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Abstract

Cutaneous melanoma is an aggressive tumor with increasing incidence worldwide. 
Recent development of promising treatments based on immune checkpoints blockade 
in cancer immunotherapy or signal transduction inhibitors (B-Raf enzyme inhibitor and 
MEK inhibitor) requires identification of new biomarkers predictive of either prognosis 
and/or therapeutic response. Dynamic interaction between melanoma and normal host 
cells influences tumor progression; proteins regulating connections between melanoma 
cells and extracellular matrix facilitate tumor invasion and dissemination. We discuss the 
various functions of matrix metalloproteinases (MMPs) and tissue inhibitors of matrix 
metalloproteinases (TIMPs) in melanoma and their possible role as prognostic and/or 
predictive biomarkers. We also studied the correlation with regression of expression of 
several MMPs and TIMPs in melanoma; regressed and nonregressed components are 
in fact different tumor subclones; in some cases of melanoma with regression (with a 
specific morphology), the biologic aggressiveness of the tumor and implicitly the overall 
prognosis may be more favorable than that of melanoma without regression thus offer-
ing the possibility of a supplemental stratification of these patients beyond AJCC staging.

Keywords: melanoma, regression, matrix metalloproteinases, tissue inhibitors of matrix 
metalloproteinases, biomarkers

1. Introduction

Cutaneous melanoma represents one of the most important challenges in routine dermato-

oncologic practice due to its increasing incidence worldwide. Its unfavorable prognosis with 

the increasing number of annual deaths and impressive death toll even in incipient melanoma 

cases [1] indicate that current stratification of melanoma patients staging system (American 
Joint Committee on Cancer—AJCC) based on certain morphologic parameters—Breslow 
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thickness, ulceration, nodal and distant metastases—and a serum one—lactate dehydroge-

nase, is unsatisfactory for both tumor biologic behavior assessment and predictive value of the 
systemic treatment [2].

The most problematic melanoma patients fall in two main categories: patients with advanced 

disease (highly invasive thick lesions and/or regional lymph node metastasis) and patients 

with progressive disease despite incipient stage.

In case of patients with advanced disease, despite major efforts to improve treatment, no sig-

nificant advance was obtained in the last two decades; lately, development of promising treat-
ments based on immune checkpoints blockade in cancer immunotherapy (nivolumab and 

pembrolizumab as PD-1 inhibitors; ipilimumab as anti-CTLA4 monoclonal antibody) or sig-

nal transduction inhibitors such as B-Raf enzyme inhibitor (vemurafenib and dabrafenib) and 

MEK inhibitor (trametinib) has been attained [3–8]. Even so, most patients develop acquired 
resistance with subsequent evolution in faust; potential years of life lost due to cutaneous 
melanoma remain as an epidemiologic indicator without significant improvement despite the 
extremely expensive costs of the therapy [9].

The other type of patients, those with progressive disease despite incipient stage belongs to pT1 
melanomas (less than 1 mm in maximum thickness, i.e., thin melanomas). Prognosis is highly 
favorable if the tumor is localized (without metastases, either local or distant), surgical resection 
with 1 cm healthy tissue being curative but there are few patients that eventually die due to 

disease progression. For this incipient stage, we must look to the dark side of the statistical data: 
5 years survival rate for pT1 melanomas is 97.7% with 2.3% mortality due to disease; 10 years 
survival rate for pT1 melanomas is 95.1% with 4.9% mortality due to disease [10]. Moreover, in 
case of patients with even thinner lesions (less than 0.75 mm), 10 years survival rate is 97% with 
a mortality rate due to disease of 3% [11, 12]. These data highlight the need for a supplementary 

stratification of patients with thin melanoma in “low risk” and “high risk” groups with subse-

quent more aggressive therapeutic approach for patients identified as “high risk” [13].

Identification of prognostic and/or predictive biomarkers is particularly difficult in cutaneous 
melanoma due to its complex biologic evolution, encumbered by myriad of different events 
caused by deregulations of several pathways [14]. Dynamic interaction between melanoma 

and normal host cells influences tumor progression; proteins regulating connections between 
melanoma cells and extracellular matrix facilitate tumor invasion and dissemination [15]. 

