications in biological and medical imaging [22].

Inspired by the potential applications of these new fibers, we perform a detailed review of the

MCF technology including a theoretical analysis of the main physical impairments and new

dispersive effects of these fibers, and we discuss their applications and opportunities in differ-

ent branches of physics, engineering and medicine. The chapter is organized as follows. In

Section II, the different MCF types are revisited. In Section III, we include some fundamental

aspects of light propagation in the linear and nonlinear fiber regime. Specifically, we focus on

the theoretical description of the physical impairments observed in these fibers in the single-

mode regime: the linear and nonlinear inter-core crosstalk, the intra- and inter-core birefrin-

gent effects, the intermodal dispersion and higher-order coupling and nonlinear effects. In

Section IV we discuss the main applications and opportunities of MCFs in photonics, medicine

and experimental physics. Finally, in Section V the main conclusions of the chapter and the

open research lines in the topic are highlighted.

2. Multi-core fiber types and fabrication

MCF designs can be classified in different categories attending to diverse fiber parameters and

characteristics. Table 1 shows the usual MCF designs employed for SDM transmissions and

MCF laser and sensing applications:

1. The refractive index profile of each core allows us to differentiate between step-index

(SI-MCF) and gradual-index MCFs (GI-MCF). In the former case, the refractive index

profile of all cores has a step between two constant values in the core and cladding

interface. However, in the latter case, a MCF is referred to as GI-MCF if at least one core

2

MM-SCFs are also referred to as multi-mode fibers (MMFs).
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has a continuous refractive index profile. Along this line, we can make a distinction with a

third type of MCF: a trench- or hole-assisted MCF (TA-MCF or HA-MCF). In general, a

TA- and HA-MCF present a multi-step refractive index profile in the cladding to reduce

the mode-coupling (inter-core crosstalk) between the linearly polarized (LP) modes of

adjacent cores [7, 11, 12, 24]. Specifically, in a HA-MCF an additional step is included in

the cladding by performing holes around the cores [7].

MCF

classification

Type 1 Type 2 Figure/comments

Refractive index

profile

Step-index

SI-MCF

Gradual-index

GI-MCF

Modal regime Single-mode

SM-MCF

Multi-mode

MM-MCF

Spatial

homogeneity

Homogeneous cores

HO-MCF

Heterogeneous cores

HE-MCF

Core-to-core

distance (dab)

Uncoupled cores (dab ≥ 7�R0)

UC-MCF

Coupled cores (dab < 7�R0)

CC-MCF

Intrinsic linear

birefringence

Lowly birefringent cores

LB-MCF

Highly birefringent cores

HB-MCF

Others (1) Trench-assisted MCF (TA-MCF), (2) Hole-assisted MCF (HA-MCF), (3) MCF with coupled and

uncoupled cores, (4) Dispersion-shifted MCF (DS-MCF), (5) MCF Bragg gratings, (6) Hexagonal

shaped

cores…

Table 1. Classification of multi-core fiber types.
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2. A single-mode MCF (SM-MCF) supports only the LP01 mode in each core. In contrast, if a

given core guides several LP modes, the fiber is known as a multi-mode MCF (MM-MCF).

Moreover, a MCF supporting only the first three or four LP mode groups (LP01, LP11, LP21,

LP02) is usually termed as a few-mode MCF (FM-MCF) [7].

3. Attending to the spatial homogeneity of the MCF structure, we can make a distinction

between a homogeneous MCF (HO-MCF) or a heterogeneous MCF (HE-MCF). In the

former case, all cores present the same refractive index profile, and in the latter case, the

MCF comprises at least one core with a different refractive index profile3.

4. The core-to-core distance (or core pitch) is the main fiber parameter which determinates

the inter-core crosstalk level among the LP modes of each core. Usually, if the core pitch

between two homogeneous cores a and b (dab) is lower than seven times4 the core radius

R0, the LP modes of the cores are found to be degenerated and the MCF supports

supermodes [25]. In such a case, the MCF is referred to as a coupled-core MCF (CC-

MCF). On the contrary, if the LP modes of the cores a and b are non-degenerated, the

supermodes cannot be generated and each core is considered as an individual light path.

This fiber design is termed as uncoupled-core MCF (UC-MCF). Recent works have

reported a mixed design using coupled and uncoupled cores [26, 27].

5. If the intrinsic linear birefringence of each core Δn = |nx � ny| is lower than 10�7, the MCF

is referred to as lowly birefringent MCF (LB-MCF). Nonetheless, if a given core has a

Δn > 10�7 the MCF is known as a highly birefringent MCF (HB-MCF). In general, a HB-

MCF comprises elliptical or panda cores for polarization-maintaining applications [28, 29].

6. Other designs of MCFs involve: dispersion-shifted cores (DS-MCFs) [30], selective-

inscribed Bragg gratings [31] and hexagonal shaped cores [32].

Once the MCF cross-section design is established, the specific MCF fabrication method is of

key importance for the final optical transmission characteristics. MCF fabrication processes

have been refined and optimized in the last years with an intensive research work [5, 7, 33–37].

In this scenario, the main technological challenge in the design and fabrication of uncoupled

MCFs is to minimize the crosstalk providing the maximum core isolation. Usually, the design

work is performed numerically using commercial simulation packages. The simulation analy-

sis targets to determine the cross-section modal distribution, the spectral power density of the

LP modes, the associated power losses and the resulting inter-core crosstalk.

MCF fabrication can be addressed by microstructured stack-and-draw technology [36], a

flexible technology which allows us to fabricate very different fibers on the same machinery.

Unfortunately, MCF manufacturing is a complex process with nonlinear results on the process

parameters. In particular, some rods or capillaries configurations may be technically difficult

to draw into the designed form, which results in a MCF with higher crosstalk levels than in the

3

Two cores a and b have a different refractive index profile if na(ra) 6¼ nb(rb), where ra(b) is the local radial coordinate of each

core. Hence, two step-index cores have a different refractive index profile if na(ra = 0) 6¼ nb(rb = 0).
4

The condition dab < 7R0 is only an approximation in the third transmission window and in single-mode regime of each

core, with R0 ~ 4 μm. In general, the criteria to achieve the supermode regime in the MCF structure depend on additional

fiber parameters such as the refractive index profile and the wavelength of the optical carrier.
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original design. In this scenario, it is necessary to investigate the linear and nonlinear MCF

propagation taking into account not only the MCF manufacturing imperfections, but also

additional external fiber perturbations (see below). This would be of great benefit for investi-

gating multi-dimensional modulation formats, spatial encoding techniques and sharing of

receiver resources in MCF systems [38–41].

3. Linear and nonlinear propagation in real MCFs

In general, the electromagnetic analysis of a MCF should be performed by solving the macro-

scopic Maxwell equations (MMEs) in each dielectric region of the fiber (cores + cladding) and

applying the boundary conditions between the cores-cladding interfaces. However, the calcu-

lation of the exact MCF eigenmodes from the MMEs presents a high degree of complexity, and

usually, they should be calculated numerically. Therefore, in order to analyze theoretically the

electromagnetic phenomena in MCF media, the perturbation theory is usually employed.

Figure 1 shows a flowchart of this approach.

The goal is to derive a set of coupled equations from the MMEs in terms of the complex

envelopes of the electric field strength in each core performing the next steps:

1. First, we should propose the ansatz of the global electric field strength (E) of the MCF

structure following the assumption of the classical perturbation theory [42]: the exact

electric field strength is approximated by a linear combination of the mi polarized core

modes5 considering isolated cores, that is, assuming that the geometry of each core m is

not perturbed by the presence of adjacent cores [E ≈ ∑Emi]. At the same time, we should

decouple the rapid- and the slowly varying temporal and longitudinal changes of Emi. The

Figure 1. Flowchart of the perturbation theory in MCF media to derive the coupled equations from the macroscopic

Maxwell equations.

5

The polarized core mode mi refers to the LP01,mi mode associated with core m and polarization axis i.

Multi-Core Optical Fibers: Theory, Applications and Opportunities
http://dx.doi.org/10.5772/intechopen.72458

67



rapidly varying temporal changes are decoupled by using the slowly varying complex

amplitude approximation with Emi(r,t) ≈ f(Emi,ω0(r,t)), where Emi,ω0 is the complex ampli-

tude and ω0 is the angular frequency of the optical carrier6. In a similar way, the rapidly

varying longitudinal variations are decoupled by writing Emi,ω0 as a function of the

complex envelopes Ami(z,t), that is, Emi,ω0(r,t) ≈ f(Ami(z,t)). Although ɛmi is written assum-

ing isolated conditions, the complex envelopes should be assumed longitudinal depen-

dent to describe not only the usual longitudinal distortion7 of the optical pulses in SM-

SCFs, but also the longitudinal fluctuations induced by the mode-coupling. Moreover,

Emi,ω0 also involves fundamental information such as the ideal propagation constant

(�jβmi), the transversal eigenfunction (Fmi) and the MCF perturbations [bending, twisting

and additional fiber birefringent fluctuations modeled by the longitudinal and temporal

dependent phase function βmi
B + S(z,t)]8.

2. Each polarized core mode Emi is written by assuming isolated conditions of each core.

Therefore, the transversal eigenfunction Fmi and the ideal phase constant βmi can be

expressed as indicated in [44] for the LP01 mode of a single-core fiber. Moreover, taking

into account that the nonlinear effects are not included in the modal solution of [44] and in

the MCF perturbations βmi
B + S, thus the eigenfunction Fmi�exp (�j(βmi + βmi

B + S)z) should

satisfy the linear wave equation in each core and polarization in δz ~ λ0, where λ0 is the

maximum value of the wavelength of the optical carrier in the multi-dielectric medium9.

