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Abstract

Data-driven models of signalling networks are becoming increasingly important in systems 
biology in order to reflect the dynamic patterns of signalling activities in a context-specific 
manner. State-of-the-art approaches for categorising and detecting signalling cross-talks may 
not be suitable for such models since they rely on static topologies of cell signalling networks 
and prior biological knowledge. In this chapter, we review state-of-the-art approaches that 
categorise all possible cross-talks in signalling networks and propose a novel categorisation 
specific to data-driven network models. Considering such models as undirected networks, 
we propose two categories of signalling cross-talks between any two given signalling path-
ways. In a Type-I cross-talk, a signalling link {g

i
,g
j
} connects two signalling pathways, where 

g
i
 and g

j
 are signalling nodes that belong to two distinct pathways. In a Type-II cross-talk, 

two signalling links {g
i
,g
j
} and {g

j
,g
k
} meet at the intersection of two signalling pathways at a 

shared signalling node g
j
. We compared our categorisation approach with others and found 

that all the types of cross-talks defined by those approaches can be mapped to Type-I and 
Type-II cross-talks when underlying signalling activities are considered as non-causal rela-
tionships. Next, we provided a simple but intuitive algorithm called XDaMoSiN (cross-talks 
in data-driven models of signalling networks) to detect both Type-I and Type-II cross-talks 
between any two given signalling pathways in a data-driven network model. By detecting 
cross-talks in such network models, our approach can be used to analyse and decipher latent 
mechanisms of various cell phenotypes, such as cancer or acquired drug resistance, that may 
evolve due to the highly adaptable and dynamic nature of signal transduction networks.

Keywords: signalling cross-talks, data-driven models, signalling network, cancer 
signalling, signal re-wiring, acquired drug resistance

1. Introduction

A signal transduction network is a collection of all cell signalling pathways where each path-

way is a series of biochemical events, transmitting input signals from receptor proteins to 

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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intracellular target proteins (e.g., transcription factors). The outcomes mediated by signalling 
pathways include various cellular activities such as cell growth, proliferation, differentiation, 
migration, adhesion, and apoptosis [1, 2]. Interactions among distinct signalling pathways are 
called signalling cross-talks and may also play vital roles in mediating or modulating cellular 

activities [3] under different disease-related cell conditions such as cancer and acquired drug 
resistance.

Models of signal transduction networks often take a qualitative approach that relies on 
prior biological knowledge obtained from experimental findings in various cell lines [4, 5]. 

However, the pattern of cell signalling activities is not static and can vary in different cell 
lines [4, 5]. Moreover, different cell lines for which the underlying network architectures of 
signalling activities are conserved may yield different responses even in similar experimen-

tal settings [5]. In the same cell, different ligands can produce different signalling connec-

tions [5, 6]. Moreover, different drugs and different treatment conditions may also induce 
different signalling dependencies and thus create a dynamic re-wiring in the signalling net-
work topology [6–8]. Therefore, understanding a signalling network topology demands a 
data-driven modelling approach in order to reflect its context-specific nature in a particular 
cell type, and a particular experimental configuration. Here, data-driven models of signal-
ling networks are models in which network edges are inferred solely based on signalling 
data [4] using machine learning approaches such as least square regression [9], Bayesian 
networks [10–12], and time-lag correlation [13]. In contrast, static models of signalling net-
works are based on canonical signalling mechanisms obtained from the literature [4]. Recent 

advancements in high-throughput data generation techniques facilitate the quantification 
of signalling responses, thereby producing large volumes of data measuring protein abun-

dances and activities [4].

Detecting signalling cross-talks using data-driven models of signalling networks is an impor-

tant task in systems biology since such cross-talks may reveal novel mechanistic details 
underlying perturbed cellular conditions. Receptor tyrosine kinase (RTK) heterodimerisation 
is one of the forms of signalling cross-talks (also known as receptor function cross-talks) [14], 
which has been reported to be involved in the processes of tumourigenesis and develop-

ing acquired drug resistance in many cancers [6]. Usually, epidermal growth factor receptor 
(EGFR) strongly activates extracellular signal-regulated kinase (ERK) signalling, but it is also 
a weak activator of the phosphatidylinositol 3-kinase (PI3K) signalling pathway. Interestingly, 
when EGFR cross-talks with human epidermal growth factor receptor 2 (HER2) through het-
erodimerisation, it activates both signalling pathways significantly [15], thereby contributing 
tumourigenesis by stimulating proliferation and preventing cell death [6]. In another exam-

ple, the RTK expression of AXL was found to be a mechanism of acquired resistance to EGFR 
inhibitors [16], and AXL is found to be transactivated by EGFR through heterodimerisation 
(cross-talk) [6].