Cell adhesion molecules known to facilitate the metastatic potential of many cancers are also 

altered in melanoma when progressing from the non-invasive to the invasive growth phase 

and associate increased melanoma thickness and decreased survival [16, 17].

It becomes an imperious task that enzymes involved in degrading extracellular matrix should 

be investigated in relation with cancer invasion and metastases; these biomolecules belong 
to the metalloproteinases group that includes several classes of protease enzymes: matrix 

metalloproteinases (MMPs), a disintegrin and metalloproteinases (ADAMs) and ADAMs 
with thrombospondin motifs (ADAMTS). All of them are zinc-containing endopeptidases 
of metzincins family, some extracellular/soluble (most of MMPs and ADAMTS), the others 
membrane-bounded biomolecules (membrane-type MMPs (MT-MMPs) and ADAMs).
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Matrix metalloproteinases (MMPs) represent a complex family of biomolecules accomplish-

ing a myriad of activities with equally physiological and pathological inferences. MMPs are 

involved in embryologic development and in wound healing as key players in epithelial to 

mesenchymal transition by enabling cell-cell detachment with subsequent basement mem-

brane perforation; they also initiate Snail positive mechanisms of MMPs expression stimula-

tion via increasing reactive oxygen species production [18–22]. MMPs are classified based 
on their primary function: collagenases (MMP-1, MMP-8, MMP-13, MMP-18), gelatinases 
(MMP-2, MMP-9), stromelysins (MMP-3, MMP-10), matrilysins (MMP-7, MMP-26); also, 
MMPs include six forms of MT-MMPs (four transmembranary proteins of which two are 

anchored to the membrane via glycosylphosphatidylinositol) and a group of seven MMPs 

(metalloelastase (MMP-12), MMP-19, enamelysin (MMP-20), MMP-22, MMP-23, epilysin 
(MMP-28)), some with still unknown biological function in humans [23, 24].

MMPs dysfunctions contribute to various diseases: degenerative diseases of the brain, athero-

sclerosis, aortic aneurysm, arthritis, and cirrhosis [25, 26]. In cancer, MMPs facilitate invasion 
and metastasis and participate as regulators of tumor cells proliferation and apoptosis; also, 
they intervene in tumor differentiation, tumor immune-resistance, and tumor angiogenesis 
[27, 28].

In tumor invasion, they mediate adhesion of tumor cells to extracellular matrix components 
and concomitant proteolysis of extracellular matrix, thus favoring migration of tumor cells 
into the areas of matrix degradation [29]. Another important role of MMPs in cancer is repre-

sented by creation of a local environment able to host and provide specific conditions required 
by metastatic cells to survive in a distant organ—“metastatic niche” [30].

MMP-1 is a collagenase correlated with enhanced invasiveness and metastasis in melanoma. 

It is overexpressed in invasive melanoma comparing with in situ or microinvasive melanomas 

where MMP-1 is absent [31]; its knocking down in melanoma cell line diminished the tumor 
cell capacities for metastasis after implanting in nude mice [32] and, conversely, its intro-

duction in noninvasive melanoma cells induces a metastatic phenotype in vivo [33]. MMP1 

production is noticed especially in stromal fibroblasts being also involved in PAR1 throm-

bin receptor activation with subsequent role in increasing tumor progression and metastatic 

capability of tumor cells [34–36].