3. In the third step, the wave equation of the MCF should be derived for the complex

amplitudes Emi,ω0 from the MMEs by taking into account the cross- and nonlinear polar-

ization.

4. Finally, using the results of the first and second step in the MCF wave equation, we finally

derive the coupled equations of the complex envelopes by assuming the slowly varying

complex envelope approximation (SVEA), that is, δzAmi << |Ami| in δz ~ λ0 and δtAmi < <

|Ami| in δt ~ 2π/ω0. More specifically10:

∂
2
Ami

∂z2

�

�

�

�

�

�

�

�

≪ k0
∂Ami

∂z

�

�

�

�

�

�

�

�

≪ k20 Amij j;
∂
2
Ami

∂t2

�

�

�

�

�

�

�

�

≪ω0
∂Ami

∂t

�

�

�

�

�

�

�

�

≪ω2
0 Amij j, (1)

where k0 = 2π/λ0. Thus, we can approximate ∂z
2
Ami ≈ 0.

In the following subsections, we will review the new physical impairments observed in SM-

MCFs using the aforementioned perturbation theory. First, we will describe the inter-core

6

In general, we cannot consider a single-optical carrier in SDM-WDM systems using SM-MCFs. However, the interchannel

nonlinearities should only be taken into account for optical pulses higher than 50 ps [43]. Therefore, the assumption of a

single-optical carrier allows us to investigate the major physical impairments in SM-MCFs.
7

Chromatic dispersion, polarization-mode dispersion and additional distortions induced by the intra-core nonlinear

effects.
8

In Section 3.1, we will be more specific with the description of the MCF perturbations.
9

The symbol λ0 is commonly used in the literature to describe the wavelength of the optical carrier at the vacuum. The

context should avoid any confusion.
10

Note that δzAmi and δtAmi are defined as δzAmi:= |Ami(z,t) � Ami(z + δz,t)| and δtAmi:= |Ami(z,t) � Ami(z,t + δt)|.
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crosstalk among cores when assuming a single polarization. Second, we will discuss the intra-

and inter-core birefringent effects by including two polarizations per core. Later, we will

analyze the intermodal dispersion and its impact on Gaussian pulses and optical solitons.

And finally, higher-order coupling and nonlinear effects will be investigated when propagat-

ing optical pulses in the femtosecond regime.

3.1. Inter-core crosstalk

In multi-dielectric media, we can observe mode-coupling among adjacent dielectric regions.

The continuity of the electromagnetic field in such media is the physical origin of the mode-

coupling, referred to as the inter-core crosstalk (IC-XT) in MCFs.

The IC-XT behavior is induced by the longitudinal and temporal deterministic and random

MCF perturbations. The longitudinal perturbations include the macrobending, microbending,

fiber twisting and the intrinsic manufacturing imperfections of the fiber. The temporal pertur-

bations are induced by external environmental factors, such as temperature variations and

floor vibrations modifying the propagation constant of each polarized core mode, the bending

radius and the twist rate of the optical medium. In spite of the fact that the deterministic nature

of the intrinsic manufacturing imperfections, the remaining perturbations present a random

nature, and therefore, the IC-XTwill have a stochastic evolution in the time and space domain

[33, 45–50].

Figure 2 shows the temporal evolution of the IC-XT measured during 26 hours in a homoge-

neous 4-core MCF [Fibercore SM-4C1500(8.0/125)] between two adjacent cores in the linear

and nonlinear regimes (power launch levels of 0 and 17 dBm, respectively). Although the

bending radius and the twist rate present a constant value in the experimental set-up (see [49]

for more details), the slight longitudinal and temporal local variations of both fiber parameters

induce a longitudinal and temporal random evolution of the IC-XT in both power regimes. In

addition, in the nonlinear regime, the Kerr effect is stimulated in the illuminated core 3

reducing the index-matching between the measured cores 1 and 3. In this scenario, the homo-

geneous cores 1 and 3 become heterogeneous when high power launch levels are injected in a

Figure 2. Measured temporal profile of the linear and nonlinear IC-XT between adjacent cores in a homogeneous 4-core

MCF (results based on [49]).
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given core. As a result, the MCF can be modeled in the nonlinear regime as an asymmetric

optical coupler with random behavior, and consequently, the IC-XT mean and variance is

reduced.

From these results, we conclude that the IC-XT has a random nature in both linear and

nonlinear power regimes. Hence, at this point it is natural to ask how the probability distribu-

tion is. In a first investigation of this impairment, the answer can be easily found from the

perturbation theory by assuming several initial simplifications: two cores a and b, a single

polarization x and monochromatic electric fields. The last two approximations allow us to

reduce the mathematical discussion of the IC-XT. In the next sections, these approximations

will be revisited. Therefore, following a similar and simple approach as in the first works of the

IC-XT [33, 45–50], the global electric field strength of the weakly guiding MCF (only two cores

a and b and a single polarization x) is expressed as:

E r; tð Þ ≈
X

m¼a, b
Em r; tð Þx̂ ≈

X

m¼a, b
Re Em,ω0

rð Þexp jω0tð Þ
� �

x̂

¼
X

m¼a, b
Re Am zð ÞFm x; y;ω0ð Þexp �jβm ω0ð Þz

� �

exp jω0tð Þ
� �

x̂,
(2)

where Am is the complex envelope11 of the continuous wave in the core m = a,b satisfying

the SVEA; Fm is the transversal eigenfunction of the LP01 mode in the core m; and βm is the

phase constant at the angular frequency ω0 of the optical carrier. Note that the eigenmodes are

written in Eq. (2) assuming isolated cores. Nonetheless, as mentioned before, Am should be

assumed z-dependent to model the longitudinal variations induced by the IC-XT in the core

modes. Moreover, it can be noted that the MCF perturbations have been omitted in our ansatz

(first step of Figure 1). In these previous works [33, 45–50], the MCF perturbations will be

inserted heuristically12 in the fourth step with fortunate final results. Now, using Eq. (2) in the

MMEs and following the steps detailed in Figure 1 omitting the MCF perturbations, we obtain

the coupled equations of the classical coupled-mode theory (CMT) of an asymmetric and

nonlinear optical coupler:

j
dAa zð Þ

dz
¼ kabexp �jΔβbaz

� �

Ab zð Þ þ q1a Aa zð Þj j2Aa zð Þ, (3)

and a similar expression is found for dAb(z)/dz. In Eq. (3), kab is the linear coupling coefficient,

q1a is the self-coupling nonlinear coefficient and Δβba:= βb(ω0)�βa(ω0). In general, additional

linear and nonlinear coupling coefficients appear in Eq. (3) [50]. However, considering that the

core pitch is usually higher than four times de core radius in CC- and UC-MCFs, these

11

Note that in Eq. (2) we have employed a different function for the complex envelope as in Eq. (1). We will use A(z,t) to

describe the complex envelope in the non-monochromatic regime (optical pulses) and A(z) in the monochromatic regime

(continuous waves). Both functions are related as indicated in Section 3.3.
12

This strategy is mathematically questionable. Note that the propagation constants are assumed invariant in the ansatz

[Eq. (2)], but once we derive the coupled equations, we will assume that the MCF perturbations modify the propagation

constants. Although the final estimation of the IC-XT is in line with the experimental results in [47-51], in Section 3.2 we

will solve this mathematical inconsistence.
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coupling coefficients can be neglected [50]. The predominant coupling coefficients describe the

linear and nonlinear mode-coupling: kab models the linear mode overlapping between the

transversal eigenfunctions Fa and Fb, and q1a allows us to investigate the self-coupling effect in

the nonlinear regime (analog to the self-phase modulation which can be observed when

propagating optical pulses in a single-core fiber). At this point, the MCF perturbations can be

described by modifying heuristically the exponential term in Eq. (3) as follows:

exp �jΔβbaz
� �

! exp �jΔfba zð Þð Þ ¼ exp �j

ð

z

0

Δβ
eqð Þ

ba τð Þdτ

0

@

1

A, (4)

with Δβba
(eq)(z) = Δβba + Δβba

(B + S)(z), where Δβba
(B + S) describes the phase fluctuation induced

by the MCF perturbations. As can be seen, the temporal fluctuations of the propagation

constants are also omitted in Eq. (4) to simplify the first analysis of the IC-XT. The temporal

fluctuations of the crosstalk will be discussed later. Hence, the coupled-mode equation in a real

MCF is finally found as:

j
dAa zð Þ

dz
¼ kabexp �jΔfba zð Þð ÞAb zð Þ þ q1a Aa zð Þj j2Aa zð Þ: (5)

Remarkably, the revisited CMT constitutes a fundamental tool to estimate numerically the

IC-XT in SM-MCFs using the Monte Carlo method [50]. The numerical calculation can also be

performed in HA- and TA-MCFs by using Eq. (5) along with the corresponding closed-form

expression of the linear coupling coefficient kab detailed in [51]. Furthermore, the revisited

CMT allows us to derive the closed-form expressions of the IC-XT cumulative distribution

function (cdf), probability density function (pdf), mean and variance in the linear and

nonlinear regimes. Although the details of the mathematical discussion can be found in [33]

for the linear regime and in [50] for the nonlinear regime, let us summarize the main results of

these works.