In this chapter, we review existing approaches that have been used in the literature to catego-

rise cross-talks in signalling networks. However, all these methods are limited in application 
to static models of signalling networks and cannot be used to categorise cross-talks when the 
types of signalling activities (e.g., reaction, catalysis, or inhibition) are not known. We therefore 
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introduce a novel cross-talk categorisation for a single cell model to resolve such issues. We also 
compare our categorisation with the existing approaches. Finally, we present an algorithm to 
computationally detect all signalling cross-talks that are included in our proposed categorisa-

tion. Natarajan et al. [17] reported that a global analysis of both known and novel cross-talks 
can reveal system-level insights into context-dependent signalling: many ligand stimuli con-

verge on a relatively small number of signalling molecules to produce unique responses. Thus, 
we hypothesise that our approach will be useful to elucidate similar novel system-level aspects 
of signalling networks derived from context-specific signalling data through the identification 
of cross-talks.

1.1. Existing methods for categorising cross-talks

Only a few studies have attempted to categorise types or modes of cross-talks between two 
signalling pathways [6, 14, 18]. In reviewing signalling cross-talks between transforming 

growth factor-β/bone morphogenic protein (TGF-β/BMP) and other signalling pathways, Guo 
and Wang [18] distinguished three different modes of signalling cross-talks. According to that 
study, two pathways: pathway

1
 and pathway

2
 cross-talk when (1) some component of pathway

1
 

physically interacts with some component of pathway
2
 (Mode-A), (2) some component of path-

way
2
 plays a role as an enzymatic or transcriptional target of some component of pathway

2
 

(Mode-B), or (3) signals from pathway
1
 modulate or compete for a key modulator or mediator 

protein that is shared between pathway
1
 and pathway

2
 (Mode-C).

Donaldson and Calder [14] proposed five types of signalling cross-talk between any two sig-

nalling pathways: pathway
1
 and pathway

2
. They are as follows:

• Signal-flow cross-talk: an alternative reaction that enhances the signalling in pathway
1
 by 

producing, or catalysing, or inhibiting the production of a protein mediated by the signal-
ling of pathway

2
. For example, there exists signal-flow cross-talk between mitogen-activated 

protein kinase (MAPK) and integrin signalling pathways [19], where the increased rate of 
activation of some key protein in the integrin pathway is mediated by signalling through 
the MAPK pathway.

• Receptor function cross-talk: an alternative reaction to activate/inhibit the receptor of path-

way
1
 by some enzyme of pathway

2
 without the need of a ligand (a protein that activates a 

receptor protein). For example, oestrogen receptor may become activated without the need 
of oestrogen ligand by other signalling pathways [20].

• Gene expression cross-talk: a component (typically, a protein) of pathway
1
 inhibits or mod-

ifies the transcription or protein production of genes in pathway
2
. For example, transcrip-

tion factor glucocorticoid receptor (GR) of hormone signalling pathways translocates to 
the nucleus and inhibits the transcriptional activities of the transcription factor nuclear 
factor-κB (NF-κB) that is activated in response to inflammatory stimuli and environmental 
stressors [21].

• Substrate availability cross-talk: pathway
1
 and pathway

2
 share a protein (or a set of proteins) 

and both of the pathways compete for the activation of that shared protein(s). For example, 
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two MAPK pathways in the yeast S. cerevisiae that share mitogen-activated protein kinase ki-
nase kinase (MAPKKK) protein STE11 (Sterility gene 11) and possess homologous mitogen-
activated protein kinase kinase (MAPKK) and MAPK proteins compete for the activation of 
the MAPK cascade [22].

• Intracellular communication cross-talk: the gene products of pathway
1
 act as ligands for 

the receptor of pathway
2
. For example, TGF-β and Wnt (Wingless-related integration site) 

signalling regulate the production of ligands of one another [18].

Donaldson and Calder [14] also reviewed some computational models that deal with cross-
talks between specific pathways including MAPK pathway, AKT pathways, and protein 
kinase C (PKC) pathways. These models [22–24] use ordinary differential equations (ODEs) 
where the notion of the cross-talk was a part of the system of equations without any explicit 
way of detecting or categorising them [14].