MMP-2 (gelatinase A) has an important role in tumor progression due to its ability to degrade 
collagen IV present in basement membrane; its presence is of outmost importance for tumor 
invasion, fact demonstrated by the significant reduction of invasion through basement mem-

brane by treating A2058 melanoma cell line culture with an antibody anti human type-IV 
collagenase [37]. Moreover, in cell culture, MMP-2 is present as activated biomolecules when 
highly invasive melanoma cells lines are cultured in collagen lattices; by contrast its activity 
is inhibited by antibodies against MT1-MMP, TIMP-2, and through MMP-2 cleavage by MT1-
MMP [38]. It is expressed in melanomatous cells and stromal cells especially in peritumoral 

areas where its proteolytic activity is present [39]. Using the B16-melanoma cell line mouse 

model it was shown that MMP-2 expression was predominantly present at the tumor-stroma 

border indicating stromal cells as primary source for this protease [40]. In another cell model, 
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using human melanoma cell lines M3 Da and M1Dor cocultured with dermal fibroblasts, it 
was shown that MMP-2 expression in membrane extracts was enhanced. Since stromal and 
cancer cell contacts have been shown to occur after disruption of the ECM, it is assumed that 
fibroblasts may influence melanoma cell invasion after the beginning of tumor progression 
through the dermis [41]. MMP-2 binds to αvβ3 integrin and regulates αvβ3 integrin-dependent 
tumor cell migration most likely by facilitating αvβ3 integrin binding to previously cleaved 
extracellular matrix components; one such component, fibronectin, is cleaved by MMP-2 thus 
facilitating αvβ3 integrin binding and subsequently migration of tumor cells [42].

MMP-2 expression is correlated with prognosis being proposed as an independent prognostic 

factor [43]. MMP-2 expression is variable in melanocytic tumors, according to their biologic 
aggressiveness. Thus, in benign melanocytic tumors (common nevocellular nevi), junctional 
nevi and melanoma, MMP-2 is present with differences in number according to cytonuclear 
and architectural features (more numerous cells as cell atypia and architectural disarray 

increase) [44–46]; MMP-2 was found over-expressed in lesional keratinocytes and enhanced 
by UVB-irradiation, but not found in melanocytic cells [47]; moreover, occurring of distant 
metastases is more frequent in melanomas with MMP-2 overexpression in primary tumor [44] 

but MMP-2 is not present in metastatic melanoma [43]. Also, due to the relation between p-Akt 
and MMP2, MMP2 could be used as a predictive biomarker for vemurafenib resistance as 
vemurafenib-treated patients with overexpression of MMP-2 might be more prone to develop 

resistance [43, 48].

MMP-3 (stromelysin-1) is a metalloproteinase with double role in tumor development, both 
in tumor progression and tumor suppressing. It activates MMP-1, thus increasing the inva-

sion capabilities of the tumor cells [49]. MMP-3 is overexpressed in metastases of melanoma 

and associates significantly shorter disease-free survival than patients with lower levels of 
MMP-3 expression shorter [50]. Other data show that MMP-3 has antitumor effects in squa-

mous cell carcinoma, thus tumors in mmp3 null mice are more aggressive than in control, 
most likely due to its pro-apoptotic effect in neoplastic cells [51].

MMP-7 (matrilysin) triggers proteolytic cleavage of HB-EGF, a biomolecule with pro-tumor 
activity in melanoma by both EGFR ligand role and MAPK and PI3K/Akt pathways activa-

tor [52–54]. MMP-7 expression was demonstrated in melanomas both primary (up to 80% 
of primary tumors) and metastatic ones (all the metastatic tumors) while it was absent in 

both common and Spitz nevi; MMP-7 was identified in tumor cells (both immunohistochemi-
cally and by in situ hybridization); Western blotting revealed the presence of active MMP-7 in 
all melanomas (both primary and metastatic); moreover, the MMP-7 immunohistochemical 
staining score was correlated with Breslow index (higher the MMP-7 positivity score, higher 
the Breslow thickness of the tumor) and 5-year survival (100% 5-year survival in case of 
MMP-7 negative melanomas and significant lower percentage—26.3% 5-year survival in case 
of MMP-7 positive cases), thus raising the issue of its selection as prognostic marker [55].