The starting point is to consider a constant or quasi-constant bending and twisting conditions,

i.e. their average value much higher than their longitudinal random fluctuations. In such a

case, the phase-mismatching function of Eq. (4) can be expressed as [52]:

Δfba zð Þ ≈Δβbaz�
βadab

2πf T zð ÞRB zð Þ
sin 2πf T zð Þz

� �

, (6)

where RB(z) and fT(z) are the bending radius and the twist rate along the MCF length, respec-

tively13. The previous expression is the same as Eq. (2) of [52], but assuming to be null the

offset of the twist angle of the core a at z = 0. It should be noted that the power exchanged between

the cores a and b is maximized at the z-points where phase-mismatching function becomes null.

These points are referred to as the phase-matching points (denoted as NL and NNL in the linear

13

Eq. (6) is valid if and only if we can assume that RB > > δRB and fT > > δfT along the MCF length. In other case, Eq. (4) must

be solved numerically using the refractive index model of [33].
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and nonlinear regime, respectively). In general, in homogeneous SM-MCFs NL(NL) 6¼ 0, but in

the heterogeneous case, the phase-matching points can only be observed for a bending radius

with an average value14 RB lower than the threshold Rpk (phase-matching region15) [33]:

RB < Rpk ¼ dabβa= Δβba
�

�

�

�: (7)

In the phase-matching region, we can use a first-order solution of Eq. (5) to perform the

statistical analysis of the IC-XT [33, 50]. Table 2 shows the analytical expressions of the linear

and nonlinear IC-XT distribution and its statistical parameters derived from the CMT. As can

be seen, the measured IC-XT pdf fits correctly to a chi-squared distribution with 4 degrees of

freedom. In the linear regime, the mean, variance and NL are constant with the optical power

launch level (PL). However, in the nonlinear regime, the Kerr effect detunes the phase constant

of the core modes as PL increases in the excited core 3 and, therefore, the homogeneous MCF

becomes heterogeneous. As a result, the statistical IC-XT parameters are reduced with

PL > 2 dBm, the critical optical power in silica MCFs [49].

Furthermore, note that these statistical parameters can be estimated from the mean of the

linear crosstalk μL,ab. Hayashi, Koshiba and co-workers reported in [47, 48] the closed-form

expressions to estimate μL,ab in different MCF designs with different bending twisting condi-

tions. For small bending radius with RB < Rpk, μL,ab can be estimated using Eq. (27) of [48], and

for large bending radius with RB > Rpk, μL,ab can be estimated from Eq. (21)16 of [47]. In Table 2

we also include the evolution of μL,ab with the average value of the bending radius in a

heterogeneous SM-MCF [47]. In the phase-matching region, the mean of the linear IC-XT

increases with RB. However, in the phase-mismatching region, the mean of the linear IC-XT is

reduced when RB increases.

Finally, it should be noted that the statistical analysis previously described is only focused on

the random longitudinal evolution of the IC-XT along the MCF considering a single polariza-

tion and temporal invariant conditions of the optical medium17. Hence, the following natural

step is to consider temporal varying conditions of the dielectric medium and two polarizations

per core.

3.2. Birefringent effects

Now, let us assume a 2-core SM-MCF operating in the monochromatic regime as in the

previous section, but considering two polarizations per core and both longitudinal and time-

varying random perturbations. These initial assumptions will allow us to predict the different

14

In the following equations, we denote the average value of the bending radius and the twist rate without the usual

brackets < > to simplify the mathematical expressions, that is, RB(z) � RB + δRB(z) and fT(z) = fT + δfT(z).
15

Note that Rpk = ∞ when considering homogeneous cores.
16

In [48], Eq. (21) is given as a function of the correlation length of MCF structural fluctuations. The MCF structural

fluctuations are all the medium perturbations except the macrobends. Microbends, fiber twisting or floor vibrations are

specific examples of the MCF structural fluctuations.
17

That is, the electrical permittivity is assumed to be temporally invariant.
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IC-XT Equations Figure/Comments

Probability density

function (pdf) f X xð Þ ≈
16L2q21aP

2
Lx

3 þ 4x
� �

N2
NL Kabj j4

�

� exp �
L2q21aP

2
Lx

3 þ x

NNL Kabj j2=2

 !

u xð Þ

Mean μNL,ab ≈
μL,ab

1þbLPL

μL,ab ≈
2k2abRBL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

βadab
RB

� 	2
� Δβ2ba

r ; RB < Rpk

μL,ab ≈
2k2ablcL

1þ Δβbalc
� �2

; RB > Rpk

Variance
σ2NL,ab ≈

μ2
NL,ab
2 �

σ2
L,ab

1þbLPLð Þ2

Phase-matching points NNL ≈
μNL,ab
Kabj j2

� NL

1þbLPL

Table 2. Statistical distribution and parameters of the linear and nonlinear IC-XT. L is the MCF length, u is the Heaviside

step function, PL is the power launch level in the excited core b, Kab is the discrete coupling coefficient calculated from

Eq. (12) of [33], q1a is the nonlinear coupling coefficient, b is a constant which depends on additional MCF parameters [50]

[b = 0.5 in the Fibercore SM-4C1500(8.0/125)] and lc is the correlation length of the autocorrelation function of the MCF

structural fluctuations [47].
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crosstalk types between the polarized core modes (PCMs) in a SM-MCF: (i) the intra-core

crosstalk (iC-XT) which describes the mode-coupling between orthogonal polarizations in a

given core; (ii) the direct inter-core crosstalk (DIC-XT) modeling the mode coupling between

the same polarization axis in different cores; and (iii) the cross inter-core crosstalk (XIC-XT)

involving mode coupling between orthogonal polarizations in different cores.

As depicted in Figure 3, in a real MCF, each core m = a,b can be modeled as a series of

birefringent segments with a different time-varying retardation and random orientation of

the local principal axes. Therefore, the first-order electrical susceptibility tensor χij
(1)(r;t) will

have both spatial and temporal dependence. As a result, in each segment of a given core m, the

propagation constant of the polarized core modes (PCMs) LP01x and LP01y presents a different

value due to the mentioned slight changes of χij
(1), and therefore, the transversal function Fmi of

each PCM “mi” (i = x,y) is also found to be spatial and temporal dependent.

In order to model theoretically this scenario, the concept of local mode is included in the

perturbation theory. A local mode can be defined as an eigenfunction in a short core segment

where the equivalent phase constant βmi
(eq) and the transversal function Fmi are approximately

invariant. Hence, each core can be separated in different segments and local modes where the

longitudinal and temporal birefringence conditions are approximately constant. In this way, in

contrast with the previous section, now the MCF perturbations are considered from the ansatz

inserted in the Maxwell equations. Specifically, the ansatz of the global electric field strength of

the MCF structure is now written as [53]:

E r; tð Þ ≈
X

m¼a, b

X

i¼x, y
Emi r; tð Þûi ≈

X

m¼a, b

X

i¼x, y
Re Emi,ω0

r; tð Þexp jω0tð Þ
� �

ûi

¼
X

m¼a, b

X

i¼x, y
Re Ami z; tð ÞFmi x; y;ω0; z; tð Þexp �jΦmi z;ω0; tð Þð Þexp jω0tð Þ

� �

ûi,
(8)

where the semicolon symbol is used to separate explicitly longitudinal and temporal changes

induced by the slowly varying MCF perturbations. Thus, note that the complex amplitude

Emi,ω0 is only a phasor with temporal changes much lower than the temporal oscillation of the

optical carrier (T0 = 2π/ω0). The MCF perturbations and the optical attenuation are described

by the complex phase function Φmi defined as:

Figure 3. MCF comprising different birefringent segments in cores a and b with longitudinal and temporal varying

fluctuations in the first-order electrical permittivity tensor.
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Φmi z;ω0; tð Þ≔fmi z;ω0; tð Þ � j
1

2
α ω0ð Þz ¼

ð

z

0

β
eqð Þ

mi δ;ω0; tð Þdδ� j
1

2
α ω0ð Þz

¼ βmi ω0ð Þzþ

ð

z

0

β
BþSð Þ
mi δ;ω0; tð Þdδ� j

1

2
α ω0ð Þz,

(9)

with αmodeling the power attenuation coefficient of the MCF (assumed similar in each PCM),

and the real phase function fmi involving the ideal phase constant of the PCM and the

longitudinal and temporal MCF perturbations. Now, using Eq. (8) and performing the deriva-

tion of the perturbation theory as depicted in Figure 1, the following coupled local-mode

equation is found [53]:

j
∂

∂z
þ
α

2


 �

Aax z; tð Þ ¼ max,ay z; tð Þexp �jΔfay,ax z; tð Þ
� 	

Aay z; tð Þ

þ kax,bx z; tð Þexp �jΔfbx,ax z; tð Þ
� �

Abx z; tð Þ

þ qax z; tð Þ Aax z; tð Þj j2 þ gax z; tð Þ Aay z; tð Þ
�

�

�

�

2
� 	

Aax z; tð Þ

þ
1

2
gax z; tð Þexp �j2Δfay,ax z; tð Þ

� 	

A∗

ax z; tð ÞA2
ay z; tð Þ,

(10)

where max,ay, kax,bx, qax and gax are the coupling coefficients defined in [53]; and the phase-

mismatching functions are defined as Δfay,ax:= fay � fax, Δfbx,ax:= fbx � fax and Δfby,ax:=

fby � fax. From the above equation, the following considerations are in order:

• In contrast with the previous section, the longitudinal and temporal MCF perturbations

are nowmodeled, not only by the phase-mismatching functions Δf(z;t), but also by space-

and time-varying coupling coefficients18. This coupled local-mode theory (CLMT) inher-

ently incorporates these stochastic perturbations in both functions, as they were directly

included in the Maxwell equations using Eq. (8).