Kolch et al. [6] described three types of cross-talks such as heterodimerisation between signal-
ling proteins, node sharing, and competition for nodes. Signalling protein heterodimerisation 
is a biochemical process where a protein complex is formed by two different macromolecules, 
and RTK heterodimerisation is a common example of this type of cross-talk [6]. For exam-

ple, EGFR heterodimerisation with ErbB2 (erythroblastic leukaemia viral oncogene B2 also 
known as HER2) or ErbB3 (erythroblastic leukaemia viral oncogene B3) (also known as HER3, 
human epidermal growth factor receptor 3) activates both ERK and PI3K signalling pathways 
[15] and thereby mediates proliferation and cell survival signals in tumourigenesis [6]. In 

another example, the transactivation of AXL (an RTK) is caused by EGFR heterodimerisation, 
and the expression of AXL was found to be a mechanism of resistance to EGFR inhibitors [16].

An example of node (i.e. protein) sharing cross-talk is the scaffolding protein (a protein that 
binds with multiple members of a signalling pathway) GRB2-associated binding partner 
(GAB), which is shared by two signalling pathways: EGFR and insulin receptor (IR) path-

ways [25]. Lastly, an example of cross-talk in the form of competition for nodes (i.e. proteins) 
was recently identified, consisting of a switch-like coordination between proliferation and 
apoptotic signalling through rapidly accelerated fibrosarcoma (RAF)-ERK signalling and 
mammalian STE20-like protein kinase (MST2) signalling [26]. In mammalian cells, rapidly 
accelerated fibrosarcoma1 (RAF1) inhibits MST2-induced apoptosis (promotes proliferation) 
[27], whereas Ras association domain-containing protein 1A (RASSF1A) activates MST2 (pro-

motes apoptosis) [28]. Romano et al. [26] showed that this signalling coordination is switch-
like, since MST2 binds mutually exclusively with its inhibitor RAF1 and activator RASSF1A 
by changing its binding affinities from low to high.

Identifying the above cross-talk categories requires prior biological knowledge of the nature of 
signalling links. An essentially static model of signal transduction networks is thus assumed. 
However, in data-driven models of signalling networks, connectivity among signalling nodes 
may differ from cell to cell [6]. In order to reveal novel signalling dynamics in cell-specific, 
ligand-specific, or treatment-specific contextual data, we define a novel cross-talk categorisa-

tion in the following section.
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2. Methods

2.1. Proposed cross-talk categorisation in data-driven networks

2.1.1. Approaches for inferring data-driven signalling networks

Although our main focus in this chapter is to propose a cross-talk categorisation, here we 
briefly mention some approaches that fit data-driven models of signalling networks to 
quantitative signalling datasets. Some high-throughput proteomics techniques that quan-

titatively measure phosphorylation activities of phosphoproteins (signalling proteins) 
include mass spectrometry, flow-cytometry, ribonucleic acid interference (RNAi) screen-

ing, and reverse-phase protein array (RPPA) [13, 29]. Apart from proteomics data, some 
approaches use gene expression measurements of phosphoproteins as a proxy for protein 
expression (i.e. protein activity) [30–32] in order to fit data-driven models of signalling 
networks. However, inference methods include modelling both causal [9–12, 29, 33] and 

non-causal (simple correlations) relationships [13, 34] among phosphoproteins. To iden-

tify causal relationships in a signalling network topology, various approaches have been 
applied such as least square regression [9], various models on Bayesian networks [10–12] 

and dynamic Bayesian networks [29], and maximum entropy [33]. Correlation-based 
approaches include measuring the simple Pearson correlation [34] and time-lag correla-

tion [13]. The rationale behind applying such simple correlation-based approaches to infer 
signalling network structure is that individual signals may co-vary with respect to one 
another [4]. Figure 1 presents a schematic diagram of a possible framework that can use 
our proposed novel cross-talk categorisation algorithm to find cross-talks in data-driven 
models of signalling networks.

2.1.2. Proposed cross-talk categorisation

In order to generalise our cross-talk categorisation for both causal and non-causal network 
models, we consider a signalling network as an undirected network. Let G(V,E) be an undi-

rected graph that represents an entire signalling network containing a set of signalling 
pathways, where V is a set of n signalling components (typically proteins or protein com-

plexes, denoted g
i
, for i = 1, 2, …, n) and E is a set of unordered pairs of signalling components 

of the form {g
i
,g

j
} representing signalling links inferred from data. We propose two types 

of signalling cross-talks between any two signalling pathways, denoted pathway
1
 and path-

way
2
, which is shown in Figure 2. Here, a pathway is defined merely as a list of signalling 

components, usually obtained from databases such as KEGG [35], WikiPathways [36], and 
Reactome [37].