MMP-8 is a collagenase with anti-tumor attributes. MMP-8 expression is reverse correlated 
with metastatic potential of breast cancer tumor cells [56, 57]. Several different stable clones of 
murine B16F10 melanoma cells (normally MMP-8 negative) transfected with murine MMP-8 
cDNA develop significantly less numerous and smaller lung metastases after injection 
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in Mmp8−/− C57BL/6 mice strain mice; moreover, these MMP-8+ clones obtained from B16F10 
melanoma cells or B16F10 melanoma cells incubated with recombinant MMP-8 showed signifi-

cant in vitro diminishing of invasive abilities compared with B16F10 controls due to increased 
tumor cells adherence to type I collagen and laminin-1 from extracellular matrix [58]. MMP-8 

gene is often mutated in melanoma and MMP8-null mice have significantly increased incidence 
of skin tumors while bone-marrow transplantation (offering neutrophil-derived MMP8) restore 
MMP-8 antitumor protection [59, 60]. The antitumor properties of MMP-8 are related rather to its 

capacity to process proinflammatory biomolecules (MMP-8 absence allows the development of 
an important inflammatory response elicited by chemical substances with carcinogenetic proper-

ties) than to its collagenase function [61].

MMP-9 (gelatinase B), similar to MMP-2, is present in melanoma both in tumor cells and 
stroma with enhance activity at tumor border [39]. However, by contrast to MMP-2 that has 
tumor progression effects, MMP-9 has dual role, in some cases with anti-tumor activities. 
Evidences of such effects are both experimental demonstrated as HPV16 related carcinomas 
have more aggressive biologic behavior in mmp-9 null mice [62], and clinical confirmed as 
MMP-9 overexpression in colonic and breast carcinoma bears a positive significance—more 
favorable prognosis [63, 64]. A mechanism for tumor suppressing activity may be represented 
by inhibition of angiogenesis; collagen IV degradation by MMP-9 releases tumstatin, a bio-

molecule that inhibits endothelial cells activity and subsequently tumor angiogenesis [65, 66].

MMP-10 (stromelysin-2) over-expression in melanoma was recorded mainly in the extracel-

lular matrix, adjacent both tumor cells and blood vessels, being more likely involved in tumor 
growth [67]. Its expression is rapidly increased after UV exposure in SCL-1 squamous cell 
carcinoma cell line [68] is present in stromal cells in squamous cell carcinoma [69] and it 

seems to be correlated with unfavorable prognosis when it is expressed in both tumor tissue 

and serum in patients with gastric cancer [70]. It also intervenes in other MMPs function by 

up-regulating tumor-progression favorable ones such as MMP-1, MMP-7, and MMP-13 [71].

MMP-12 (matrix metalloelastase) is another metalloproteinase with dual role, more likely a 
protective one; it may be secreted by macrophages or by tumor cells, the biologic role being 
related with the type of secreting cell, thus it appears that macrophage-secreted MMP-12 
has antitumor role, while tumor-secreted one has pro-tumor activity [72]. It was shown that 

MMP-12 knock-out mice grafted with B16 melanoma cells were more susceptible to develop 

TNF/IFN-induced inflammation than their wild-type counterparts [73] and its overexpression 

determines slower tumoral growth in experiments in mice [74]. As other elastases, it contrib-

utes to the releasing of angiogenic inhibitors from collagen fibers and angiostatin from plas-

minogen, thus exercising an anti-angiogenic activity [75–77]. Also, its anti-angiogenic effects 
may rely to uPAR cleavage [78] being a possible anti-tumoral therapeutic agent [79].

MMP-13 is involved in tumor progression most probable by increasing VEGF production in 

the tumor stroma. It is expressed both by tumor cells in invasive tumors and by tumor stroma. 

In experimental models of knocked-down MMP13 gene transgenic mice, it was showed that 
implants of melanoma cells (intradermal injection with B16F1 cell-line) develop smaller local 
tumors with less prominent vascularity after a longer period of time comparing with injected 
littermate controls (MMP-13+ mice); moreover, the incidence of metastases in mmp13−/− mice 
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decreased dramatically in lung, liver, and brain being absent in the hearth as melanoma is known 
as one of the few tumors able to develop cardiac and spleen metastases; up to 40% of the control 
animal had cardiac metastases while none of the transgenic mice had such lesions [80, 81].