• The CLMT is completed by three additional coupled local-mode equations for the ay, bx

and by PCMs, which can be obtained just by exchanging the corresponding subindexes in

Eq. (10). The herein presented theory is a general model which can be applied to SM-

MCFs comprising: coupled or uncoupled cores, lowly or highly birefringent cores, trench-

assisted, hole-assisted, and with gradual-index or step-index profile. In SM-CC-MCFs

with a core pitch value (dab) lower than three times the maximum core radius (R0 = max

{R0a,R0b}), additional nonlinear terms modeling cross-coupling effects should be included

in Eq. (10). However, if we assume a MCF with dab > > 3R0, the self-coupling effect is the

predominant nonlinear coupling effect and the additional nonlinear terms can be

neglected [53].

18

Note that the explicit dependence with ω0 has been omitted in the phase-mismatching functions and in the coupling

coefficients for the sake of simplicity.
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• The monochromatic equivalent refractive index model (ERIM) reported in [53] must be

used to calculate numerically the coupling coefficients and the phase-mismatching func-

tions. Thanks to the CLMTand the ERIM, we will observe that the temporal birefringence

fluctuation of each core modifies the average value of the iC-, DIC- and XIC-XT.

First, in order to analyze the longitudinal MCF random perturbations induced by MCF bend-

ing and twisting, a Monte Carlo simulation was performed using the CLMT along with the

ERIM considering a 2-m SI-SM-HO-UC-LB-2CF with cores a and b comprising a single bire-

fringent segment with the same birefringence average value of <Δnaj> = <Δnbj> = 10�7 (see the

specific fiber parameters in [53]). The temporal birefringence fluctuation of the 2CF was

omitted in this simulation. The numerical results are shown in Figure 4, where we can observe

the behavior of the mean of the iC-XT ay-ax DIC-XT bx-ax and XIC-XT by-axwhen changing the

bending radius RB and fiber twisting conditions fT.

As it can be noticed from Figure 4(a), we cannot observe intra-core mode-coupling between

ax-ay with fT = 0 in 2 m of the MCF. Macrobending increases the phase-mismatching between

the PCMs ax and ay without inducing iC-XT due to the photo-elastic effect [54]. As a result,

significant XIC-XT cannot be observed for short MCF lengths when fT = 0, as in the case of

Figure 4(c). Nevertheless, an average level of DIC-XT between �100 and �50 dB can be noted

from Figure 4(b) in non-twisting conditions depending on the RB value. In addition, the higher

the twist rate and the bending radius, the higher the iC-, DIC- and XIC-XT mean due to the

reduction of the phase-mismatching between the different PCMs of the 2CF. Note that DIC- and

XIC-XT means are balanced when the iC-XT mean achieves the value of 0 dB in Figure 4(a).

Therefore, MCF twisting can be proposed as a potential strategy for birefringence management

to balance the inter-core crosstalk between the different PCMs for short MCF distances. For

MCF distances of several kilometers, the iC-XT mean will be increased and the difference

between the mean of the DIC- and XIC-XTwill be reduced.

In addition, experimental measurements were performed on a 4CF [Fibercore SM-4C1500

(8.0/125)] analyzing the temporal birefringence of the optical media and its impact on the mean

of the crosstalk between the PCMs of the cores 1 and 3. Figure 5 shows the temporal fluctua-

tion of the linear birefringence and the crosstalk mean behavior between the PCMs of cores 1

Figure 4. Numerical simulation of the crosstalk between PCMs varying the bending radius and the twist rate in a 2-m SI-

SM-HO-UC-LB-2CF: (a) iC-XT mean ay-ax, (b) DIC-XT mean bx-ax, and (c) XIC-XT mean by-ax.
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and 3 measured in different days and months19. As shown in Figure 5(a), cores 1 and 3 present

a different average value of the linear birefringence estimated to be <Δn1,j> = 4.9�10�7 and

<Δn3,j> = 1.2�10�6, respectively (j = 1,…,15). It can be noted that the average value of the linear

birefringence is found to be constant in each core the three different measured months. More-

over, although the average value of the linear birefringence is different in each core, the

temporal evolution of the linear birefringence presents a similar shape in both cores. As can

be seen from Figure 5(a) and (b), the higher the linear birefringence in a given core, the lower

the mean of the iC-XT. Furthermore, it should be noted that iC-XT in core 3 is lower than in

core 1 due to a higher index-mismatching between the orthogonal polarizations. Remarkably,

Figure 5. Experimental results of the temporal linear birefringence fluctuation over different days and months of a 150-m

4CF, and corresponding intra- and inter-core crosstalk mean between cores 1 and 3 (NL: nonlinear regime). (a) Linear

birefringence of the cores 1 and 3, (b) iC-XT and (c) DIC- and XIC-XT. Results based on [53].

19

As the linear birefringence of each core remains unchanged during more than 10 hours in the laboratory room, we

analyzed the temporal birefringence fluctuation in different days and months, with similar temperature conditions in the

laboratory.
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the iC-XT mean presents a lower temporal fluctuation in the more birefringent core (core 3),

which occurs when the average value of the birefringence is higher than the temporal random

birefringence fluctuation (~10�7). In addition, we can observe from Figure 5(c) that the tempo-

ral evolution of the XIC-XT mean presents the same behavior as the iC-XT mean, indicating

that XIC-XT depends directly on the iC-XT of both cores. As a result, DIC-XT is higher than

XIC-XTwhen iC-XT is lower than 0 dB in both cores. The nonlinear crosstalk between de PCMs

1y-1x, 3y-3x, 3x-1x and 3y-1x was also measured the 5th, 6th and 15th days with a power

launch level of 6 dBm. The DIC- and XIC-XT mean is reduced around 1 dB keeping constant

the difference between both inter-core crosstalk types as a direct consequence of the constant

behavior of the iC-XT mean in nonlinear regime. Finally, note that the experimental measure-

ments of Figure 5 fit correctly with the CLMTwhen using the simulation parameters detailed

in [53].

Additional numerical calculations of the CLMT can be found in [53] involving both LB and HB

cores. Interesting, it is worth mentioning that the CLMT and the ERIM can be used to design

HB-MCFs with random orientation of the principal axes between adjacent cores to reduce the

mode-coupling between their PCMs. The concept is similar to the crosstalk behavior which can

be found in disordered MCFs exhibiting transverse Anderson localization [21]. Along this line,

a TA- and HA-cladding can also be considered in these fibers to obtain low DIC- and XIC-XT

levels. In all these scenarios, the CLMT can be used in the design work, with a lower compu-

tational time than numerical simulations based on FDTD (Finite-Difference Time Domain)

calculations.

The temporal fluctuation of the crosstalk has also been investigated in [55], but considering a

single polarization per core and inserting heuristically the MCF perturbations in the exponen-

tial terms of the CMT, in line with the initial crosstalk works [33, 45–50]. Specifically, in ref.

[55], the crosstalk transfer function has been discussed at the MCF output considering small

modulated signals, i.e. non-monochromatic electric fields. However, the comprehension of the

MCF propagation and the IC-XT in the non-monochromatic regime is not as straightforward

as initially foreseen. Hence, at this point, let us discuss the non-monochromatic regime with a

similar rigorous formalism as in [53] for the monochromatic case.

3.3. Intermodal dispersion and higher-order coupling and nonlinear effects

The theoretical study of the non-monochromatic regime will allow us to describe the propaga-

tion of optical pulses through a MCF. Focusing our efforts on SM-MCFs, additional physical

impairments should be included in Eq. (10), such as the group-velocity dispersion (GVD),

polarization-mode dispersion (PMD), intermodal dispersion and additional nonlinear effects.

Moreover, if we also consider the propagation of ultra-short optical pulses in the femtosecond

regime, the analysis of higher-order coupling and nonlinear effects should also be incorporated

to the coupled equations.

Although in the picosecond regime MCF propagation models have been proposed in [56, 57]

including polarization effects and the random longitudinal fiber perturbations (but omitting

the temporal fluctuations), in the femtosecond regime, existing MCF propagation models

exclude polarization effects and omit both temporal and longitudinal random perturbations
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of the fiber [58–60]. In order to include these realistic fiber conditions in the mathematical

description of the propagation of femtosecond optical pulses through a MCF, a theoretical

model is proposed in [61] based on the concept of local modes. As can be seen later, the

intermodal dispersion induced by the MCF random perturbations can become one of the

major physical impairment in the single-mode regime of the fiber. Specifically, the intermodal

dispersion, also referred to as the mode-coupling dispersion (MCD) in this work, is induced in

the femtosecond regime not only by the mismatching between the propagation constants of

the PCMs, but also by the frequency dependence of their mode overlapping.