2.1.2.1. Type-I cross-talk

{g
i
,g

j
} ∈ E is a Type-I cross-talk between pathway

1
 and pathway

2
 if (g

i
 ∈ pathway

1
 ∧ g

j
 ∈ pathway

2
) 

∧ (g
i
 ∉ pathway

2
 ∧ g

j
 ∉ pathway

1
).
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2.1.2.2. Type-II cross-talk

{g
i
,g

j
} ∈ E ∧ {g

j
,g

k
} ∈ E is a Type-II cross-talk between pathway

1
 and pathway

2
 if (g

i
 ∈ pathway

1
 ∧ g

j
 

∈ pathway
1
) ∧ (g

j
 ∈ pathway

2
 ∧ g

k
 ∈ pathway

2
).

2.2. An algorithm for detecting proposed cross-talks

In Figure 3, we present a simple but intuitive algorithm for identifying Type-I and Type-II 
cross-talks in data-driven signalling network models. We refer to our algorithm as XDaMoSiN 
(cross-talk in data-driven models of signalling network). Note that our approach considers 
data-driven models of signalling networks as undirected networks in order to generalise our 

categorisation for both causal and non-causal network models. The only assumption we make 

Figure 1. A schematic diagram of a possible framework that can use our algorithm to find cross-talks in data-driven 
model of signalling networks. This algorithm takes two inputs: (a) an undirected graph, G(V,E) and (b) a pathway 
database. Approaches to generate data-driven models of signalling networks (details are skipped in this chapter) can 
use various types of data including gene and protein expression data.

Figure 2. Proposed categorisations of signalling cross-talks, Type-I (A) and Type-II (B). Here, each of the pathways is a 
collection of signalling nodes (typically proteins or protein complexes). A Type-I cross-talk is a signalling link {g

i
,g

j
} that 

connects two signalling pathways where neither of the two pathways contains both signalling nodes, g
i
 and g

j
. A Type-II 

signalling cross-talk is a pair of signalling links {g
i
,g

j
} and {g

j
,g

k
} residing at the intersection of two signalling pathways 

with a shared node g
j
.
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here is that pathway annotations of signalling pathways are known from pathway databases 
such as KEGG [35], Reactome [37], and WikiPathways [36]. In these annotations, a pathway 
is defined as a list of signalling nodes. Note that the signalling links among these nodes are 
modelled using data-driven relationships. Therefore, a data-driven model of a signalling net-
work is defined as where V is a list of n signalling nodes and E is a list of signalling links {g

i
,g
j
} 

inferred from data. This algorithm takes two inputs: G (the network) and PathwayDB (a path-

way database) and produces two outputs: Type_I_crosstalk and Type_II_crosstalk, which are 
two lists containing all Type-I and Type-II cross-talks (Figure 3). Here, we consider PathwayDB 

as a list, where each element in that list is also a list, containing signalling nodes in a particular 
pathway, and is indexed by the corresponding pathway ID (typically, the pathway name).

In the first part of the algorithm, we find all the Type-I cross-talks among all the pathways 
in PathwayDB. At first, we initialise the list Type_I_crosstalk, which collects all such Type-I 

Figure 3. The pseudocode for XDaMoSiN algorithm.
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cross-talks. Then we check each signalling link {g
i
,g

j
} ∈ E to determine whether it plays a role 

as Type-I cross-talk. Here, we loop through all pathways and save pathway IDs that contain 
g

i
 or g

j
, individually. For this purpose, we maintain two intermediate lists, called List

i
 and 

List
j
, respectively. If List

i
 contains some pathway IDs that are not in List

j
, and vice versa, then 

we identify {g
i
,g

j
} as a Type-I cross-talk. Note, we assume here that an intermediate function 

called FindList(PathwayDB, pathway_id) exists, which constructs a list of signalling nodes in a 
particular pathway with ID: pathway_id in the PathwayDB.

In the second part of the algorithm, we find all Type-II cross-talks. First, we examine each sig-

nalling node g
j
 individually, to determine whether it is shared by more than one pathway and 

has incident signalling link(s) (from E) in those pathways. For this purpose, for each signal-
ling node g

j
, we construct an intermediate list, called L

j
. This list collects ordered pairs of infor-

mation: (1) each incident signalling node g
i
 in {g

i
,g

j
} ∈ E that is contained in a pathway labelled 

pathway_id and (2) the pathway_id itself. Next, for any combination of pairs in the list L
j
, such 

as (pathway_id_1,g
i
) and (pathway_id_2,g

k
), if pathway_id_1 and pathway_id_2 are different, then 

we define {g
i
,g

j
} ∧ {g

j
,g

k
} as a Type-II cross-talk between pathway_id_1 and pathway_id_2.