TIMPs (TIMP-1 to -4) are nodal biomolecules involved in epithelial-mesenchymal transition; 
since they are involved in several biological pathways their functions are more complex than 

simply modeling the extracellular matrix. Mostly, TIMPs regulates the activity of MMPs by 
binding to the catalytic sites of MMPs by their N-terminal domains forming a stoichiometric 

inhibitor complex; there is demonstrated selectivity of different types of TIMPs for specific 
type of MMPs. In case of MMP-2 and MMP-9, the C-terminal domain of TIMPs binds to the 
hemopexin-like domain of pro-MMP-2 and pro-MMP-9; replacement of C-terminal domain 
of TIMP-1 with either TIMP-2, TIMP-3 or TIMP-4 C-terminal domains improve TIMP-1 affin-

ity for different MMPs (MMP14 and MMP19) and ADAMs (ADAM10 and ADAM17), inhibits 
TNF-α and HB-EGF shedding, inhibits cell migration in wound healing and eliminates the 
tumor growth effects of TIMP-1 [82–85].

TIMPs directly interact with cell adhesion molecules or directly intervene on cytoskeletal com-

ponents, processes that alter both intercellular adhesion and cell growth. In addition, cellu-

lar proliferation is modulated by TIMPs direct interference with components of extracellular 

matrix [83, 86].

TIMPs are involved in angiogenesis, mostly with anti-angiogenic effects due to the modula-

tion of MMPs activity. However, TIMP2 and TIMP-3 have supplemental effects in inhibiting 
angiogenesis. TIMP-2 inhibits proliferation and migration of endothelial cells and (either by 

interacting with α3β receptor or by inducing the RECK expression which subsequent inhibi-
tion of MMP-2, MMP-9, MT1-MMP, ADAM10). TIMP-3 blocks VEGF-A mitogenic actions 
and regulates VEGFR2 expression [23, 83, 86, 87].

Tumor growth effects of TIMPs are also related to their intervention in apoptosis, either pro- 
or anti-apoptotic molecules. TIMP-1 and TIMP-2 have antiapoptotic activity modulating PI3-

kinase and JNK pathways (unrelated to TIMP-1 inhibition of MMP functions) while TIMP-3 
stabilizes Fas and TNF-cell receptor 1 (proapoptotic effects) [23, 83, 86, 88].

2. MMPs and TIMPs role in response to treatment and resistance to 

therapeutic agents in melanoma

In melanoma treatment with acute BRAF inhibition, it was reported that active MMP-2, MT1-
MMP, and MMP-9 are decreased, but it did not modulate TIMP-2 or RECK. Using cell mod-

els, it was shown that resistance to vemurafenib induces significant changes in the tumor 
microenvironment mainly by MMP-2 upregulation, but not upon TIMP expression, MMP 
up-regulation corresponding to an increase in cell invasiveness [89]. Another research group 
using experimental cell models by transfection of miR-21 and inducing over-expression in the 

melanoma cell lines WM1552c, WM793b, A375, and MEL 39 has shown that miR-21 decreases 
TIMP3 expression and enhances the invasiveness of melanoma cells. In an animal model, 
using 01B74 Athymic NCr-nu/nu mice, treatment with a miR-21 antagomir inhibited tumor 
growth and increased tumor expression of TIMP-3 [90].
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3. MMPs and TIMPs expression in melanoma with regression

There are very few tumors that can present spontaneous regression up to the point of complete 

clinical and histopathologic vanishing. Melanoma is such a tumor, its disappearance reaching 
the point of impossibility of tumor cell identification even by immunohistochemical test; the indi-
rect proof of previous existence of the tumor is represented by the presence of so-called tumor 

melanosis [91]. There different types of regression in melanoma are described: complete regression 

with total disappearance of tumor cells (immunohistochemistry fails to identified any neoplas-

tic melanocyte, tumor being superseded by an area of fibrosis with hyperplastic blood vessels, 
and dense inflammatory infiltrate with numerous melanophages); segmentary regression (part of 

the tumor suffered complete regression); and partial regression (the regression is present but few 

tumor cells can be identified in the area, either morphologically or immunohistochemically) [92].