Our initial goal is to revisit the CLMT of the previous section but now assuming non-

monochromatic fields. In such a case, the ansatz of the global electric field strength of a SM-

MCF should be written as:

E r; tð Þ ≈
X

m¼a, b

X

i¼x, y
Emi r; tð Þûi ≈

X

m¼a, b

X

i¼x, y
Re Emi,ω0

r; tð Þexp jω0tð Þ
� �

ûi, (11)

where the complex amplitude Emi,ω0 is now a bandpass signal with the slowly varying tempo-

ral changes of the electric field strength, given by the expression:

Emi,ω0
r; tð Þ ¼

1

2π

ð

~Ami z;ω� ω0; tð ÞFmi x; y;ω; z; tð Þ�

� exp �jΦmi z;ω; tð Þ½ �exp j ω� ω0ð Þt½ �dω:

(12)

The functions involved in the previous equations are the same as in Eq. (8), but now expressed

in the frequency domain. Nevertheless, a fundamental remark of the complex envelope should

be taken into account at this point. As previously discussed in Figure 1, the slowly varying

longitudinal changes should also be decoupled from the rapidly varying longitudinal fluctua-

tions via the complex envelope. However, in Eq. (12) the rapidly and slowly varying longitu-

dinal changes are coupled in the first exponential term via the function fmi(z,ω;t). Therefore, in

order to decouple them and model the analytic function of the optical pulses, the complex

envelope should be rewritten as:

~Ami z;ω� ω0; tð Þ ¼ ~Ami z;ω� ω0; tð Þexp �j fmi z;ω; tð Þ � fmi z;ω0; tð Þð Þ½ �: (13)

Once we have written our ansatz of the global electric field strength, the following step is to

propose the wave equation of the PCMs (second step) and the wave equation of the MCF (third

step). In particular, in the third step, we will able to incorporate the higher-order nonlinear

effects via the constitutive relation between the global electric field strength and the nonlinear

polarization. Note that in the femtosecond regime, the aforementioned constitutive relation

should include the delay response of the electronic and nuclei structure of silica atoms [62]. For

optical frequencies well below the electronic transitions, the electronic contribution to the

nonlinear polarization can be considered instantaneous. However, since nucleons (protons

and neutrons) are considerably heavier than electrons, the nuclei motions have resonant

frequencies much lower than the electronic resonances and, consequently, they should be

retained in the constitutive relation as indicated in Eq. (S36) of [61]. Specifically, Raman
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scattering is a well-known effect arising from the nuclear contribution to the nonlinear polar-

ization. All in all, the coupled local-mode equations can be derived to describe the propagation

of ultra-short pulses in SM-MCFs. In particular, the coupled local-mode equation modeling the

propagation of the PCM ax is found to be [61]:

j
∂

∂z
þ bD

eqð Þ
ax þ

1

2
bα


 �
Aax z; tð Þ ¼ bM

eqð Þ
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:

(14)

where bD eqð Þ
ax is the equivalent dispersion operator in the PCM ax including the frequency

dependence of the MCF perturbations in the time domain; bα is the attenuation operator; the h

and u functions describe the isotropic and anisotropic Raman response, respectively; the f

function is f:= h + u; the phase-mismatching term Δf 0ð Þ
ay,ax z; tð Þ≔fay z;ω0; tð Þ � fax z;ω0; tð Þ

describes the phase-mismatching between the PCMs ax and ay at ω0; bM eqð Þ
ax,ay and bK eqð Þ

ax,mx are,

respectively, the equivalent intra- and inter-core mode-coupling dispersion operators between

the PCMs ax-ay and ax-mx; bq Ið Þ
ax and bg Ið Þ

ax,ay are the nonlinear mode-coupling dispersion opera-

tors associated with the instantaneous response of the nonlinear polarization and accounting

for the nonlinear mode overlapping between the PCMs ax-ax and ax-ay; and bq Rð Þ
ax and bg Rð Þ

ax,ay are

analogous to bq Ið Þ
ax and bg Ið Þ

ax,ay, but associated with the nonlinear polarization induced by the

delay response of the nuclei motion of silica atoms (Raman effect). A comprehensive descrip-

tion of the main parameters of the model can be found in [61].

It should be remarked that the linear operators of Eq. (14) are found to be longitudinal and

temporal dependent, instead of constant coupling coefficients and unperturbed propagation

constants. Thanks to these linear operators, Eq. (14) is able to describe accurately the linear and

nonlinear propagation of each PCM and the linear and nonlinear MCD including the longitu-

dinal and temporal MCF perturbations. Furthermore, it is worthy to note that the MCD is

induced in each birefringent segment by two different dispersive effects when propagating

femtosecond optical pulse through a MCF: (i) the frequency dependence of the local

mismatching between the phase functions fmi(z,ω;t) of the PCMs, referred to as the phase-

mismatching dispersion (PhMD); and (ii) the frequency dependence of the mode overlapping

between the PCMs, modeled by the coupling coefficients and referred to as the coupling

coefficient dispersion (CCD). As an example, the PhMD between the PCMs ax and mx is

given by the phase-mismatching Δfmx,ax(z,ω;t) and the CCD by the coupling coefficients
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~kax,mx z;ω; tð Þ and ~kmx,ax z;ω; tð Þ, both dispersive effects modeled by the operators bD
eqð Þ

ax , bD
eqð Þ

mx ,

bK
eqð Þ

ax,mx and bK
eqð Þ

mx,ax. Note that the equivalent dispersion operators bD
eqð Þ

ax and bD
eqð Þ

mx describe not

only the linear propagation of the PCMs ax and mx, but also the exact phase-mismatching

Δfmx,ax(z,ω;t) at each angular frequency ω at a given z point. The MCD can be observed in a

SM-MCF between the PCMs of different cores (inter-core MCD) and between the PCMs of a

single core (intra-core MCD). Note that the intra-core MCD is the well-known linear and

nonlinear polarization-mode dispersion (PMD). Hence, we will discuss in this subsection the

inter-core MCD (IMCD) involving the mode-coupling between the PCMs of different cores.

Although the proposed model allows us to investigate a wide range of propagation phenom-

ena in MCFs, our efforts are mainly focused on a deeper understanding of the IMCD induced

by the fiber perturbations. In order to clarify the impact of the MCF birefringence on this

physical impairment when propagating femtosecond optical pulses, Eq. (16) is solved numer-

ically in the linear and nonlinear regime of the fiber. In all the analyzed cases, we considered a

MCF comprising a fiber length of L = 40 m and two cores a and b distributed in a square lattice

as in the Fibercore SM 4C1500(8.0/125) but with a core-to-core distance dab = 26 μm. The

wavelength of the optical carrier λ0 was selected to be in the third transmission window with

λ0 = 1550 nm. The time variable was normalized using the group delay of the PCM ax as a

reference with tN = (t � βax
(1)z)/TP , where TP is defined in this work as the full width at 1/2e

(~18%) of the peak power.

As a first simple example, we considered an ideal homogeneous MCF, with RB = ∞ and fT = 0

turns/m. Figure 6(a) shows the simulation results of the CLMTwhen a 350-fs Gaussian optical

pulse is launched into the PCM ax at z = 0. In this example, the GVD and the PMD (induced by

the intrinsic random fiber birefringence) were omitted to isolate the effects of the first-order

Figure 6. IMCD impact on Gaussian pulses and optical solitons propagating through a SM-MCF. (a) 350-fs Gaussian

optical pulse propagation under ideal conditions. (b) 250-fs Gaussian optical pulse propagation with random bending

conditions. (c) 600-fs fundamental bright soliton with random bending and twisting conditions. The numerical results for

the PCMs ay and by can be found in [61].
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IMCD. In this way, the pulse is only propagated by the PCMs ax and bx. Remarkably, the pulse

splitting predicted by Chiang et al. in [58] appears induced by the first-order CCD: each

spectral component of the pulse presents a different coupling length as a direct consequence

of the linear frequency dependence of the power confinement ratio of the LP01 mode in each

core. As a result, the pulse propagation can be modeled in this case by two linear and time-

invariant systems with the impulse response proportional to the Dirac delta functions δ(t� Kz),

where K is the first-order frequency derivative of the coupling coefficient between the PCMs ax

and bx.

Another interesting effect of the first-order IMCD is related to the random birefringence that

arises from a randomly varying fiber bending radius. In this case, the effect of the first-order

PhMD along with the CCD can also be observed when considering a high number of MCF

birefringent segments where the bending radius fluctuates with a Normal distribution

between adjacent segments. We simulate the MCF of the first example considering a 250-fs

Gaussian optical pulse and 50 birefringent segments with a bending radius Normal distribu-

tion RB = N(μ = 100,σ2 = 40) cm. The numerical results are shown in Figure 6(b). It can be seen

that the group delay and the pulse splitting present a random evolution in each core due to the

stochastic nature of the MCF perturbations inducing a random differential group delay

between the PCMs ax and bx. In particular, this result can be employed for pulse shaping and

dispersion engineering applications.