3. Results

3.1. Type-I and Type-II cross-talks include cross-talks from other state-of-the-art 

categorisations

We compare the cross-talk categorisation approaches, including our proposed methods, in 
Figure 4. This comparison reveals an interesting aspect of these categorisations: cross-talks 

between any two pathways can be identified when their corresponding causal relationships are ignored, 
that is, considering the signalling network as an undirected network only. At the same time, 
we note that our approach can include all types of cross-talks defined by other categorisation.

Type-I cross-talks can represent signal-flow cross-talks, receptor function cross-talks, and gene-

expression cross-talks from Donaldson and Calder [14], Mode-A and Mode-B cross-talks from 

Guo and Wang [18], and cross-talk of signalling protein heterodimerisation from Kolch 
et al. [6]. In a cross-talking pair {g

i
,g

j
} in each of these categories, one signalling component g

i
 

belongs to one pathway and g
j
 belongs to another pathway, or vice versa, but mutually exclu-

sively (Figure 4). Again, Type-II cross-talks represent the cross-talk types of substrate availabil-

ity and intracellular communications from Donaldson and Calder [14], Mode-C cross-talks from 

Guo and Wang [18], and signalling node sharing and competition for nodes from Kolch et al. [6], 
since in all of these categories, there exists a shared component between pathway

1
 and pathway

2
 

for which the other components of those individual pathways compete for modification or 
activation of that shared component (Figure 4).

Moreover, Donaldson and Calder [14] reported that their categorisation comprehensively cov-

ered all possible types of signalling cross-talks in a single cell model. Since Type-I and Type-II 

cross-talks include all cross-talks from Donaldson and Calder [Figure 4], we claim that our cat-
egorisation is also comprehensive. Moreover, Donaldson and Calder made a claim that their 
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approach can be useful for detecting cross-talks in data-driven models of signalling networks. 
However, we note that their proposed algorithm (see the appendix of [14]) was based on quali-
tative logic only, and is not explicit how that could be used for dealing with network models 
derived from high-throughput quantitative signalling data such as mass spectometry and RPPA 
data. Moreover, since they used modular architecture of signal propagation (receptor func-

tion, three-stage cascade, and gene expression [14]) in detecting all signalling cross-talks, their 
approach is not suitable for models derived from gene expression data only. There are some 
studies [30–32] that attempted to infer signalling network topology using gene expression as a 
proxy for signalling protein activities, since gene expression data are usually cheaper to generate 
and are possible to produce in large scale [32].

4. Discussion and conclusion

The data-driven modelling of signalling networks and the detection of cross-talks in those 
models provide effective ways to elucidate novel mechanisms of perturbed signalling activi-
ties in various disease conditions such as cancer and drug resistance. In this chapter, we 
reviewed some state-of-the-art approaches that categorise signalling cross-talks and identi-
fied a limitation of their applicability to data-driven models, since they rely on a static topol-
ogy of signalling networks. Here, we propose a novel cross-talk categorisation (Type-I and 
Type-II) that can not only be applicable to data-driven models but also generalises all types 
of cross-talks defined by other approaches. We also presented a simple but intuitive algo-

rithm for detecting Type-I and Type-II cross-talks between any two signalling pathways. 

Figure 4. Comparative categorisations of signalling cross-talks. Here, {g
i
, g

j
, g

k
} ∈ V$, V and E are the set of signalling 

components and signalling links, respectively.
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In combination with other computational and statistical methodologies, our approach is 
useful in systems biology to generate novel but biologically plausible hypotheses in a data-
dependent manner.

The notion of cross-talking is inherently present in biological systems, which might involve 
interactions between/among signalling and regulatory pathway activities. Yamaguchi et al. 
[38] reported that in acquired resistance, RTK-mediated signalling pathways cross-talk with 
downstream effector pathways via altering the activities of effector proteins including tran-

scription factors and enzymes and thus causes the dysregulation in the expression of multiple 
target gene, specially involved in growth and cell survival processes. Therefore, in addition 
to the signalling cross-talks, it is also important to efficiently find cross-talks between/among 
signalling and regulatory pathways as well. Although this chapter primarily focuses on the 
signalling cross-talks only, our definition of data-driven models biological systems as undi-
rected graphs and the categorisations of Type-I and Type-II cross-talks can be generalised. 
Thus, our proposed algorithm will be able to identify cross-talks among any set of pathways 
including cell signalling and regulatory pathways.
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