Regression is a phenomenon that occurs naturally relatively frequent in melanoma—up to 
10–35% of cases; an even higher incidence was reported in thin melanomas—up to 60% of 
cases with a Breslow index of <0.75 mm [10, 92–94]. Despite these data, complete regression 
is reported in very few cases (mostly, as case reports and about 0.25% in large studies [95]); 
the real incidence of this phenomenon cannot be established since patients with completely 

regressed melanoma are not aware of the disease unless they develop distant metastasis. The 

biologic significance and prognosis of regression in melanoma is a matter of debate, various 
opinion being published [91, 96–105]. Mechanisms involved in occurring of regression in mel-

anoma are yet to be deciphered; considering the importance of host response in this process, 
investigation of tumor microenvironment may offer some responses.

Study of MMPs and TIMPs expression in melanoma with regression was performed by our 
group by analyzing 93 melanomas (62 superficial spreading melanomas (SSM) and 31 nodular 
melanoma (NM)), 39 cases of SSM showing regression. Regression was present as both seg-

mental and partial type, either pure form or combined (segmental regression (SR)—33.33%, 
partial regression (PR)—43.58%, and SR-PR in the same tumor—23.07%). Five MMPs and three 
TIMPs were analyzed (MMP-1, MMP-3, MMP-9, MMP-11, MMP-13, TIMP-1, TIMP-2, and 
TIMP-3) in both regressed and non-regressed areas of the tumors, the results being compared 
with those recorded in melanomas without regression (absence of regression—AR). A semi-
quantitative score with four levels based on the level of staining intensity, namely “absent” (−), 
“mild positive” (+), “moderate positive” (++), and “intense positive” (+++) was used to assess 
the immunohistochemical expression of each marker in either tumor or stromal cells.

Two types of results were obtained: (a) differences in MMPs and TIMPs expression between 
non-regressed component of melanoma with regression (NRC) and melanoma without 

regression (AR) and (b) differences in MMPs and TIMPs expression between regressed com-

ponent (RC) and NRC in melanoma with regression [106].

3.1. Differences in MMPs and TIMPs expression in tumor cells between 
NRC and AR

MMP-1 was intense positive (+++) in all AR melanomas; also, most of the NRC were intense 
positive (+++) for MMP-1, only 15.84% of them being moderately positive (++) (Figure 1a–c). 
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Despite the small percentage of less positive cases for MMP-1 in melanomas with regression, 
this feature was statistically significant.

Similar findings as in case of MMP-1 were present for MMP-11 (Figure 1d–f): all AR cases 
were intense positive, while 74.35% of NRCs were intense positive, the rest (25.65%) being 
moderate positive; also, the tendency of a diminished expression of MMP-11 in NRC than in 
AR cases was statistically significant.

MMP-2 (Figure 2a–c), MMP-3 (Figure 2d–f), MMP-7 (Figure 2g–i), MMP-9 (Figure 2j–l), and 
MMP-13 (Figure 2m–o) showed similar features of diminished expression in NRC than in 

AR but the data were not statistically significant; data for MMP-13 expression had a level of 
statistical significance of 0.07.

No significant differences for TIMP-1 (Figure 3a–c), TIMP-2 (Figure 3d–f), and TIMP-3 
(Figure 3g–i) expression were recorded between NRC and AR tumor cells.

Our study identified an overall diminished expression of MMP-1, MMP-3, MMP-9, MMP-11, 
and MMP-13 in NRC comparing to AR as control; since most of these biomolecules have pro-
tumor activities, it is possible to speculate that they favor a less aggressive biologic behavior 
melanoma with regression.