In the third example, the IMCD effects are also investigated in the nonlinear fiber regime along

with the PMD (intra-core MCD). Specifically, the impact of such perturbations on a bright

soliton is analyzed. A 600-fs fundamental soliton (~350 fs full width at half maximum) was

launched into the PCM ax of a dispersion-shifted homogeneous 2-core MCF with usual GVD

parameters of β(2) = �1 ps2/km and β(3) = 0.1 ps3/km. The peak power (P0) required to support

the fundamental soliton is found to be around ~40 dBm considering a nonlinear refractive

index of nNL = 2.6�10�20 m2/W at 1550 nm. In order to simulate realistic MCF conditions, we

assume Δβbx,ax
(1) = 0.2 ps/km and Δβbx,ax

(2) = 0.1 ps2/km induced by manufacturing imperfec-

tions (similar values for the y-polarization). In this case, we also include the intrinsic linear

birefringence of the medium along with the linear and circular birefringence induced by the

fiber bending and twisting conditions. We consider 50 birefringent segments along the MCF

length, where the linear and circular birefringence fluctuate between adjacent segments. The

circular birefringence is induced by a random twist rate fT given by the Normal distribution

fT = N(μ = 0.1, σ2 = 0.01) turns/m. The linear birefringence is induced by: (i) the random bending

conditions with RB = N(μ = 100, σ2 = 40) cm; and (ii) the intrinsic linear birefringence of each

core, fixed to 2�10�7 in both cores a and b. According to Figure 6(c), we can observe that the

soliton condition is broken along the MCF propagation. The second-order PhMD becomes the

main physical impairment when Δβbx,ax
(2) 6¼ 0 in dispersion-shifted coupled-core MCFs, with a

reduced second-order GVD coefficient and core-to-core distance. Therefore, in the first propa-

gation meters, the additional chirp induced by the second-order PhMD along with the first-

order CCD increases the pulse width and reduces the peak power. As a result of the peak

power reduction, the pulse width is increased along the MCF length and the soliton peak is

shifted from its original position due to the first-order PhMD and the third-order GVD. In this

case, note that the effects of the Raman-induced frequency shift (RIFS) [63] and the self-
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steepening are difficult to observe with TP = 600 fs, L = 40 m, β(2) = �1 ps2/km, and P0 ≈ 40 dBm.

Nevertheless, in optical pulses of few femtoseconds and in MCFs with a higher second-order

GVD coefficient, the soliton distortion will be increased not only by the IMCD and the third-

order GVD, but also by the RIFS and the self-steepening nonlinear effects.

Although we have only discussed the main effects of the longitudinal birefringence of the

MCF, the analysis of the temporal perturbations of the medium can be found in [61]. It should

be noted that the IMCD can also fluctuate in time due to the temporal fluctuation of the MCF

birefringence modifying the value of the phase functions fmi(z,ω;t) for the PCM mi. Therefore,

the random group delay induced by the first-order PhMD in each MCF segment may present a

time-varying evolution.

For completeness, we investigate the fiber length scales over which the dispersive effects of the

IMCD should be considered in the pulse propagation phenomena when comparing this phys-

ical impairment with the GVD. To this end, we compare the GVD, CCD and PhMD lengths

considering a MCF without random perturbations, given by the expressions for the PCMs ax

and bx [61]:

LGVD≔T2
P= β 2ð Þ

ax

�

�

�

�; LCCD≔TP=2 ~k
1ð Þ

ax,bx

�

�

�

�

�

�
; LPhMD≔T2

P= Δβ
2ð Þ
bx,ax

�

�

�

�

�

�
: (15)

Figure 7 depicts the comparison of the GVD, CCD and PhMD dispersion lengths. As can be

seen, the IMCD induced by the CCD becomes the predominant impairment in dispersion-

shifted coupled-core MCFs with a reduced core-to-core distance and Δβbx,ax
(2) = 0. On the other

hand, the GVD is expected to become the major physical impairment in homogeneous

uncoupled-core MCFs, with a core-to-core distance dab higher than 30 μm and Δβbx,ax
(2)

≈ 0, or

in heterogeneous MCFs with inter-core crosstalk levels lower than �30 dB. Nevertheless, the

GVD along with the IMCD induced by the second-order PhMD will be the predominant

physical impairments in homogeneous coupled-core MCFs with Δβbx,ax
(2) 6¼ 0.

Finally, it should be noted that the extension of Eq. (14) to the multi-mode regime is straight-

forward when including additional LP mode groups in the complex amplitude of the global

electric field strength Ei,ω0. Inserting Ei,ω0 in the Maxwell equations, the CLMT can be extended

Figure 7. Comparison of the dispersion lengths. (a) Group-velocity dispersion (GVD) length, (b) coupling coefficient

dispersion (CCD) length, and (c) phase-mismatching dispersion (PhMD) length.
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to the multi-mode regime performing a similar mathematical discussion as in [61] in the single-

mode regime.

4. Current and emerging applications

Once we have reviewed the fundamental aspects of the linear and nonlinear propagation in

MCFmedia, we will discuss in this section the main applications and opportunities of the MCF

technology in photonics and diverse branches of sciences.

4.1. Backbone and access optical networks using multi-core fibers

SDM systems using MCFs have been extensively investigated in recent years targeting to

overcome the exponential growth of data traffic in the backbone and in the access network

[4–7].

The first laboratory MCF transmission was demonstrated in May 2010 [64]. Zhu and co-

workers used a SI-SM-HO-UC-LB-7CF with a hexagonal lattice. A novel network configura-

tion was proposed for passive optical network (PON) based on a bidirectional parallel trans-

mission at 1310 nm and 1490 nm and using a tapered MCF connector (TMC) for injecting and

extracting the optical signals in the MCF.

A set of MCF experiments were reported since 2011. Scaling in capacity demonstrations,

[65–67] should be mentioned. In [65] the authors demonstrated a 210 Tb/s self-homodyne

transmission system using distributed feedback (DFB) lasers and a 19-core TA-SM-HO-UC--

LB-MCF. Sakaguchi et al. reported in [66] a record capacity of 305 Tb/s over 10.1 km using the

same MCF as in [65], with an IC-XT mean of �32 dB between adjacent cores at 1550 nm. The

authors also fabricated a 19-channel SDM multiplexer/demultiplexer using free-space optics

with low insertion losses and low additional crosstalk. As another interesting example, Takara

et al. reported in [67] 1.01 Pb/s transmission over 52 km with the highest aggregate spectral

efficiency of 91.4 b/s/Hz by using a one-ring-structured 12-core TA-SM-HO-UC-LB-MCF. They

generated 222-channel WDM signals of 456-Gb/s PDM-32QAM-SC-FDM signals20 with 50-

GHz spacing in the C and L bands. Following significant efforts on the design and fabrication

of MCFs, demonstrations of SDM transmissions using MCF media for long-haul applications

have shown impressive progress in terms of capacity, reach, and spectral efficiency, as detailed

in Table 3.

On the other hand, cloud radio-access network (C-RAN) systems should also deal with this

huge future capacity demand in the next-generation wireless systems, e.g. 5G cellular technol-

ogy and Beyond-5G [75–77]. According to some telecom equipment manufacturers, it is

expected that 5G cellular networks will be required to provide 1000 times higher mobile data

traffic in 2025 as compared with 2013, including flexibility and adaptability solutions to

maximize the energy efficiency of the network [78, 79]. A new radio-access model supporting

20

PDM: Polarization-Division Multiplexing, QAM: Quadrature Amplitude Modulation, SC: Single Carrier, FDM:

Frequency-Division Multiplexing.
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massive data uploading will be required considering additional transport facilities provided

by the physical layer [78–80].

Fronthaul connectivity performed by radio-over-fiber (RoF) transmission using single-input

single-output (SISO), multiple-input multiple-output (MIMO) configuration [81], sub-Nyquist

sampling [82], and ultra-wideband signals exceeding 400 MHz bandwidth has been proposed

for the 5G cellular generation [76, 77, 83]. The required channel capacity is further extended in

the case of Beyond-5G systems, where a massive number of antennas operating in MIMO

configuration, should be connected using RoF. To overcome the massive increment in the data

capacity demand, MCF has been recently proposed as a suitable medium for LTE-Advanced

(LTE-A) MIMO fronthaul systems [52, 83, 84].

MCFs open up attractive possibilities in RoF systems as different wireless signals can be

transmitted simultaneously over the same optical wavelengths and electrical frequencies in

different cores of the optical waveguide to provide multi-wireless service using a single laser at

the transmitter. Thus, MCF can also be proposed as an alternative to the classical SM-SCF [also

termed in the literature as the standard single-mode fiber (SSMF)] providing fronthaul connec-

tivity using multiple wavelength channels with multiple lasers. Additionally, MCFs with high

core density are suitable for connecting large phase array antennas performing multi-user

MIMO (MU-MIMO) processing [85]. Furthermore, network operators can offer a dynamic

and scalable capacity in the next cellular generation due to the aggregated channel capacity

provided by the MCF technology [86]. Moreover, the possibility of combining MCF-RoF

transmissions with additional multiplexing techniques such as time-division multiplexing

(TDM), WDM, PDM and mode-division multiplexing (MDM) [12] should be considered.

Year Ref. Fiber type Cores �modes Distance

(km)

Channel rate

(Gb/s)

WDM channels

per core

S/E (b/s/Hz) Total capacity

(Tb/s)

2011 [68] SM-MCF 7 � 1 2688 128 10 15 7

2012 [67] SM-MCF 12 � 1 52 456 222 91.40 1012

2012 [66] SM-MCF 19 � 1 10.1 172 100 30.50 305

2013 [65] SM-MCF 19 � 1 10.1 100 125 33.60 210

2014 [7] FM-MCF 7 � 2 1 4000 50 102 200

2015 [69] SM-MCF 7 � 1 2520 100 73 16 51

2015 [70] FM-MCF 36 � 2 5.5 107 40 108 432

2015 [71] FM-MCF 12 � 2 527 80 20 90.28 45

2015 [72] FM-MCF 19 � 4 9.8 40 8 345 29

2016 [73] FM-MCF 19 � 4 9.8 60 360 456 2050

2017 [74] SM-MCF 32 � 1 205.6 768 46 217.6 1001

Table 3. Summary of progress in MCF transmissions in recent years. The MCF type indicates only the modal regime

(additional characteristics of the MCF involving the index profile, the spatial homogeneity, the core pitch and the

birefringence can be found in the corresponding reference). The number of modes indicate the number of LP mode

groups supported by the MCF transmission. The channel rate includes PDM and the overhead for forward-error-

correction (FEC). The spectral efficiency and total capacity exclude the FEC overhead.
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Figure 8 depicts the proposed fronthaul provision applied to converged fiber-wireless PON

including PDM to provide connectivity between the SSMF and MCF media.

Remarkably, the use of MCFs in the next-generation RoF fronthaul systems is proposed for the

first time in [52, 87]. In these works, it is investigated the performance of fully standard LTE-A

signals in MIMO and SISO configurations with the random IC-XT fluctuations and the dem-

onstration of fronthaul provision of both LTE-A andWiMAX signals using a 150-m SI-SM-HO-

UC-LB-4CF. In order to reduce the random fluctuations of the error vector magnitude (EVM)

induced by the IC-XT, the core interleaving nonlinear stimulation (CINLS) was proposed to

mismatch the phase constant of adjacent core modes reducing the temporal and spectral EVM

fluctuations of the MCF-RoF transmissions.

4.2. Signal processing

The potential application of MCFs is not only restricted to SDM transmissions. The inherent

capability of a MCF to modify the propagated signals allows us to investigate a vast scenario of

new applications for ultra-high capacity SDM transmissions and microwave photonics (MWP)

based on signal processing techniques. As we will see, the basic concept of the signal

processing using MCFs is a far richer scope than initially foreseen.

In particular, the use of MCFs for MWP applications based on signal processing was firstly

proposed by Gasulla and Capmany in [88]. In this work the authors investigate the suitability

of these new fibers to perform true-time delay lines (TTDLs), optical beamforming, optical

filtering and arbitrary waveform generation using heterogeneous cores. These applications have

been extensively researched in [30, 31, 89–93] with different MCF designs and experimental

setups. As an attractive example, it should be remarked the proposal reported in [31, 90], where

the inscription of selective Bragg gratings in a homogeneous MCF it was introduced in [90] and

Figure 8. Next-generation optical fronthaul system using MCF medium operating with a converged fiber-wireless PON

including optical polarization-division multiplexing (PDM) and mode-division multiplexing (MDM) transmissions.
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experimentally verified in [31] to achieve compact fiber-based TTDL without using heteroge-

neous cores. Along this line, other MWP applications such as optical beamforming can also be

performed by using homogeneous cores as described in [94]. In this work, Llorente and co-

workers propose a compact all-fiber beamformer based on a N-core homogeneous MCF.

On the other hand, the MCF signal processing also involves additional applications and

functionalities such as pulse shaping, dispersion engineering, modal conversion and modal

filtering applications. Remarkably, the engineering of the refractive index profile allows us to

implement these fashion features in MCF media. In this scenario, a fascinating proposal

recovered from the string and quantum field theory was firstly introduced in [95] within the

framework of photonics and further developed in [19, 96] to design SCFs and MCFs: the

supersymmetry (SUSY). Specifically, one-dimensional SUSY allows us to perform the afore-

mentioned MWP applications. The specific details can be found in [96] for cylindrical poten-

tials with axial symmetry. As an interesting example (among other applications detailed in this

work), we include here the description of a true modal (de)multiplexer (M-MUX/DEMUX)

using a 3-core MCF. Figure 9 shows the optical device and its functionality.

The device is designed using a 60-cmMCF comprising three cores a, b and cwith a core-to-core

distance dab = dac = 55 μm, R0 = 25 μm, and λ0 = 1550 nm [Figure 9(a)]. The index profiles of the

cores a and c are calculated by using the Darboux procedure. The index profile of the core b is

taken to be the step-index profile, with nb = 1.45 when r < R0. A 10-ps Gaussian optical pulse is

launched to the central core b, first in the LP01 mode, and later in the LP11 and LP21 modes with

a peak power of 0 dBm. The numerical simulation was performed using a beam propagation

method at λ0 = 1550 nm. Figure 9(b) shows the numerical results of the optical pulse propa-

gating through each LP mode in the M-DEMUX. It is worth noting that, in contrast with other

mode (de)multiplexing strategies [97–100], a true mode demultiplexing is achieved for each LP

mode. At the device output, the pulse launched into the LP11 mode of the core b is found in the

LP11 mode of the core a, the pulse launched into the LP01 mode of the core b is found in the

same mode and core, and the pulse launched into the LP21 mode of the core b can be observed

Figure 9. Modal (de)multiplexer based on a 60-cm 3-core MCF [96]. (a) Schematic structure of the optical device. (b) A 10-

ps Gaussian pulse propagating through the: LP01, LP11 and LP21 modes of the cores a, b, and c.
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in the LP21 mode of the core c. Moreover, pulse shaping and dispersion engineering function-

alities can be incorporated in the proposed device as indicated in [96]. On the other hand, it

should be noted that the SUSY transformations presented in [96] can also be applied to axially

symmetric quantum and acoustic potentials as discussed in this work.

4.3. Multi-core fiber lasers, amplifiers and optical sensors

All-fiber designs of optical lasers, amplifiers and sensors using MCFs have been extensively

investigated in recent years [32, 101–111]. In particular, the multi-mode interference (MMI)

which can be observed through a chain SMF-MCF-SMF is widely employed in lasers, amplifiers

and optical sensors to improve the performance of classical designs based on SCFs [32, 104].

As one can expect, the basic concept of an active MCF is the natural evolution for the cladding

pumped rare-earth-doped fibers. The classical design using a single core offers an excellent combi-

nation of high efficiency and beam quality. However, high output powers are limited by the

stimulation of nonlinear effects. In that case, the increment of the mode field area is the obvious

solution to decrease the nonlinear effects. In this scenario, active MCFs offer the possibility of

reducing thenonlinear effectsusinga coupled-coredesign togenerate supermodeswith largemode

field area [101, 105]. Moreover, note that the gain medium is split at discrete regions (cores) inside

the cladding, and therefore, the thermal dissipation is higher than in the classical single-core design.

As a result, higher output powers can be achieved in MCF media [105]. On the other hand, in

contrastwith a SCFbundle, aN-coreMCF laser/amplifier only requires a single pumped laser forN

optical paths, with the corresponding energy cost reduction for the network operators [5, 106, 107].

In this topic, an intense research work has been developed in the last decade [5, 11, 12]. To date,

most CC-MCF lasers/amplifiers operate in the in-phase supermode combining high brightness

and near-diffraction limited far field profile. The selection of the in-phase supermode can be

performed by using diverse methods such as phase-locking and Talbot cavities [102]. As an

example, a monolithic fiber laser using a CC-MCF with highly and lowly reflective fiber Bragg

gratings (HR/LR-FBG) is shown in Figure 10(a) [104]. The MCF segment is located between the

HR-FBG and the LR-FBG creating an active cavity, where the MMI allows us to obtain a high-

contrast spectral modulation. In addition, the uniform illumination of the cores is achieved by

performing a cladding pumping scheme. Remarkably, this MCF laser design demonstrates the

direct correlation between the MMI in few-mode SCF systems and in the laser operation when

multiple supermodes oscillate simultaneously. Following a similar approach, additional MCF

laser and amplifier designs have been proposed in [103, 105]. Nevertheless, in long-haul SDM

transmissions the usual design is the multi-core erbium-doped-fiber-amplifier based on a

cladding pumped scheme [106, 107].

On the other hand, MCF sensors are also based on a similar concept as in the laser of the

previous example [see Figure 10(b)]. The sensor comprises two SSMFs spliced to a short MCF

segment with hexagonal shaped cores. The operating principle within the MCF segment is the

MMI, which induces a deep peak in the transmission spectrum. An external environmental

change shifts the spectral position of the minimum. As an specific example, let us consider a

temperature change. When increasing the temperature, the thermal expansion of the MCF

medium will increase the refractive index of the silica cores, and consequently, the peak will

be shifted to a longer wavelength [32].
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In the past, fiber optic sensors using SCFs have been widely discussed for sensing in a broad

range of industrial and scientific applications including temperature, force, liquid level, pres-

sure and acoustic waves, among other. Nowadays, the MCF technology allows us to design

and fabricate new optical sensors providing accuracy, high resolution, compactness, stability,

reproducibility and reliability [32, 108–111].

4.4. Multi-core fibers for medical applications

Multi-core optical fibers have also been studied in recent years within the context of medicine

for biomedical sensing and imaging applications [112–121]. Basically, biomedical sensors using

MCFs are based on the MMI technique previously described. Thus, let us now focus our

attention on biomedical imaging applications in the next paragraphs.

Nowadays, the main challenge in biomedical imaging is the study of cells in biological

tissues. In this scenario, the multiphoton microscopy and adaptive optics become fundamen-

tal technologies because of their benefits in cellular resolution, high sensitivity, and high

imaging rate [121]. In particular, the two-photon excited fluorescence (TPEF) microscopy

requires the use of adaptive optics to increase the imaging depth, in practice limited to

1 mm [122]. Remarkably, the so-called lensless endoscope is based on the TPEF microscopy

and adaptive optics adding at the same time the use of an optical waveguide [121]. The

waveguide should be capable of acquiring a multiphoton image of an object located at its

tip. To this end, MCFs have been proposed as a necessary technology for the realization of

ultrathin lensless endoscopes [112–121]. Figure 11 depicts different MCF types proposed for

biomedical imaging along with a basic scheme of adaptive optics using a spatial light

modulator (SLM).