There were differences when the specific type of regression was considered. Expression of 
MMP-1 in NRC of tumors with SR (either SR or combined SR-PR) was statistically significant 
diminished comparing with both AR cases or with NRC in PR cases. No such differences were 

Figure 1. MMP-1 and MMP-11 (fast red detection): (a) melanoma without regression, faint diffuse positivity for MMP-
1; monstrous tumor cells are more intense positive than main tumoral mass. MMP-1 × 200. (b) Melanoma with partial 
regression, faint diffuse positivity for MMP-1 in non-regressed component. MMP-1 × 200. (c) Melanoma with partial 
regression, faint diffuse positivity for MMP-1 in regressed component. MMP-1 × 400. (d) Melanoma with partial regression, 
faint diffuse positivity for MMP-11 in non-regressed component in both tumor and stromal cells. MMP-11 × 400. (e) 
Melanoma with partial regression, diffuse positivity for MMP-11 in regressed component in both tumor cells, endothelial 
cells and fibroblasts. MMP-11 × 400. (f) Melanoma with partial regression, faint positivity for MMP-11 in regressed 
component in both tumor cells. MMP-11 × 400.
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Figure 2. MMP-2, MMP-3, and MMP-7 (fast red detection), MMP-9 (fast red and DAB detection), MMP-13 (DAB 
detection): (a) melanoma without regression, diffuse positivity for MMP-2. MMP-2 × 400. (b) Melanoma with partial 
regression, diffuse positivity for MMP-2 in non-regressed component. MMP-2 × 400. (c) Melanoma with partial 
regression, diffuse positivity for MMP-2 in regressed component. MMP-2 × 400. (d) Melanoma without regression, 
diffuse positivity for MMP-3 in both tumor and stromal cells. MMP-3 × 400. (e) Melanoma with partial regression, 
diffuse positivity for MMP-3 in non-regressed component. MMP-3 × 400. (f) Melanoma with partial regression, diffuse 
positivity for MMP-3 in regressed component in both tumor and stromal cells. MMP-3 × 400. (g) Melanoma with partial 
regression, diffuse positivity for MMP-7 in non-regressed component in both tumor and stromal cells. MMP-7 × 400. (h) 
Melanoma with partial regression, diffuse positivity for MMP-7 in regressed component in both tumor and stromal cells. 
MMP-7 × 400. (i) Melanoma with segmental regression, intense positivity for MMP-7 in regressed component in stromal 
cells; no tumor cells are present. MMP-7 × 400. (j) Melanoma without regression, diffuse positivity for MMP-9; pigmented 
tumor cells are slightly more intense positive than nonpigmented ones. MMP-9 × 400 (fast red detection). (k) Melanoma 
with partial regression, diffuse positivity for MMP-9 in regressed component in tumor cells; few fibroblasts from area 
of regression are also positive; faint cytoplasmic positivity of plasma cells. MMP-9 × 400 (DAB detection). (l) Melanoma 
with segmental regression, positivity for MMP-9 in regressed component in inflammatory cells and fibroblasts; no 
tumor cells are present. MMP-9 × 400 (DAB detection). (m) Melanoma without regression, diffuse positivity for MMP-
13; MMP-13 × 400. (n) Melanoma with partial regression, diffuse positivity for MMP-13 in non-regressed component in 
tumor cells, fibroblasts, endothelial and inflammatory cells. MMP-13 × 400. (o) Melanoma with partial regression, diffuse 
positivity for MMP-13 in regressed component in tumor cells; fibroblasts, endothelial and inflammatory cells from area 
of regression are also positive. MMP-13 × 400.
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noted for other MMPs (MMP2, MMP3, MMP11, and MMP13). Expression of TIMP-1 and/
or TIMP-2 in NRC of tumors with PR was statistically significant increased comparing with 
either NRC of SR cases (TIMP-1 P = 0.011; TIMP-2 P = 0.009) or with NRC of SR-PR cases and 
AR (P = 0.002 and 0.037, respectively). There was no difference in TIMP-3 expression in NRC 
and/or AR cases according to the type of regression.

3.2. Differences in MMPs and TIMPs expression between RC and NRC in 
melanoma with regression

The differences in MMPs and TIMPs expression were evaluated in the same tumor, both in 
tumoral and stromal cells. In case of tumors with SR, the expression was evaluated in stromal 
cells (fibroblasts) present in regressed area. In the other cases (PR tumors, SR-PR tumors, and 
AR tumors), most of the cases showed similar expression of each marker in tumor cells versus 
stromal fibroblast for each tumor compartment.

Figure 3. TIMP-1, TIMP-2, and TIMP-3 (DAB detection): (a) melanoma without regression, diffuse positivity for TIMP-1; 
TIMP-1 × 400. (b) Melanoma with partial regression, diffuse positivity for TIMP-1 in non-regressed component in tumor 
cells, few fibroblasts, few endothelial and few plasma cells. TIMP-1 × 400. (c) Melanoma with segmental regression, 
diffuse positivity for TIMP-1 in area of regression in fibroblasts, endothelial and inflammatory cells. TIMP-1 × 400. (d) 
Melanoma without regression, diffuse positivity for TIMP-2; TIMP-2 × 400. (e) Melanoma with partial regression, diffuse 
positivity for TIMP-2 in non-regressed component in tumor cells. TIMP-2 × 400. (f) Melanoma with partial regression, 
faint positivity for TIMP-2 in non-regressed component in tumor cells. TIMP-2 × 400. (g) Melanoma with partial 
regression, diffuse variable positivity for TIMP-3 in non-regressed component; TIMP-3 × 400. (h) Melanoma with partial 
regression, faint diffuse positivity for TIMP-3 in non-regressed component in tumor cells. TIMP-3 × 400. (i) Melanoma 
with partial regression, variable positivity for TIMP-3 in non-regressed component in tumor cells. TIMP-3 × 400.
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In all the cases, there was either similar expression of MMPs in tumor cells in both areas (NRC 
and RC) or slightly overexpression in NRC comparing with RC. MMP-3 was the biomolecule 

with the most numerous cases of overexpression (76.93% had MMP-3 overexpression in NRC 

than in RC), followed by MMP-2 and MMP-11 (58.97% each), MMP-13 (48.71%), and MMP-1 
(30.76%). Tumor stromal fibroblasts were also slightly more intense positive in NRC than in 
RC or showed similar expression in both components.

Considering the specific type of regression, MMP2 was over-expressed tumor fibroblasts in 
NRC than in RC in PR cases comparing with SR ones (P = 0.023). Also, differences occurred 
in case of MMP-13 expression—all SR-PR cases had MMP-13 overexpression in NRC versus 
RC comparing with PR and SR cases (P = 0.003, respectively, P = 0.0003). No significant differ-

ences occurred in case of MMP-1, MMP-3, and MMP-11 expression.

TIMPs expression had more variability in NRC versus RC component both in tumoral and stro-

mal cells; there were cases with overexpression, similar expression or diminished expression 
for each type of TIMP investigated. However, most of the cases (66.66% for TIMP-1, 61.53% for 
TIMP-2, and 64.10% for TIMP-3) had TIMP overexpression in NRC versus RC.

The type of regression did not influence TIMP-1 and TIMP-2 expression in NRC and RC. In 
case of TIMP-3, all SR melanomas had TIMP-3 overexpression in stromal tumor fibroblasts in 
NRC when compared with those in RC component (P = 0.007).

4. Conclusions

Cancer biology is a complex phenomenon, several mechanisms concurring to tumor progres-

sion and metastasis. The role of the tumor microenvironment and its regulation by both tumor 

neoplastic cells and host response was lately established, the identification of several stromal-
related biomarkers offering some explanations for different biology behavior of tumors with 
otherwise similar origin and classical histopathologic appearance.

MMPs and TIMPs are potent molecules involved in tumor development, progression, and 
metastasis with either pro- and anti-tumor activity; their correlation with regression in mela-

noma shows: (a) regressed and nonregressed components are in fact different tumor subclones 
and (b) in some cases of melanoma with regression (with a specific morphology), the biologic 
aggressiveness of the tumor and implicitly the overall prognosis may be more favorable than that 

of melanoma without regression, thus offering the possibility of a supplemental stratification of 
these patients beyond AJCC staging. More studies are needed to establish comprehensive path-

ways as a gate for identification of new biomarkers for either diagnostic or therapeutic purposes.
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