Figure 10. MCF laser and optical sensor operating on the principle of multi-mode interference (MMI). (a) MCF laser

comprising a highly and lowly reflective fiber Bragg grating (HR/LR-FBG). (b) MCF optical sensor with hexagonal shaped

cores. Results based on [32, 104].
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In general, MCFs used for image transport require a high number of cores (>100) with low

IC-XT levels and low intermodal dispersion among cores. Therefore, the preferred design is a

SI-SM-HO-CC-LB-MCF, in line with the MCF shown in Figure 11(a). Examples of this MCF

type fabricated for medical imaging purposes can be found in [113–115], with dab < 20 μm and

IC-XT levels lower than �20 dB/m. In spite of the fact that the intermodal dispersion can be

reduced with a homogeneous design, disordered MCFs based on the transverse Anderson

localization have been reported in [22] to improve the image transport quality [see Figure 11(b)].

Specifically, the transverse Anderson localization of light allows localized optical-beam-trans-

port through a transversely disordered medium. Interesting, in disordered multi-dielectric

media, the resultant image quality can also be understood with the perturbation theory. In

general, disordered arranged non-homogeneous cores exhibit a high phase-mismatching

between their LP modes. As a result, the IC-XT level between adjacent core modes is found to

be of the same order or lower than in a homogeneous and periodically arranged design

[Figure 11(a)]. In a similar way and from our viewpoint, additional highly density MCF

designs could be investigated from the CLMT using HB cores with a random orientation of

the principal axes to minimize the IC-XT.

On the other hand, adaptive optics is required in the TPEF microscopy to recover the initial

imaging of the biological tissue [Figure 11(c)]. The advance on wave front shapers composed

by 2-D SLMs and deformable mirrors have spurred the main evolution in ultrathin endoscopes

[121]. Thompson et al. were the first to report imaging with a lensless endoscope based on a

waveguide with multiple cores [112]. Later, in 2013, Andresen and co-workers realized a

lensless endoscope employing a MCF similar to Figure 11(a) with extremely low IC-XT

between adjacent cores [113]. In the same line, additional works have been reported combining

MCF and MM-SCFs with adaptive optics in [114–120]. At present, the major aim in lensless

endoscopy using MCF media is to increase the core density with a reduced IC-XT and inter-

modal dispersion between neighboring cores [121].

4.5. Multi-core fiber opportunities in experimental physics

In the past, fiber-optical analogies have been investigated to use optical fibers as an experimental

platform for testing different physical phenomena in various fields, such as in quantum

Figure 11. MCFs and adaptive optics for medical imaging. (a) MCF with low IC-XTand periodically arranged cores [113],

(b) disorder MCF based on transverse Anderson localization, and (c) wavefront shaping with a single spatial light

modulator (SLM) for a MCF based lensless endoscope. Results based on [22, 114].
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mechanics, general relativity or condensed matter physics, among others [16–23]. In fact, a

specific example of solid-state physics has already been discussed in the previous subsection,

the Anderson effect, relying on the immobility of an electron in a disordered lattice [21, 22]. As

Anderson localization involves an interfering phenomenon, this effect has been extended to

optics. In [21], Anderson localization has been discussed in two-dimensional photonic lattices,

and in [22] it has been discussed its potential applications for medical imaging using disordered

MCFs, as pointed out before.More broadly, additional strong disorder phenomena in optics such

as the self-organized instability in MM-SCFs [123] can be generalized to MM-MCFs.

Another interesting example can be found in fluid dynamics in the studio of rogue waves on

deep water. The giant oceanic rogue waves emerge from the sea induced by many different

linear and nonlinear wave propagating effects [124]. Indeed, these nonlinear phenomena can

be investigated from a fiber-optical analogy [125]. The nonlinear wave propagation on deep

water and in a SM-SCF is described in both cases by a master equation: the nonlinear

Schrödinger equation (NLSE), as shown in Figure 12.

It can be seen that both propagating equations present a similar form, and therefore, the theoret-

ical results can be directly extrapolated from one field to another. Significantly, the emergence of

rogue waves can be analytically studied from the solutions of the NLSE referred to as solitons on

finite background (SFB) [126]. As a specific example, we include in Figure 12 the Akhmediev

breathers (ABs), the Peregrine soliton (PS) and the Kuznetsov-Ma (KM) solitons21. In a similar

way, the coupled NLSEs (CNLSEs) have also been discussed in the literature to gain physical

Figure 12. Analogy between fluid mechanics and optics. The NLSE describes the linear and nonlinear wave propagation

in different physical systems. Analytical SFB solutions of the NLSE: Akhmediev breathers (ABs), the Peregrine soliton (PS)

and the Kuznetsov-Ma (KM) solitons.

21

Many of these SFB solutions are termed in the literature as rogue waves. Nevertheless, the fundamental concept of rogue

waves emerging unexpectedly from the sea requires additional statistical criteria only fulfilled by higher-order SFB

solutions. In either case, the term rogue waves is commonly used for any analytical SFB solution of the NLSE.
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insight between interacting rogue waves [127–130]. In this scenario, MCFs offer the possibility of

investigating the collision of these nonlinear solutions by using the CLMT [Eq. (14)]. In fact,

MCFs can be employed to elucidate the underlying wave propagation phenomena of any

physical systemwith propagating equations of the form of the CNLSEs, for example, superposed

nonlinear waves in coherently coupled Bose-Einstein condensates [130] or turbocharge applica-

tions in acoustics [131]. Remarkably, in acoustics, the CLMTreported in [60] can play an essential

role. Time-varying multi-core cylindrical acoustic ducts can be engineered with the same modal

properties as optical MCFs. Therefore, the presented theory can be employed to analyze the

intermodal dispersion and the randommedium perturbations in acoustic duct conductions.

On the other hand, additional exotic physical phenomena can also be explored in MCF media

expanding the possibilities of the classical SCFs. For example, an optical pulse propagating

through a SCF establishes a moving medium which corresponds to a space-time geometry.

Specifically, this gravitational approach was employed in [20] to demonstrate a fiber-optical

analogy of the event horizon in a black hole. Along this line, additional gravitational anomalies

could be investigated in a MCF when adjacent cores perturb the space-time geometry created

by an optical pulse propagating in a given core of the fiber.

Finally, it is worth mentioning that MCFs are being explored in other branches of experimental

physics as in astronomy [132]. The main advantage of these new fibers is the reduced core-to-

core distance which can be achieved in a single cladding. In particular, this property has

revealed special interest because of the superior fill factor22 to other approaches for creating

spectroscopic maps of galaxies or detecting exoplanets. The Sydney-AAOMulti-object Integral

field spectrograph (SAMI) project [133], responsible of performing a large spatial spectroscopy

of galaxies, pioneered the introduction of MCFs in astronomical observatories.

5. Conclusions and outlook

Multi-core optical fibers have been developed during the last decade, remarkably within the

context of SDM transmissions. In this chapter we have reviewed the main MCF types, the funda-

mental concepts of the linear and nonlinear propagation, and finally, their potential applications in

diverse fields of science. In spite of the fact that the fundamentals of theMCF technology have been

well elucidated in recent years, the main challenges in this topic involve the following points:

• The analysis of the longitudinal and temporal fluctuations of the crosstalk should be

further investigated in the multi-mode regime. To this end, the CLMT of [61] could be

extended to MM-MCFs. In addition, other theoretical models based on the Manakov

equations [56, 57] can also be employed and extended to the femtosecond regime.

• Existing and additional MCF fabrication methods should be explored and optimized not

only in the S + C + L optical bands, but also in the first and second transmission window.

In general, the manufacturing cost of a MCF and the peripheral devices (fan-in/fan-out

22

Fill factor: ratio between the cores and the total transversal area of the waveguide. Typically, in MM-SCFs (105/125) the

fill factor is of the order of 0.7. Using a MM-SCF or a fiber bundle of SM-SCFs a lot of dead space cannot be observed.
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connectors, lasers, amplifiers, photonic lanterns, power combiners, couplers, multiplexers,

etc) should be reduced.

• The efforts in future MCF designs must be focused on the increment of the core density

minimizing the IC-XT, the intermodal dispersion and the random linear birefringence

induced by the microbends. The impact of external perturbations such as the macrobends

and the fiber twisting should also be reduced in real-deployed MCF systems. Further-

more, new MCF designs should also be investigated for lensless endoscope integrating a

high number of cores with a reduced evanescent field in the cladding. In this scenario, it

has been proposed HB-MCFs with a random orientation of the principal axes in each core.

• Fronthaul connectivity performed by MCF-ROF transmissions should be spurred for the

next-generation wireless systems, e.g. 5G cellular technology and Beyond-5G. In this line,

selective-inscribed FBGs [31] and SUSYMCFs [96] will allow us to process the propagated

optical signals between the OLT and the microcell.

• On-line MIMO processing of MDM transmissions using MM-MCFs should be developed

to support real-time applications in backbone and access networks [134].

• Quantum communications are emerging as a fundamental key in network security [135].

Nowadays, quantum key distribution (QKD) is making the transition from the laboratory

to field trials [136]. In this scenario, the QKD through MCF media should be further

investigated for the next-generation optical SDM networks [137].
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